Jump to content

William

From ChemWiki

NH3

Optimisation of Molecular Model

Calculation Method:RB3LYP

Basis Set:6-31G(d,p)

E(RB3LYP):-56.55640542 a.u.

RMS Gradient Norm:0.00000485 a.u.

Point Group:C3V

Bond length: 1.10798 a

Bond Angle: 105.74116 o

Link:File:WDMNAISMITH NH3 OPTF POP.LOG

  Item               Value     Threshold  Converged?
 Maximum Force            0.000004     0.000450     YES
 RMS     Force            0.000004     0.000300     YES
 Maximum Displacement     0.000072     0.001800     YES
 RMS     Displacement     0.000035     0.001200     YES
 Predicted change in Energy=-5.986278D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.018          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.018          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.018          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              105.7412         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              105.7412         -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              105.7412         -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -111.8571         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Table 1. Item of NH3



Figure 1. Molecular model of Ammonia


Vibrations

Table 2. Vibrational modes of ammonia

From the 3N-6 rule, 6 vibrations would be expected (3(4)-6). There are four stretching modes (4,5,6) and two bending modes (1,2,3). Bending modes 2 and 3 are degenerate as are the stretching modes 5 and 6 as they vibrate at the same frequency. Mode 4 is highly symmetric and mode 1 is known as the "umbrella mode". All vibrations are accompanied by a change in dipole moment, however, the intensity of modes 4,5,6 is too low to be observed and modes 2 and 3 vibrate at the same wave number. Therefore, only 2 peaks would be expected experimental spectrum of gaseous ammonia.

In the experimental IR spectrum of ammonia, absorptions at 1630 cm-1. and a doublet at 932 and 965 cm-1 are observed.[1] The doublet is caused by the "umbrella" vibrational mode. The nitrogen atom can tunnel through the centre to invert the molecule as shown below.[2] The two different states give rise to a doublet.

Figure 2. The extremes of the "umbrella" vibration mode of ammonia.

Atomic Charges

The charge of the N atom -1.125 and the H atoms is 0.375. As N is more electronegative element, it is expected to have a greater negative charge than H as it attracts more electron density. Moreover, the sum of the atomic charges is 0, as it is neutral molecule.

Haber-Bosch Process

N2

Calculation Method:RB3LYP

Basis Set:6-31G(d,p)

E(RB3LYP):-109.52412868 a.u.

RMS Gradient Norm:0.00000060 a.u.

Point Group:D∞H

Nitrogen gas has a stretching mode at at 2457.33 cm-1.

Link:File:WDMN N2 OPTF POP.LOG

Item               Value     Threshold  Converged?
 Maximum Force            0.000001     0.000450     YES
 RMS     Force            0.000001     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000000     0.001200     YES
 Predicted change in Energy=-3.401010D-13
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1055         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Table 3. Item of N2

H2

Calculation Method:RB3LYP

Basis Set:6-31G(d,p)

E(RB3LYP):-1.17853936 a.u.

RMS Gradient Norm:0.00000017 a.u.

Point Group:D∞H

Hydrogen gas has a stretching mode at at 4465.68 cm-1.

Link:File:H2 wdmn.LOG

   Item               Value     Threshold  Converged?
 Maximum Force            0.000000     0.000450     YES
 RMS     Force            0.000000     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000001     0.001200     YES
 Predicted change in Energy=-1.164080D-13
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  0.7428         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Table 4. Item of H2

Energy of Reaction

N2 + 3H2 -> 2NH3

E(NH3)=-56.55640542 a.u.

2*E(NH3)=-113.1128108 a.u.

E(N2)=-109.52412868 a.u.

E(H2)=-1.17853936 a.u.

3*E(H2)=-3.53561808 a.u.

ΔE=2*E(NH3)-[E(N2)+3*E(H2)]=-139.3197527 kJmol-1

As the energy change is negative, the formation of ammonia is more favorable than the backwards reaction.

BH3

Optimisation of Molecular Model

Calculation Method:RB3LYP

Basis Set:6-31G(d,p)

E(RB3LYP:-26.61532364 a.u.

RMS Gradient Norm:0.00000211 a.u.

Point Group:D3H

Link:File:WDMN BH3 OPT.LOG

         Item               Value     Threshold  Converged?
 Maximum Force            0.000004     0.000450     YES
 RMS     Force            0.000003     0.000300     YES
 Maximum Displacement     0.000017     0.001800     YES
 RMS     Displacement     0.000011     0.001200     YES
 Predicted change in Energy=-1.053676D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1923         -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.1923         -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.1923         -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Table 5. Item of BH3

Figure 3. Molecular model of borane

Vibrations

Table 6. Vibrational Modes of Borane

From the 3N-6 rule, 6 vibrations would be expected (3(4)-6). There are three stretching modes (4,5,6) and two bending modes (1,2,3). Bending modes 2 and 3 are degenerate as are the stretching modes 5 and 6 as they vibrate at the same frequency. Mode 4 is not accompanied by a change in dipole moment.

Atomic Charge

The charge of the B atom 0.297 and the H atoms is -0.099. As H is the more electronegative element, it is expected to have a greater negative charge than B as it attracts more electron density. Moreover, the sum of the atomic charges is 0, as it is neutral molecule.

Molecular Orbitals

Figure 4. MO1

This MO is formed from the 1s AO of B. It is too low in energy too interact with the 1s AO of H and so is not involved in bonding.


Figure 5. MO2

The MO is formed by the combination of B 2s AO and the 1s AOs of the H atoms. The shape of the MO is heavily dependent on that of the H 1s AO as its valence AOs are lower in energy because H is more electronegative than B.



Figure 6. MO3 and MO4

These degenerate MOs are the combination of in phase overlap two of B 2p AOs and the H 1s AOs. They are also the HOMO.


Figure 7. MO5

The non-bonding B 2p AO is the LUMO. As the LUMO is a non-bonding rather than an anti-bonding MO, it is lower in energy meaning that it can more easily accept electrons (Lewis base) from a HOMO without affecting the bonded hydrogen.


Figure 8. MO6

This MO is the anti-bonding orbital. It is much higher in energy than the bonding MOs.

O2

Calculation Method:RB3LYP

Basis Set:6-31G(d,p)

E(RB3LYP):-150.25742434 a.u.

RMS Gradient Norm:0.00007502 a.u.

Point Group:D∞H

Oxygen gas has a stretching mode at at 1642.74 cm-1.

Link:File:O2 WDMN OPT.LOG

         Item               Value     Threshold  Converged?
 Maximum Force            0.000130     0.000450     YES
 RMS     Force            0.000130     0.000300     YES
 Maximum Displacement     0.000080     0.001800     YES
 RMS     Displacement     0.000113     0.001200     YES
 Predicted change in Energy=-1.033738D-08
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.216          -DE/DX =   -0.0001              !
 --------------------------------------------------------------------------------

Table 6. Item of O2

Figure 9. Molecular model of oxygen

References

[1] [2]