Jump to content

Rep:Title=Mod:pbd15 complab2

From ChemWiki

NH3 Optimisation

Data

Molecule: NH3

Calculation Method: RB3LYP

Basis Set: 6-31G(d,p)

Energy: -56.55776873 a.u.

RMS Gradient: 0.00000485 a.u.

Point Group: C3V

Bond Length: 1.01798 Angstroms

Bond Angle: 105.741 Degrees

Log file: File:PDAVIS NH3 OPTF POP.LOG

Item Table:

Item               Value     Threshold  Converged?
 Maximum Force            0.000004     0.000450     YES
 RMS     Force            0.000004     0.000300     YES
 Maximum Displacement     0.000072     0.001800     YES
 RMS     Displacement     0.000035     0.001200     YES
NH3 Molecule

Vibrations

From the 3N-6 rule, we would expect 6 modes.

Modes 2 and 3 and modes 5 and 6 are degenerate.

Modes 1,2,3 are bending vibrations and modes 4,5,6 are bond stretch vibrations.

Mode 1 is an 'umbrella' vibration.

Mode 4 is highly symmetric

We would expect to see 4 bands in an IR spectrum of gaseous ammonia

Charge Distribution

Optimised charge on H atoms: 0.375

Optimised charge on N atom: -1.125

We would expect a slight positive charge on each hydrogen atom, and a negative charge on the nitrogen atom equal to -3 times the charge on each hydrogen, which is what we have here.

N2 Optimisation

Data

Molecule: N2

Calculation Method: RB3LYP

Basis Set: 6-31G(d,p)

Energy: -109.52412868 a.u.

RMS Gradient: 0.00000060 a.u.

Point Group: D∞H

Bond Length: 1.10550 Angstroms

Log File: File:PDAVIS N2 OPTF POP.LOG

Item Table:

Item               Value     Threshold  Converged?
 Maximum Force            0.000001     0.000450     YES
 RMS     Force            0.000001     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000000     0.001200     YES

Vibrations

Frequency: 2457.33 Hz

H2 Optimisation

Data

Molecule: H2

Calculation Method: RB3LYP

Basis Set: 6-31G(d,p)

Energy: -1.17853936 a.u.

RMS Gradient: 0.00000068 a.u.

Point Group: D∞H

Bond Length: 0.74279 Angstroms

Log File: File:PDAVIS H2 OPTF POP.LOG

Item Table:

Item               Value     Threshold  Converged?
 Maximum Force            0.000001     0.000450     YES
 RMS     Force            0.000001     0.000300     YES
 Maximum Displacement     0.000002     0.001800     YES
 RMS     Displacement     0.000002     0.001200     YES

Vibrations

Frequency: 4465.70 Hz


Haber-Bosch Process

Energy Calculations

E(NH3)= -56.55776873 a.u.

2*E(NH3)= -113.11553746 a.u.

E(N2)= -109.52412868 a.u.

E(H2)= -1.17853936 a.u.

3*E(H2)= -3.53561808 a.u.

ΔE=2*E(NH3)-[E(N2)+3*E(H2)]= -0.0557907 a.u. = -146.478494 kJ mol-1

From this we can deduce that the ammonia product is more stable than the gaseous reactants in this reaction:

N2 + 3H2 -> 2NH3

H2CO Optimisation

Data

Molecule: H2CO

Calculation Method: RB3LYP

Basis Set: 6-31G(d,p)

Energy: -114.50319933 a.u.

RMS Gradient: 0.00007386 a.u.

Point Group: CS

C-H Bond Length: 1.11057 Angstroms

C=O Bond Length: 1.20676 Angstroms

H-C-H Bond Angle: 115.219 Degrees

H-C=O Bond Angle: 122.395 Degrees

Log file: File:PDAVIS H2CO OPTF POP.LOG

Item Table:

Item               Value     Threshold  Converged?
 Maximum Force            0.000197     0.000450     YES
 RMS     Force            0.000085     0.000300     YES
 Maximum Displacement     0.000232     0.001800     YES
 RMS     Displacement     0.000149     0.001200     YES
H2CO Molecule

Vibrations

6 modes, none degenerate:

"Umbrella" bend: 1200.65 Hz

Asymmetric C-H bend: 1274.54 Hz

Symmetric C-H bend: 1554.64 Hz

C=O stretch: 1845.74 Hz

Symmetric C-H stretch: 2897.28 Hz

Asymmetric C-H stretch: 2954.03 Hz

Charge Distribution

Optimised charge on C atom: 0.221

Optimised charge on H atoms: 0.137

Optimised charge on O atom -0.494

Molecular Orbitals

A mixture of the C-H sigma bonding orbitals with the non-bonding sp2 orbitals on the oxygen, with an energy of -0.49430 a.u. Occupied.


The antibonding equivalent of the above (a mixture of the C-H sigma* orbitals and the non-bonding sp2 orbitals on the oxygen), with an energy of -0.26816 a.u. Occupied (HOMO).




Sigma bonding orbital between C and O, with an energy of -0.44941 a.u. Occupied.




Pi* antibonding orbital between C and O, the antibonding equivalent of the below orbital with an energy of -0.04309 a.u. Unoccupied (LUMO).


Pi bonding orbital between C and O, with an energy of -0.39919 a.u. (The next highest occupied molecular orbital after the HOMO).