Jump to content

ZX2015Y101

From ChemWiki

NH3 Molecule

N-H bond distance = 1.01798 armstrong

H-N-H bond angle = 105.741 degree

Optimisation

Calculation Method : RB3LYP

Basis Set : 6-31G(d,p)

Final energy E(RB3LYP) in atomic units (au)  : -56.55776873

RMS gradient : 0.00000485

Point group : C3V

Optimised NH


         Item               Value     Threshold  Converged?
 Maximum Force            0.000004     0.000450     YES
 RMS     Force            0.000004     0.000300     YES
 Maximum Displacement     0.000072     0.001800     YES
 RMS     Displacement     0.000035     0.001200     YES

Vibrations

All modes of vibration of NH3

Number of modes expected from the 3N-6 rule : 6 modes

Modes are degenerate (ie have the same energy) : 2&3 ; 5&6

Modes are "bending" vibrations : 1,2,3

Modes are "bond stretch" vibrations : 4,5,6

Mode is highly symmetric : 4

The "Umbrella" mode : 1

Number of bands expected to see in an experimental spectrum of gaseous ammonia : 2 bands

Charge distribution of NH3

Charge distribution

Nitrogen in NH3 has small negative charge of -1.125

Hydrogen in NH3 has small positive charge of 0.375

Nitrogen atom is more electronegative than hydrogen atom. So the nitrogen atom pulls the pair of electrons towards itself. Therefore the nitrogen contains negative charge while the hydrogen is relatively positively charged.

Reactivity

Molecule : N2

Calculation Method : RB3LYP

Basis Set : 6-31G(d,p)

Final energy E(RB3LYP) in atomic units (au)  : -109.52412866

RMS gradient : 0.00012786

Point group : D∞h

Vibration frequency : 2457.98

Optimised NH
         Item               Value     Threshold  Converged?
 Maximum Force            0.000221     0.000450     YES
 RMS     Force            0.000221     0.000300     YES
 Maximum Displacement     0.000052     0.001800     YES
 RMS     Displacement     0.000098     0.001200     YES

Molecule : H2

Calculation Method : RB3LYP

Basis Set : 6-31G(d,p)

Final energy E(RB3LYP) in atomic units (au)  : -1.17853936

RMS gradient : 0.00002276

Point group : D∞h

Vibration frequency : 4466.46

Optimised NH
         Item               Value     Threshold  Converged?
 Maximum Force            0.000039     0.000450     YES
 RMS     Force            0.000039     0.000300     YES
 Maximum Displacement     0.000052     0.001800     YES
 RMS     Displacement     0.000073     0.001200     YES

N2 + 3H2 -> 2NH3

   * E(NH3)=  -56.55776873 au
   * 2*E(NH3)= -113.1155375 au
   * E(N2)=  -109.52412866 au
   * E(H2)= -1.17853936 au
   * 3*E(H2)= -3.53561808 au
   * ΔE=2*E(NH3)-[E(N2)+3*E(H2)]= -0.05579076 au
   * ΔE= -146.478651538 kj/mol

Therefore the product NH3 is more stable.



O2 Molecule

O2 molecule

Dond distance = 1.21602 armstrong

Bond Angle = 180 degree

Optimisation

Calculation Method : RB3LYP

Basis Set : 6-31G(d,p)

Final energy E(RB3LYP) in atomic units (au)  : -150.25742434

RMS gradient : 0.00007502

Point group : D∞h

Vibration frequency : 1642.74

Optimised NH


         Item               Value     Threshold  Converged?
 Maximum Force            0.000130     0.000450     YES
 RMS     Force            0.000130     0.000300     YES
 Maximum Displacement     0.000080     0.001800     YES
 RMS     Displacement     0.000113     0.001200     YES

Charge Distribution

Charge distribution of O2 molecule

Covalent Double Bond forms between two oxygen atoms. No charge on neither oxygen atom.



Molecular Orbitals

Lowest energy MO of O2 molecule




This MO is a bonding combination of the two 1s core AOs on each oxygen atom. It is filled by two electrons.

Because It is much deeper energy than MO formed by valence shell AOs, it does not involve in chemical bonding.





The 3rd MO of O2 molecule
The 4th MO of O2 molecule




The 3rd MO is a bonding combination of 2s valence AOs of each oxygen atom while the 4th MO is an anti-bonding combination of 2s valence AOs.

Both of these MOs are occupied. They are higher in energy, so they involve in chemical bonding.





The 5th MO of O2 molecule




The 5th MO is a bonding combination of 2px valence AOs.MO is occupied.

Sigma 2px bond is formed.

Its energy is higher than MOs formed by 2s AOs.





The 6th MO of O2 molecule




The 6th MO is a bonding combination of 2py valence AOs. MO is occupied.

Pi 2py bond is formed.

Its energy is even higher than MO gives sigma bond, so it is easier to be broken in a chemical reaction.