Jump to content

Rep:Mod:mywiki

From ChemWiki

NH3

Optimization

The optimization file is liked to here

NH3

Calculation Method: RB3LYP

Basic Set: 6-31G(d,p)

E(RB3LYP): -56.55776873 a.u.

RMS Gradient: 0.00000485 a.u.

Point Group: C3V

N-H bond distance: 1.01798

H-N-H bond angle: 105.741

 Item               Value     Threshold  Converged?
 Maximum Force            0.000004     0.000450     YES
 RMS     Force            0.000004     0.000300     YES
 Maximum Displacement     0.000072     0.001800     YES
 RMS     Displacement     0.000035     0.001200     YES
 Predicted change in Energy=-5.986289D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.018          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.018          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.018          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              105.7412         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              105.7412         -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              105.7412         -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -111.8571         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Vibration Analysis

6 modes are expected from the 3N-6 rule. Mode 5 and mode 6 are degenerate as they have the same frequency of 3589.86. Modes 1, 2 and 3 are "bending" vibrations while modes 4, 5 and 6 are "bond stretch" vibrations. Mode 4 is highly symmetric and mode 1 is known as the "umbrella" mode. 4 Bands would be seen in an experimental spectrum of gaseous ammonia.

Charge Analysis

N is expected to be negatively charged while H is expected to be positively charged as N is more electronegative than H and therefore pulls electrons towards N, making it more negatively charged.

N2

Optimization

The optimisation file is liked to here

N2

Calculation method: RB3LYP

Bsaic set: 6-31G(d,p)

Final energy: -109.52412868 a.u.

RMS gradient: 0.00000060 a.u.

Point Group: D*H

Bond distance: 1.10550

Bond angle: 180

Item               Value     Threshold  Converged?
 Maximum Force            0.000001     0.000450     YES
 RMS     Force            0.000001     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000000     0.001200     YES
 Predicted change in Energy=-3.400991D-13
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1055         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Vibration Analysis

H2

Optimization

The optimisation file is liked to here

H2

Calculation method: RB3LYP

Basic set: 6-31G(d,p)

Final energy: -1.17853936 a.u.

RMS gradient: 0.00000017 a.u.

Point group: D*H

Bond length: 0.60000

Bond angle: 180

Item               Value     Threshold  Converged?
 Maximum Force            0.000000     0.000450     YES
 RMS     Force            0.000000     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000001     0.001200     YES
 Predicted change in Energy=-1.164080D-13
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  0.7428         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Vibration Analysis

Haber-Bosch Process

N2 + 3H2 -> 2NH3

E(NH3)= -56.55776873 a.u.

2*E(NH3)= -113.1155375 a.u.

E(N2)= -109.52412868 a.u.

E(H2)= -1.17853936 a.u.

3*E(H2)= -3.53591808 a.u.

Change in energy= 2*E(NH3)-[E(N2)+3*E(H2)]= -0.05549074 a.u.= -145.6909379 kJ/mol

Since energy is given off, it is an exothermic process. Thus the ammonia product is more stable than the gaseous reactants.

CH4

Optimization

The optimisation file is liked to here

CH4

Calculation method: RB3LYP

Basic set: 6-31G(d,p)

Final energy: -40.52401404 a.u.

RMS gradient: 0.00003263 a.u.

Point group: TD

Bond distance (C-H): 1.09197

Bond angle (H-C-H): 109.471

 Item               Value     Threshold  Converged?
 Maximum Force            0.000063     0.000450     YES
 RMS     Force            0.000034     0.000300     YES
 Maximum Displacement     0.000179     0.001800     YES
 RMS     Displacement     0.000095     0.001200     YES
 Predicted change in Energy=-2.255986D-08
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.092          -DE/DX =   -0.0001              !
 ! R2    R(1,3)                  1.092          -DE/DX =   -0.0001              !
 ! R3    R(1,4)                  1.092          -DE/DX =   -0.0001              !
 ! R4    R(1,5)                  1.092          -DE/DX =   -0.0001              !
 ! A1    A(2,1,3)              109.4712         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              109.4712         -DE/DX =    0.0                 !
 ! A3    A(2,1,5)              109.4712         -DE/DX =    0.0                 !
 ! A4    A(3,1,4)              109.4712         -DE/DX =    0.0                 !
 ! A5    A(3,1,5)              109.4712         -DE/DX =    0.0                 !
 ! A6    A(4,1,5)              109.4712         -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -120.0            -DE/DX =    0.0                 !
 ! D2    D(2,1,5,3)            120.0            -DE/DX =    0.0                 !
 ! D3    D(2,1,5,4)           -120.0            -DE/DX =    0.0                 !
 ! D4    D(3,1,5,4)            120.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Vibration Analysis

9 modes are expected from the 3N-6 rule. Modes 1, 2 and 3 are degenerates. In addition, modes 4 and 5 are degenerates. Modes 7, 8 and 9 are also degenerates. Modes 1 to 5 are "bending" vibrations while modes 6-9 are "bond stretch" vibrations. Mode 6 is highly symmetric. Mode 2 is known as the "umbrella" mode. 6 bands are expected to been seen in an experimental spectrum.

Charge Analysis

Carbon is expected to be negatively charged while hydrogen is expected to be positively charged as carbon is more electronegative than hydrogen. Therefore, carbon pulls electrons towards itself, making it negatively charged.

Molecular Orbitals Analysis

Bonding molecular orbital formed with 1s orbital of carbon. The MO is occupied. It is a HOMO and it forms bond by donating electrons.

Bonding molecular orbital formed by overlapping 2s orbital of carbon and 1s orbital of hydrogen. The MO is occupied. It is a HOMO and it forms bond by donating electrons.

Antibonding molecualr orbital formed by overlapping 2s orbital of carbon and 1s orbital of hydrogen. The MO is unoccupied. It is a LUMO and it forms bond by accepting electrons.

Bonding molecular orbital formed by overlapping 2p orbital of carbon and 1s orbital of hydrogen. The MO is occupied. It is a HOMO and it forms bond by donating electrons.

Antibonding molecular orbital formed by overlapping 2p orbital of carbon and 1s orbital of hydrogen. The MO is unoccupied. It is a LUMO and it forms bond by accepting electrons.