Jump to content

Yhy123456

From ChemWiki

NH3 Molecule

Bond Angle = 105.741°

Bond Length = 1.01798Å

NH3 Optimisation

For the Gaussview Optimisaion:

 Item               Value     Threshold  Converged?
 Maximum Force            0.000004     0.000450     YES
 RMS     Force            0.000004     0.000300     YES
 Maximum Displacement     0.000072     0.001800     YES
 RMS     Displacement     0.000035     0.001200     YES
 Predicted change in Energy=-5.986278D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.018          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.018          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.018          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              105.7412         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              105.7412         -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              105.7412         -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -111.8571         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

the result of optimisation is:

Calculation Method = RB3LYP
Basis Set = 6-31G(d,p)
Spin = Singlet
E(RB3LYP) = -56.44397188 a.u.
RMS Gradient Norm = 0.05399560 a.u.
Point Group = C3V
NH Molecule

NH3 Vibration


All of the 6 modes are from 3N-6 rule                    
Mode 2 and 3, 5 and 6 are degenerate
Mode 1,2and3 are bond vibration. Mode4,5and6 are bond stretch
Mode 1and4 are highly symmetric
Mode 1 is the 'umbrella' mode
2 bands will show in an experimental spectrum of gaseous ammonia

NH3 Charge Analysis

The Nitrogen atom should be negative and hydrogen should be positve due to the electronegativity of the Nitrogen is higher than Hydrogen.

Charge Distribution of NH3

N2 Molecule

Bond Length=1.10550Å

N2 Optimisation

For the Gaussview Optimisaion:

         Item               Value     Threshold  Converged?
 Maximum Force            0.000006     0.000450     YES
 RMS     Force            0.000006     0.000300     YES
 Maximum Displacement     0.000002     0.001800     YES
 RMS     Displacement     0.000003     0.001200     YES
 Predicted change in Energy=-1.248809D-11
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1055         -DE/DX =    0.0                 !

The result of optimisation is:

Calculation Method = RB3LYP
Basis Set = 6-31G(d,p)
Spin = Singlet
E(RB3LYP) = -109.52412868 a.u.
RMS Gradient Norm = 0.00000365 a.u.
Point Group = D*H

N2 Vibration

N2molecule mole have 1 mode of vibration with frequency 2457.31 and infrared is zero

N2 Charge analysis

N2 molecule as an element the charge on its element should be zero

The charge of Nitrogen atoms on N2 molecule is zero.

H2 Molecule

Bond length: 0.74309Å

H2 Optimisation

For the Gaussview Optimisaion:

        Item               Value     Threshold  Converged?
 Maximum Force            0.000211     0.000450     YES
 RMS     Force            0.000211     0.000300     YES
 Maximum Displacement     0.000278     0.001800     YES
 RMS     Displacement     0.000393     0.001200     YES
 Predicted change in Energy=-5.852867D-08
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  0.7431         -DE/DX =   -0.0002              !
 --------------------------------------------------------------------------------

The result of optimisation is:

Calculation Method = RB3LYP
Basis Set = 6-31G(d,p)
Charge = 0
Spin = Singlet
E(RB3LYP) = -1.17853930 a.u.
RMS Gradient Norm = 0.00012170 a.u.
Imaginary Freq = 0
Dipole Moment = 0.0000 Debye
Point Group = D*H

Haber Process

Haber process is the industrial process to make ammonia which has following steps with heterogeneous catalyst involved.[1]

  1. Wennerström, Håkan; Lidin, Sven. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2007/advanced-chemistryprize2007.pdf (PDF). NobelPrize.org. Swedish Academy of Sciences. Retrieved 2015-09-17.
Haber process
Step reaction
1 N2 (g) → N22 (adsorbed)
2 N2 (absorbed) → 2 N (absorbed)
3 H2 (g) → H2 (absorbed)
4 H2 (g) → 2 H (absorbed)
5 N (adsorbed) + 3 H(adsorbed)→ NH3 (adsorbed)
6 NH3 (absorbed) → NH3 (g)

The energy change of Haber Process can be calculated by this:

Molecule Energy/kjmol-1
E(NH3) -148183.2
2×E(NH3) -296374.34
E(N2) -287544.78
E(H2) -3098.09
3×E(H2) -9294.27
ΔE=2×E(NH3)-E(N2)-3×E(H2) 464.71

H2O Molecule

Bond length:0.96532Å Bond angle:103.74°

H2O Optimisation

For the Gaussview Optimisaion:

   Item               Value     Threshold  Converged?
 Maximum Force            0.000003     0.000450     YES
 RMS     Force            0.000002     0.000300     YES
 Maximum Displacement     0.000011     0.001800     YES
 RMS     Displacement     0.000011     0.001200     YES
 Predicted change in Energy=-3.476162D-11
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  0.9653         -DE/DX =    0.0                 !
 ! R2    R(1,3)                  0.9653         -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              103.7384         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

The result of optimisation is:

Calculation Method = RB3LYP
Basis Set = 6-31G(d,p)
Spin = Singlet
E(RB3LYP) = -1.17853930 a.u.
RMS Gradient Norm = 0.00012170 a.u.
Point Group = D*H

H2O Vibration

Three mode of vibrations are found after the optimisation:

Vibration of H2O Molecule
Mode Frequency/Hz infrared
1 1665.31 70.3173
2 3799.69 1.6380
3 3912.81 20.2156
Vibration Mode 1

Vibration Mode 2

Vibration Mode 3

H2O Charge analysis

Water is a polar Molecule, so the Oxygen atom should be negative and Hydrogen atoms should be posivtve.

Charge Distribution of H2O

Molecular Orbital Analysis

there are 5 molecular orbitals in H2O that are occupied with electron.

Molecule orbital of H2O

Molecular Orbital 1

This Orbital is the atomic orbital of 1s2 of Oxygen(1a1).

Molecular Orbital 2

This Molecular orbital is attribute to 2s orbital of Oxygen. Consequently it is like a spherical shape.

Molecular Orbital 3

This Molecular orbital is from O—H bonding,which is a σ bonding between 2px of Oxygen and 1s orbital of Hydrogen.

Molecular Orbital 4

This Molecular orbital is from O—H bonding,which is a σ bonding between 2py of Oxygen and 1s orbital of Hydrogen.

Molecular Orbital 5

This is an anti-bonding orbital of H2O which is the atomic orbital of 2pz. This contribute the most the effect of lone pairs.