Jump to content

Rep:Mod:mh2710tata

From ChemWiki

Computational lab module 2

Computational chemistry is widely used to predict structure ,energy and electronic charge distributions etc. to help running the real experiment and to solve problems for situations that impossible or too expensive to do experimentally.

In this computational lab, GaussView 5.0 was used to determine the structure, vibrational frequency and molecular orbitals of several similar molecules.

Week 1:Optimisation and Analysis of BH3, TlBr3, BBr3, NH3 and NH3BH3

Create and optimise Molecule BH3 using basis set 3-21G

Create a BH3 molecule and change its bond length to 1.5 angstrom

The BH3 molecule created was then optimised with calculation:

Job type:optimisation

Method:DFT B3LYP

Basis set: 3-21G

BH3 Optimisation Summary Table

BH3 Optimisation Summary Table
BH3 Optimisation Summary Table
File Name BH3
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 3-21G
Charge 0
Spin Singlet
E(RB3LYP) -26.46226338 a.u.
RMS Gradient Norm 0.00020672 a.u.
Imaginary Freq
Dipole Moment 0.0000 Debye
Point Group D3h
Job CPU Time 0 days 0 hours 0 minutes 15.0 seconds

Optimised Bond Length and Bond Angle for BH3

Optimised B-H bond distance 1.19349 angstrom.

Optimised H-B-H bond angle 120.00002 degree.

Item Table for BH3 Optimisation

         Item               Value     Threshold  Converged?
 Maximum Force            0.000413     0.000450     YES
 RMS     Force            0.000271     0.000300     YES
 Maximum Displacement     0.001581     0.001800     YES
 RMS     Displacement     0.001054     0.001200     YES
 Predicted change in Energy=-1.071764D-06
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1935         -DE/DX =    0.0004              !
 ! R2    R(1,3)                  1.1935         -DE/DX =    0.0004              !
 ! R3    R(1,4)                  1.1935         -DE/DX =    0.0004              !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Optimisation Log File of BH3

The optimisation file is linked to here.

Optimistion Total Energy and RMS Gradient of BH3

OPTIMISATION RMS GRADIENT NORM of BH3 AND TOTAL ENERGY of BH3

Discussion

The RMS Gradient Norm is less than 0.001,which shows the optimisation is complete.

From the item table, all forces and displacements converged; optimisation goes to complete.

From the graph (total energy vs optimising step number),the total energy became stable between step 3 and 4, indicating reaching its minimum value.

From the graph (RMS Gradient Norm vs optimising step number), the force became 0 when the optimisation finished. From F=dVdr (where r is the interatomic distance), changing of bond length should be 0 as force is 0.

Both bond length and minimum energy indicate the molecule has been optimised.

3-21G basis set was used here to provide a quick calculation with low accuracy.

Further optimisation of Molecule BH3 using basis set 6-31G

Open the log file for optimised BH3 from last step. The BH3 molecule was then further optimised with calculation:

Job type:optimisation

Method:DFT B3LYP

Basis set: 6-31G(d,p)

BH3 Optimisation Summary Table

BH3 Optimisation Summary Table and B-H Bond Length
BH3 Optimisation Summary Table
File Name BH3-631g
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -26.61532335 a.u.
RMS Gradient Norm 0.00010778 a.u.
Imaginary Freq
Dipole Moment 0.0000 Debye
Point Group D3h
Job CPU Time 0 days 0 hours 0 minutes 12.0 seconds


Optimised Bond Length and Bond Angle for BH3

Optimised B-H bond distance 1.19189 angstrom.

Optimised H-B-H bond angle 119.99997 degree.

Item Table for BH3 Optimisation

         Item               Value     Threshold  Converged?
 Maximum Force            0.000216     0.000450     YES
 RMS     Force            0.000141     0.000300     YES
 Maximum Displacement     0.000847     0.001800     YES
 RMS     Displacement     0.000555     0.001200     YES
 Predicted change in Energy=-2.944350D-07
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1919         -DE/DX =    0.0002              !
 ! R2    R(1,3)                  1.1919         -DE/DX =    0.0002              !
 ! R3    R(1,4)                  1.1919         -DE/DX =    0.0002              !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Optimisation Log File of BH3

The optimisation file is linked to here.

Discussion

The RMS Gradient Norm is less than 0.001,which shows the optimisation is complete.

From the item table, all forces and displacements converged; optimisation goes to complete.

From the graph (total energy vs optimising step number),the total energy became stable between step 3 and 4, indicating reaching its minimum value.

From the graph (RMS Gradient Norm vs optimising step number), the force went to 0 when the optimisation finished. From F=dVdr (where r is the interatomic distance), changing of bond length should be 0 as force is 0.

Both bond length and minimum energy indicate the molecule has been optimised.

6-31G basis set was used here, which is more accurate as RMS Gradient Norm is closer to 0 when compared to 3-21G basis set.

Comparison of Energies of BH3

Difference in Energies
Basis Set Energy (a.u.)
3-21G -26.46226338
6-21G(d,p) -26.61532335
Difference in Energy 0.15305997

By using 6-31G(d,p) basis set, the optimised system was 0.15305997 a.u.(401.8589512 kJ/mol) lower in energy.

Create and optimise Molecule TlBr3 using basis set LanL2DZ

Draw out the TlBr3 trigonal planar and restrict its symmetry to point group D3h and increase the tolerance to 'Very tight (0.0001)'.

The TlBr3 molecule was optimised with calculation:

Job type: optimisation

Method:DFT B3LYP

Basis set: LanL2DZ

Run calculation using HPC service.

TlBr3 Optimisation "D-space" File

The optimisation "D-space" file is linked to DOI:10042/23517

TlBr3 Optimisation Summary Table

TlBr3 Optimisation Summary Table
TlBr3 Optimisation Summary Table
File Name log_72760-TlBr3
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set LANL2DZ
Charge 0
Spin Singlet
E(RB3LYP) -91.21812851 a.u.
RMS Gradient Norm 0.00000090 a.u.
Imaginary Freq
Dipole Moment 0.0000 Debye
Point Group D3h
Job CPU Time 0 days 0 hours 0 minutes 38.5 seconds

Optimised Bond Length and Bond Angle for TlBr3

Optimised Tl-Br bond distance 2.65095 angstrom.

Optimisd Br-Tl-Br bond angle 120.00000 degree.

Literature[1] bond length: 2.512 angstroms.(percentage difference 5.5%)


  1. [1] J. Glaser, G. Johansson. Acta Chemica Scandinavica, 1982, 36a, Pp. 125-135. .

Optimisation Log File of TlBr3

The optimisation file is linked to here

Item Table for TlBr3 Optimisation

         Item               Value     Threshold  Converged?
 Maximum Force            0.000002     0.000450     YES
 RMS     Force            0.000001     0.000300     YES
 Maximum Displacement     0.000022     0.001800     YES
 RMS     Displacement     0.000014     0.001200     YES
 Predicted change in Energy=-6.084086D-11
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  2.651          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  2.651          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  2.651          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Create and optimise Molecule: BBr3

Open 6-31G(d,p) optimised log file for BH3 and change 'H' to 'Br'.

The BBr3 molecule was optimised with calculation:

Job type: optimisation

Method:DFT B3LYP

Basis set: GEN

Additional keywords:pseudo=read gfinput

Save and open the saved copy. Go to the results tab and select view file, insert:

B 0
6-31G(d,p)
****
Br 0
LanL2DZ
****

Br 0
LanL2DZ

to the bottom section.

Run calculation using HPC service.

BBr3 Optimisation "D-space" File

The optimisation "D-space" file is linked toDOI:10042/23554 .

BBr3 Optimisation Summary Table

BBr3 Optimisation Summary Table
BBr3 Optimisation Summary Table
File Name log_72830-BBr3
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set GEN
Charge 0
Spin Singlet
E(RB3LYP) -64.43645296 a.u.
RMS Gradient Norm 0.00000382 a.u.
Imaginary Freq
Dipole Moment 0.0000 Debye
Point Group D3h
Job CPU Time 0 days 0 hours 0 minutes 38.9 seconds

Optimised Bond Length and Bond Angle for BBr3

Optimised B-Br bond distance 1.93396 angstrom.

Optimised Br-B-Br bond angle 120.00001 degree.

Optimisation Log File of BBr3

The optimisation file is linked to here

Item Table for BBr3 Optimisation

         Item               Value     Threshold  Converged?
 Maximum Force            0.000008     0.000450     YES
 RMS     Force            0.000005     0.000300     YES
 Maximum Displacement     0.000036     0.001800     YES
 RMS     Displacement     0.000023     0.001200     YES
 Predicted change in Energy=-4.028006D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.934          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.934          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.934          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Discussion

Analysis: BH3, BBr3, and TlBr3 Bond Distance and Bond Angle

Bond Distances for BH3, BBr3, and TlBr3 Table
Molecule Bond Distances Bond Angle
BH3 1.19189 angstrom 119.99997 degree
BBr3 1.93396 angstrom 120.00001 degree
TlBr3 2.65095 angstrom 120.00000 degree


change ligand BBr3 has larger bond length than BH3. This is because ligand Br is in row 4 and H is in row 1. Br is larger in size as it has more electron shells than H, therefore Br has more diffused electron orbital and has weaker overlap with the electron orbital of B. The bond strength of B-Br bond is weaker than B-H bond. what's more, Br is more electronegative than H, which polarises the B-Br covalent bond and weaken the bond strength.

change central atom TlBr3 has larger bond length than BBr3. This is because ligand Br is in row 2 and Tl is in row 6. The reasons are same as above.

Questions
In some structures GaussView does not draw in the bonds where we expect, does this mean there is no bond? Why?
Answer: No. They are there but not shown as the bond distance exceed the pre-defined GaussView distance value.


(2) What is a bond?
Answer:A bond is the attraction between atoms.

Frequency analysis for BH3

Open the log file for optimised BH3 (6-31G) from previous steps and save a copy. The BH3 molecule was then further optimised with calculation:

Job type:frequency

Method:DFT B3LYP

Basis set: 6-31G(d,p)

Run calculation using HPC service.

BH3 Frequency Analysis "D-space" File

The frequency analysis "D-space" file is linked to DOI:10042/23678

BH3 Frequency Summary Table

BH3 Frequency Summary Table
BH3 Frequency Summary Table
File Name log_73066_BH3-freq-RE
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -26.61532363 a.u.
RMS Gradient Norm 0.00000237 a.u.
Imaginary Freq
Dipole Moment 0.0000 Debye
Point Group D3h
Job CPU Time 0 days 0 hours 0 minutes 21.8 seconds

Frequency Analysis Log File of BH3

The frequency analysis file is linked to here

Item Table for BH3 Frequency Analysis

Low frequencies ---   -0.9033   -0.7343   -0.0055    6.7375   12.2491   12.2824
 Low frequencies --- 1163.0003 1213.1853 1213.1880
 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                    A2"                    E'                     E'
 Frequencies --  1163.0003              1213.1853              1213.1880
 Red. masses --     1.2531                 1.1072                 1.1072
 Frc consts  --     0.9986                 0.9601                 0.9601
 IR Inten    --    92.5478                14.0553                14.0589
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z
     1   5     0.00   0.00   0.16     0.00   0.10   0.00    -0.10   0.00   0.00
     2   1     0.00   0.00  -0.57     0.00   0.08   0.00     0.81   0.00   0.00
     3   1     0.00   0.00  -0.57    -0.39  -0.59   0.00     0.14   0.39   0.00
     4   1     0.00   0.00  -0.57     0.39  -0.59   0.00     0.14  -0.39   0.00

Vibration Modes of BH3

BH3 Frequency Table
Number Form of Vibration Frequency Intensity Symmetry D3h Point Group
1 xxx Wagging Mode, 3 H atoms always in the same plane, B goes in the opposite direction 1163.00 92.5478 a2
2 xxx Symmetrical Stretching, 2 H atoms move in and out together 1213.19 14.0553 e'
3 xxx Rocking Mode, 2 H atoms moving anticlockwise and the other moving clockwise. 1213.19 14.0589 e'
4 xxx Symmetric Stretching, along B-H bonds 2582.26 0.0000 a1'
5 xxx Asymmetrical Stretching, 2 H atoms move asymmetrically, the other H atom remains unchanged. 2715.43 126.3307 e'
6 xxx Symmetrical Stretching, 2 H atoms move symmetrically, the other H atom stretch along B-H bond. 2715.43 126.3211 e'

IR Spectrum of BH3

The IR spectrum was shown as follow:

IR Spectrum of BH3

Frequency analysis for TlBr3

Open the log file for optimised TlBr3 from previous steps and save a copy. The TlBr3 molecule was then further optimised with calculation:

Job type:frequency

Method:DFT B3LYP

Basis set: LanL2DZ

Run calculation using HPC service.

TlBr3 Frequency Analysis "D-space" File

The frequency analysis "D-space" file is linked to DOI:10042/23631

TlBr3 Frequency Summary Table

TlBr3 Frequency Summary Table
TlBr3 Frequency Summary Table
File Name log_72962_TlBr3_freq
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set LANL2DZ
Charge 0
Spin Singlet
E(RB3LYP) -91.21812851 a.u.
RMS Gradient Norm 0.00000088 a.u.
Imaginary Freq
Dipole Moment 0.0000 Debye
Point Group D3h
Job CPU Time 0 days 0 hours 0 minutes 28.2 seconds

Frequency Analysis Log File of TlBr3

The frequency analysis file is linked to here

Item Table for TlBr3 Frequency Analysis

Low frequencies ---   -3.4213   -0.0026   -0.0004    0.0015    3.9367    3.9367
 Low frequencies ---   46.4289   46.4292   52.1449
 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                    E'                     E'                     A2"
 Frequencies --    46.4289                46.4292                52.1449
 Red. masses --    88.4613                88.4613               117.7209
 Frc consts  --     0.1124                 0.1124                 0.1886
 IR Inten    --     3.6867                 3.6867                 5.8466
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z
     1  81     0.00   0.28   0.00    -0.28   0.00   0.00     0.00   0.00   0.55
     2  35     0.00   0.26   0.00     0.74   0.00   0.00     0.00   0.00  -0.48
     3  35     0.43  -0.49   0.00    -0.01  -0.43   0.00     0.00   0.00  -0.48
     4  35    -0.43  -0.49   0.00    -0.01   0.43   0.00     0.00   0.00  -0.48

Vibration Modes of TlBr3

TlBr3 Frequency Table
Number Form of Vibration Frequency Intensity Symmetry D3h Point Group
1 xxxSymmetrical Stretching, 1 Br atom goes clockwise while the other goes anticlockwise. The other Br atom stretch along Tl-Br bond 46.43(lowest normal mode) 3.6867 e'
2 xxxRocking Mode, with 2 Br atoms moving anticlockwise and the other moving clockwise. Tl moving in and out the plane. 46.43 3.6867 e'
3 xxxWagging Mode, 3 Br atoms always in the same plane 52.14 5.8466 a2
4 xxxSymmetrical Stretching 165.27 0.0000 a1'
5 xxxAsymmetrical Stretching, 2 Br atoms move asymmetrically . The other remains stationary. 210.69 25.4830 e'
6 xxx Symmetrical Stretching, 2 Br atoms move asymmetrically. The other Br atom stretch along Tl-Br bond. 210.69 25.4797 e'

IR Spectrum of TlBr3

The IR spectrum was shown as follow:

IR Spectrum of TlBr3

IR analysis: BH3 and TlBr3

Molecular Orbitals of BH3

Open the chk file for optimised BH3 from previous steps and save a copy. The BH3 molecule was then further optimised with calculation:

Job type:energy

Method:DFT B3LYP

Basis set: 6-31G(d,p)

NBO: full NBO

Additional keywords:'pop=full'

Run calculation using HPC service.

BH3 Population Analysis "D-space" File

The population analysis "D-space" file is linked to DOI:10042/23694

BH3 MO Analysis Summary Table

BH3 MO Analysis Summary Table
BH3 MO Analysis Summary Table
File Name log_73123_bh3_MO-re
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -26.61532363 a.u.
RMS Gradient Norm
Imaginary Freq
Dipole Moment 0.0000 Debye
Point Group D3h
Job CPU Time 0 days 0 hours 0 minutes 31.4 seconds

MO Analysis Log File of BH3

The MO analysis file is linked to here

MOs of BH3

MOs of BH3
MOs of BH3

Discussion

Create and optimise NH3

Create a NH3 molecule. The NH3 molecule was then optimised with calculation:

Job type:optimisation

Method:DFT B3LYP

Basis set: 6-31G(d,p)

keywords:nosymm

Run calculation on HPC.

NH3 Optimisation Summary Table

NH3 Optimisation Summary Table
NH3 Optimisation Summary Table
File Name log_73357-NH3
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -56.55776856 a.u.
RMS Gradient Norm 0.00000885 a.u.
Imaginary Freq
Dipole Moment 1.8464 Debye
Point Group C1
Job CPU Time 0 days 0 hours 0 minutes 40.1 seconds

Optimised Bond Length and Bond Angle for NH3

Optimised N-H bond distance 1.01797 angstrom.

Optimisd H-N-H bond angle 105.74139 degree.

Optimisation Log File of NH3

The optimisation file is linked to here

Item Table for NH3 Optimisation

         Item               Value     Threshold  Converged?
 Maximum Force            0.000024     0.000450     YES
 RMS     Force            0.000012     0.000300     YES
 Maximum Displacement     0.000079     0.001800     YES
 RMS     Displacement     0.000053     0.001200     YES
 Predicted change in Energy=-1.629731D-09
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.018          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.018          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.018          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              105.7413         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              105.7486         -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              105.7479         -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -111.8631         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Frequency analysis for NH3

Open the log file for optimised NH3 (6-31G) from previous steps and save a copy. The NH3 molecule was then further optimised with calculation:

Job type:frequency

Method:DFT B3LYP

Basis set: 6-31G(d,p)

Run calculation using HPC service.

NH3 Frequency Summary Table

NH3 Frequency Summary Table
NH3 Frequency Summary Table
File Name log_73358-NH3-FREQ
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -56.55776856 a.u.
RMS Gradient Norm 0.00000878 a.u.
Imaginary Freq
Dipole Moment 1.8464 Debye
Point Group C1
Job CPU Time 0 days 0 hours 0 minutes 24.1 seconds

Frequency Analysis Log File of NH3

The frequency analysis file is linked to here

Item Table for NH3 Frequency Analysis

Low frequencies ---  -30.8045    0.0011    0.0018    0.0021   20.2188   28.2150
 Low frequencies --- 1089.5530 1694.1235 1694.1861
 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                     A                      A                      A
 Frequencies --  1089.5530              1694.1235              1694.1861
 Red. masses --     1.1800                 1.0644                 1.0644
 Frc consts  --     0.8253                 1.8000                 1.8001
 IR Inten    --   145.4405                13.5558                13.5561
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z
     1   7     0.12   0.00   0.00     0.00  -0.02  -0.06     0.00   0.06  -0.02
     2   1    -0.53  -0.21   0.00    -0.07  -0.04   0.73     0.25   0.14   0.19
     3   1    -0.53   0.11   0.18     0.25  -0.24  -0.02    -0.07  -0.61   0.40
     4   1    -0.53   0.11  -0.18    -0.18   0.52   0.18    -0.18  -0.41  -0.36

IR Spectrum of NH3

The IR spectrum was shown as follow:

Molecular Orbitals of NH3

Open the chk file for optimised NH3 from previous steps and save a copy. The NH3 molecule was then further optimised with calculation:

Job type:energy

Method:DFT B3LYP

Basis set: 6-31G(d,p)

NBO: full NBO

Additional keywords:'pop=full'

Run calculation using HPC service.

NH3 MO Analysis Summary Table

NH3 MO Analysis Summary Table
NH3 MO Analysis Summary Table
File Name log_73365-NH3-MO
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -56.55776852 a.u.
RMS Gradient Norm
Imaginary Freq
Dipole Moment 1.8464 Debye
Point Group C1
Job CPU Time 0 days 0 hours 0 minutes 31.7 seconds

MO Analysis Log File of NH3

The MO analysis file is linked to here

Discussion

NBO Analysis of NH3

select type: NBO

Charge Distribution by Colour(range between -1.125 and 1.125)

NBO colour of NH3

Charge Distribution by Numbers

NBO charge of NH3

Ammonia-Borane

Optimisation of NH3BH3

Create a NH3BH3 molecule. The NH3BH3 molecule was then optimised with calculation:

Job type:optimisation

Method:DFT B3LYP

Basis set: 6-31G(d,p)

Run calculation on HPC service.

NH3BH3 Optimisation Summary Table

NH3BH3 Optimisation Summary Table
NH3BH3 Optimisation Summary Table
File Name log_73374-NH3BH3
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -83.22468960 a.u.
RMS Gradient Norm 0.00005839 a.u.
Imaginary Freq
Dipole Moment 5.5651 Debye
Point Group C1
Job CPU Time 0 days 0 hours 1 minutes 53.0 seconds.

Optimised Bond Length and Bond Angle for NH3BH3

Optimised B-H bond distance 1.21005 angstrom.
Optimised N-H bond distance 1.01860 angstrom.
Optimised N-B bond distance 1.66807 angstrom
Optimised H-B-H bond angle 113.87427 degree.
Optimised H-N-H bond angle 107.86829 degree.

Optimisation Log File of NH3BH3

The optimisation file is linked to here

Item Table for NH3BH3 Optimisation

         Item               Value     Threshold  Converged?
 Maximum Force            0.000124     0.000450     YES
 RMS     Force            0.000057     0.000300     YES
 Maximum Displacement     0.000660     0.001800     YES
 RMS     Displacement     0.000304     0.001200     YES
 Predicted change in Energy=-1.649603D-07
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,7)                  1.21           -DE/DX =   -0.0001              !
 ! R2    R(2,7)                  1.21           -DE/DX =   -0.0001              !
 ! R3    R(3,7)                  1.21           -DE/DX =   -0.0001              !
 ! R4    R(4,8)                  1.0186         -DE/DX =   -0.0001              !
 ! R5    R(5,8)                  1.0186         -DE/DX =   -0.0001              !
 ! R6    R(6,8)                  1.0186         -DE/DX =   -0.0001              !
 ! R7    R(7,8)                  1.6681         -DE/DX =   -0.0001              !
 ! A1    A(1,7,2)              113.8754         -DE/DX =    0.0                 !
 ! A2    A(1,7,3)              113.8742         -DE/DX =    0.0                 !
 ! A3    A(1,7,8)              104.5931         -DE/DX =    0.0                 !
 ! A4    A(2,7,3)              113.8743         -DE/DX =    0.0                 !
 ! A5    A(2,7,8)              104.5962         -DE/DX =    0.0                 !
 ! A6    A(3,7,8)              104.6001         -DE/DX =    0.0                 !
 ! A7    A(4,8,5)              107.8698         -DE/DX =    0.0                 !
 ! A8    A(4,8,6)              107.8683         -DE/DX =    0.0                 !
 ! A9    A(4,8,7)              111.0271         -DE/DX =    0.0                 !
 ! A10   A(5,8,6)              107.87           -DE/DX =    0.0                 !
 ! A11   A(5,8,7)              111.0319         -DE/DX =    0.0                 !
 ! A12   A(6,8,7)              111.0285         -DE/DX =    0.0                 !
 ! D1    D(1,7,8,4)            179.998          -DE/DX =    0.0                 !
 ! D2    D(1,7,8,5)            -60.001          -DE/DX =    0.0                 !
 ! D3    D(1,7,8,6)             60.0012         -DE/DX =    0.0                 !
 ! D4    D(2,7,8,4)            -60.0027         -DE/DX =    0.0                 !
 ! D5    D(2,7,8,5)             59.9983         -DE/DX =    0.0                 !
 ! D6    D(2,7,8,6)            180.0005         -DE/DX =    0.0                 !
 ! D7    D(3,7,8,4)             59.9984         -DE/DX =    0.0                 !
 ! D8    D(3,7,8,5)            179.9994         -DE/DX =    0.0                 !
 ! D9    D(3,7,8,6)            -59.9983         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Frequency Analysis of NH3BH3

Open the log file for optimised NH3BH3 (6-31G) from previous steps and save a copy. The NH3BH3 molecule was then further optimised with calculation:

Job type:frequency

Method:DFT B3LYP

Basis set: 6-31G(d,p)

Run calculation using HPC service.

NH3BH3 Frequency Analysis Summary Table

NH3BH3 Frequency Analysis Summary Table
NH3BH3 Frequency Summary Table
File Name log_73376-NH3BH3-FREQ
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -83.22468959 a.u.
RMS Gradient Norm 0.00005841 a.u.
Imaginary Freq
Dipole Moment 5.5651 Debye
Point Group C1
Job CPU Time 0 days 0 hours 1 minutes 5.1 seconds

Frequency Analysis Log File of NH3BH3

The Frequency Analysis file is linked to here

Item Table for NH3BH3 Optimisation

Low frequencies ---   -0.0015   -0.0011   -0.0009   16.7610   22.0475   39.0806
 Low frequencies ---  266.2999  632.2669  638.6816
 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                     A                      A                      A
 Frequencies --   266.2993               632.2667               638.6816
 Red. masses --     1.0078                 4.9955                 1.0452
 Frc consts  --     0.0421                 1.1766                 0.2512
 IR Inten    --     0.0000                14.0138                 3.5557
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z
     1   1    -0.11  -0.35   0.00     0.03  -0.01   0.28     0.10   0.11  -0.25
     2   1     0.36   0.08   0.00    -0.01   0.03   0.30     0.12   0.08  -0.21
     3   1    -0.24   0.27   0.00    -0.02  -0.03   0.28     0.09   0.07   0.46
     4   1    -0.14  -0.43   0.00     0.00  -0.01  -0.37     0.14   0.14  -0.32
     5   1    -0.30   0.33   0.00     0.00  -0.01  -0.37     0.14   0.11   0.58
     6   1     0.44   0.10   0.00     0.00   0.00  -0.34     0.17   0.12  -0.27
     7   5     0.00   0.00   0.00     0.00   0.00   0.48    -0.02  -0.02   0.00
     8   7     0.00   0.00   0.00     0.00   0.00  -0.36    -0.04  -0.03   0.00

IR Spectrum of NH3BH3

The IR spectrum was shown as follow:

Association Energy Analysis

The association energy is calculate by subtracting the energy of starting materials from the product.

E(NH3) E(BH3) E(NH3BH3)
-56.55776856a.u. -26.61532335a.u. -83.22468960a.u.


ΔE=E(NH3BH3)-[E(NH3)+E(BH3)]=-83.22468960-[(-56.55776856)+(-26.61532335)]=-0.05159769a.u.=-135.4697155kJ/mol

Week 2 Mini Project: Investigating Aromaticity

Benzene

Create and optimise Benzene

Create a benzene molecule and then optimise with calculation:

Job type:optimisation

Method:DFT B3LYP

Basis set: 6-31G(d,p)

Run calculation using HPC service.

Benzene Optimisation "D-space" File

The optimisation "D-space" file is linked to DOI:10042/23773

Benzene Optimisation Summary Table

Benzene Optimisation Summary Table
Benzene Optimisation Summary Table
File Name log_73237-benzene
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -232.25820551 a.u.
RMS Gradient Norm 0.00009549 a.u.
Imaginary Freq
Dipole Moment 0.0001 Debye
Point Group C1
Job CPU Time 0 days 0 hours 2 minutes 2.3 seconds.

Optimised Bond Length and Bond Angle for Benzene

Optimised C-H bond distance 1.08605 angstrom.

Optimisd C-C-H bond angle 120.00857 degree.

Optimisation Log File of Benzene

The optimisation file is linked to here

Item Table for Benzene Optimisation

         Item               Value     Threshold  Converged?
 Maximum Force            0.000212     0.000450     YES
 RMS     Force            0.000085     0.000300     YES
 Maximum Displacement     0.000991     0.001800     YES
 RMS     Displacement     0.000315     0.001200     YES
 Predicted change in Energy=-5.157454D-07
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.3963         -DE/DX =    0.0001              !
 ! R2    R(1,6)                  1.3961         -DE/DX =    0.0002              !
 ! R3    R(1,7)                  1.0861         -DE/DX =    0.0002              !
 ! R4    R(2,3)                  1.3961         -DE/DX =    0.0002              !
 ! R5    R(2,8)                  1.0861         -DE/DX =    0.0002              !
 ! R6    R(3,4)                  1.3963         -DE/DX =    0.0001              !
 ! R7    R(3,9)                  1.086          -DE/DX =    0.0002              !
 ! R8    R(4,5)                  1.3961         -DE/DX =    0.0002              !
 ! R9    R(4,10)                 1.086          -DE/DX =    0.0002              !
 ! R10   R(5,6)                  1.3963         -DE/DX =    0.0001              !
 ! R11   R(5,11)                 1.0861         -DE/DX =    0.0002              !
 ! R12   R(6,12)                 1.0861         -DE/DX =    0.0002              !
 ! A1    A(2,1,6)              119.9972         -DE/DX =    0.0                 !
 ! A2    A(2,1,7)              119.9949         -DE/DX =    0.0                 !
 ! A3    A(6,1,7)              120.0079         -DE/DX =    0.0                 !
 ! A4    A(1,2,3)              120.0079         -DE/DX =    0.0                 !
 ! A5    A(1,2,8)              119.9881         -DE/DX =    0.0                 !
 ! A6    A(3,2,8)              120.004          -DE/DX =    0.0                 !
 ! A7    A(2,3,4)              119.9948         -DE/DX =    0.0                 !
 ! A8    A(2,3,9)              120.0086         -DE/DX =    0.0                 !
 ! A9    A(4,3,9)              119.9966         -DE/DX =    0.0                 !
 ! A10   A(3,4,5)              119.9972         -DE/DX =    0.0                 !
 ! A11   A(3,4,10)             119.9934         -DE/DX =    0.0                 !
 ! A12   A(5,4,10)             120.0094         -DE/DX =    0.0                 !
 ! A13   A(4,5,6)              120.0083         -DE/DX =    0.0                 !
 ! A14   A(4,5,11)             120.0014         -DE/DX =    0.0                 !
 ! A15   A(6,5,11)             119.9904         -DE/DX =    0.0                 !
 ! A16   A(1,6,5)              119.9946         -DE/DX =    0.0                 !
 ! A17   A(1,6,12)             120.0106         -DE/DX =    0.0                 !
 ! A18   A(5,6,12)             119.9948         -DE/DX =    0.0                 !
 ! D1    D(6,1,2,3)             -0.0059         -DE/DX =    0.0                 !
 ! D2    D(6,1,2,8)            180.0023         -DE/DX =    0.0                 !
 ! D3    D(7,1,2,3)           -180.01           -DE/DX =    0.0                 !
 ! D4    D(7,1,2,8)             -0.0019         -DE/DX =    0.0                 !
 ! D5    D(2,1,6,5)             -0.0055         -DE/DX =    0.0                 !
 ! D6    D(2,1,6,12)          -179.9972         -DE/DX =    0.0                 !
 ! D7    D(7,1,6,5)           -180.0013         -DE/DX =    0.0                 !
 ! D8    D(7,1,6,12)             0.007          -DE/DX =    0.0                 !
 ! D9    D(1,2,3,4)              0.0117         -DE/DX =    0.0                 !
 ! D10   D(1,2,3,9)           -179.9914         -DE/DX =    0.0                 !
 ! D11   D(8,2,3,4)            180.0036         -DE/DX =    0.0                 !
 ! D12   D(8,2,3,9)              0.0005         -DE/DX =    0.0                 !
 ! D13   D(2,3,4,5)             -0.0062         -DE/DX =    0.0                 !
 ! D14   D(2,3,4,10)          -180.0059         -DE/DX =    0.0                 !
 ! D15   D(9,3,4,5)            179.9969         -DE/DX =    0.0                 !
 ! D16   D(9,3,4,10)            -0.0028         -DE/DX =    0.0                 !
 ! D17   D(3,4,5,6)             -0.0051         -DE/DX =    0.0                 !
 ! D18   D(3,4,5,11)           180.0058         -DE/DX =    0.0                 !
 ! D19   D(10,4,5,6)          -180.0055         -DE/DX =    0.0                 !
 ! D20   D(10,4,5,11)            0.0054         -DE/DX =    0.0                 !
 ! D21   D(4,5,6,1)              0.011          -DE/DX =    0.0                 !
 ! D22   D(4,5,6,12)           180.0027         -DE/DX =    0.0                 !
 ! D23   D(11,5,6,1)          -179.9999         -DE/DX =    0.0                 !
 ! D24   D(11,5,6,12)           -0.0082         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Discussion

Frequency analysis for Benzene

Open the log file for optimised benzene 6-31G(d,p) from last step and save a copy. The benzene molecule was then further optimised with calculation:

Job type:frequency

Method:DFT B3LYP

Basis set: 6-31G(d,p)

Run calculation using HPC service.

Benzene Frequency Analysis "D-space" File

The frequency analysis "D-space" file is linked to DOI:10042/23790

Benzene Frequency Summary Table

Benzene Frequency Summary Table
Benzene Frequency Analysis Summary Table
File Name log_73261-benzene-freq
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -232.25820551 a.u.
RMS Gradient Norm 0.00009549 a.u.
Imaginary Freq
Dipole Moment 0.0001 Debye
Point Group C1
Job CPU Time 0 days 0 hours 5 minutes 37.1 seconds.

Frequency Analysis Log File of Benzene

The frequency analysis file is linked to here

Item Table for Benzene Frequency Analysis

Low frequencies ---  -17.2788  -14.5868   -9.6527   -0.0009   -0.0007   -0.0005
 Low frequencies ---  413.7971  414.4697  620.8545
 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                     A                      A                      A
 Frequencies --   413.7971               414.4697               620.8540
 Red. masses --     2.9404                 2.9434                 6.0705
 Frc consts  --     0.2966                 0.2979                 1.3786
 IR Inten    --     0.0000                 0.0000                 0.0000
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z
     1   6     0.00   0.00  -0.15     0.00   0.00   0.19     0.23  -0.26   0.00
     2   6     0.00   0.00   0.24     0.00   0.00   0.03     0.16   0.05   0.00
     3   6     0.00   0.00  -0.09     0.00   0.00  -0.22     0.22   0.19   0.00
     4   6     0.00   0.00  -0.15     0.00   0.00   0.19    -0.23   0.26   0.00
     5   6     0.00   0.00   0.24     0.00   0.00   0.03    -0.16  -0.05   0.00
     6   6     0.00   0.00  -0.09     0.00   0.00  -0.22    -0.22  -0.19   0.00
     7   1     0.00   0.00  -0.32     0.00   0.00   0.42     0.30  -0.17   0.00
     8   1     0.00   0.00   0.52     0.00   0.00   0.07    -0.20   0.11   0.00
     9   1     0.00   0.00  -0.20     0.00   0.00  -0.48     0.30  -0.05   0.00
    10   1     0.00   0.00  -0.32     0.00   0.00   0.42    -0.30   0.17   0.00
    11   1     0.00   0.00   0.52     0.00   0.00   0.07     0.20  -0.11   0.00
    12   1     0.00   0.00  -0.20     0.00   0.00  -0.48    -0.30   0.05   0.00

IR Spectrum of benzene

The IR spectrum was shown as follow:

Discussion

MO Analysis of Benzene

Open the chk file for optimised benzene from previous steps and save a copy. The benzene molecule was then further optimised with calculation:

Job type:energy

Method:DFT B3LYP

Basis set: 6-31G(d,p)

NBO: full NBO

Additional keywords:'pop=full'

Run calculation using HPC service.

Benzene MO Analysis Summary Table

Benzene MO Analysis Summary Table
Benzene MO Analysis Summary Table
File Name log_73282-benzene-MO
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -232.25820551 a.u.
RMS Gradient Norm
Imaginary Freq
Dipole Moment 0.0001 Debye
Point Group C1
Job CPU Time 0 days 0 hours 1 minutes 5.7 seconds

Benzene Population Analysis "D-space" File

The Population Analysis "D-space" file is linked to DOI:10042/23883

MOs of Benzene

MOs of Benzene
MOs of Benzene

NBO Analysis of Benzene

select type: NBO

Charge Distribution by Colour(range between -0.239 and 0.239)

NBO colour of Benzene
NBO colour of Benzene

Charge Distribution by Numbers

NBO charge of Benzene
NBO charge of Benzene

Boratabenzene

Create and optimise Boratabenzene

Create a boratabenzene molecule and then optimise with calculation:

Job type:optimisation

Method:DFT B3LYP

Basis set: 6-31G(d,p)

Run calculation using HPC service.

Boratabenzene Optimisation "D-space" File

The optimisation "D-space" file is linked to DOI:10042/23885

Boratabenzene Optimisation Summary Table

Boratabenzene Optimisation Summary Table
Optimisation of Boratabenzne Summary Table
File Name log_73288-boratabenzene
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge -1
Spin Singlet
E(RB3LYP) -219.02052984 a.u.
RMS Gradient Norm 0.00015822 a.u.
Imaginary Freq
Dipole Moment 2.8465 Debye
Point Group C1
Job CPU Time 0 days 0 hours 3 minutes 58.8 seconds.

Optimised Bond Length and Bond Angle for Boratabenzene

Optimised B-H bond distance 1.21848 angstrom.

Optimised C-H bond distance 1.09698; 1.09677; 1.09165 angstrom.

Optimised B-C bond distance 1.51381;1.51375 angstrom.

Optimised C-C bond distance 1.39890;1.40528;1.40532;1.39887 angstrom.

Optimisd C-B-H bond angle 122.44818;122.44225 degree.

Optimisd B-C-H bond angle 123.96970;123.96524 degree.

Optimisd C-C-H bond angle 115.94940;120.42370;117.43697;119.77597;119.77319;117.43516;120.42671;115.95351 degree.

Optimisation Log File of Boratabenzene

The optimisation file is linked to here

Item Table for Boratabenzene Optimisation

         Item               Value     Threshold  Converged?
 Maximum Force            0.000159     0.000450     YES
 RMS     Force            0.000069     0.000300     YES
 Maximum Displacement     0.000911     0.001800     YES
 RMS     Displacement     0.000335     0.001200     YES
 Predicted change in Energy=-6.630178D-07
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.3989         -DE/DX =    0.0                 !
 ! R2    R(1,6)                  1.097          -DE/DX =   -0.0001              !
 ! R3    R(1,12)                 1.5137         -DE/DX =    0.0001              !
 ! R4    R(2,3)                  1.4053         -DE/DX =   -0.0001              !
 ! R5    R(2,7)                  1.0968         -DE/DX =    0.0001              !
 ! R6    R(3,4)                  1.4053         -DE/DX =   -0.0001              !
 ! R7    R(3,8)                  1.0917         -DE/DX =   -0.0001              !
 ! R8    R(4,5)                  1.3989         -DE/DX =    0.0                 !
 ! R9    R(4,9)                  1.0968         -DE/DX =    0.0001              !
 ! R10   R(5,10)                 1.097          -DE/DX =   -0.0001              !
 ! R11   R(5,12)                 1.5138         -DE/DX =    0.0001              !
 ! R12   R(11,12)                1.2185         -DE/DX =    0.0                 !
 ! A1    A(2,1,6)              115.9494         -DE/DX =    0.0001              !
 ! A2    A(2,1,12)             120.0809         -DE/DX =   -0.0001              !
 ! A3    A(6,1,12)             123.9697         -DE/DX =   -0.0001              !
 ! A4    A(1,2,3)              122.1393         -DE/DX =    0.0001              !
 ! A5    A(1,2,7)              120.4237         -DE/DX =   -0.0002              !
 ! A6    A(3,2,7)              117.437          -DE/DX =    0.0                 !
 ! A7    A(2,3,4)              120.4508         -DE/DX =   -0.0001              !
 ! A8    A(2,3,8)              119.776          -DE/DX =    0.0001              !
 ! A9    A(4,3,8)              119.7732         -DE/DX =    0.0001              !
 ! A10   A(3,4,5)              122.1381         -DE/DX =    0.0001              !
 ! A11   A(3,4,9)              117.4352         -DE/DX =    0.0                 !
 ! A12   A(5,4,9)              120.4266         -DE/DX =   -0.0002              !
 ! A13   A(4,5,10)             115.9535         -DE/DX =    0.0001              !
 ! A14   A(4,5,12)             120.0812         -DE/DX =   -0.0001              !
 ! A15   A(10,5,12)            123.9653         -DE/DX =   -0.0001              !
 ! A16   A(1,12,5)             115.1096         -DE/DX =    0.0                 !
 ! A17   A(1,12,11)            122.4482         -DE/DX =    0.0                 !
 ! A18   A(5,12,11)            122.4422         -DE/DX =    0.0                 !
 ! D1    D(6,1,2,3)            180.01           -DE/DX =    0.0                 !
 ! D2    D(6,1,2,7)             -0.0042         -DE/DX =    0.0                 !
 ! D3    D(12,1,2,3)             0.0084         -DE/DX =    0.0                 !
 ! D4    D(12,1,2,7)          -180.0058         -DE/DX =    0.0                 !
 ! D5    D(2,1,12,5)             0.001          -DE/DX =    0.0                 !
 ! D6    D(2,1,12,11)         -180.0            -DE/DX =    0.0                 !
 ! D7    D(6,1,12,5)          -180.0007         -DE/DX =    0.0                 !
 ! D8    D(6,1,12,11)           -0.0017         -DE/DX =    0.0                 !
 ! D9    D(1,2,3,4)             -0.015          -DE/DX =    0.0                 !
 ! D10   D(1,2,3,8)           -180.0108         -DE/DX =    0.0                 !
 ! D11   D(7,2,3,4)           -180.0011         -DE/DX =    0.0                 !
 ! D12   D(7,2,3,8)              0.0031         -DE/DX =    0.0                 !
 ! D13   D(2,3,4,5)              0.0116         -DE/DX =    0.0                 !
 ! D14   D(2,3,4,9)            180.0045         -DE/DX =    0.0                 !
 ! D15   D(8,3,4,5)            180.0075         -DE/DX =    0.0                 !
 ! D16   D(8,3,4,9)              0.0004         -DE/DX =    0.0                 !
 ! D17   D(3,4,5,10)          -180.0055         -DE/DX =    0.0                 !
 ! D18   D(3,4,5,12)            -0.002          -DE/DX =    0.0                 !
 ! D19   D(9,4,5,10)             0.0018         -DE/DX =    0.0                 !
 ! D20   D(9,4,5,12)           180.0053         -DE/DX =    0.0                 !
 ! D21   D(4,5,12,1)            -0.0042         -DE/DX =    0.0                 !
 ! D22   D(4,5,12,11)         -180.0032         -DE/DX =    0.0                 !
 ! D23   D(10,5,12,1)          179.9996         -DE/DX =    0.0                 !
 ! D24   D(10,5,12,11)           0.0006         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Discussion

Frequency analysis for Boratabenzene

Open the log file for optimised boratabenzene 6-31G(d,p) from last step and save a copy. The boratabenzene molecule was then further optimised with calculation:

Job type:frequency

Method:DFT B3LYP

Basis set: 6-31G(d,p)

Run calculation using HPC service.

Boratabenzene Frequency Analysis "D-space" File

The frequency analysis "D-space" file is linked to DOI:10042/23887

Boratabenzene Frequency Summary Table

Boratabenzene Frequency Summary Table
Boratabenzene Frequency Analysis Summary Table
File Name log_73407-boratabenzene-freq
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge -1
Spin Singlet
E(RB3LYP) -219.02052984 a.u.
RMS Gradient Norm 0.00015830 a.u.
Imaginary Freq
Dipole Moment 2.8465 Debye
Point Group C1
Job CPU Time 0 days 0 hours 5 minutes 33.2 seconds.

Frequency Analysis Log File of Boratabenzene

The frequency analysis file is linked to here

Item Table for Boratabenzene Frequency Analysis

 Low frequencies ---  -13.1243   -0.0008   -0.0008   -0.0007   15.0607   18.1733
 Low frequencies ---  371.3450  404.2340  565.2523
 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                     A                      A                      A
 Frequencies --   371.3449               404.2333               565.2523
 Red. masses --     2.6884                 3.2177                 5.7648
 Frc consts  --     0.2184                 0.3098                 1.0852
 IR Inten    --     2.3000                 0.0000                 0.1575
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z
     1   6     0.00   0.00   0.14     0.00   0.00   0.23    -0.22   0.21   0.00
     2   6     0.00   0.00   0.08     0.00   0.00  -0.22     0.23   0.22   0.00
     3   6     0.00   0.00  -0.21     0.00   0.00   0.00     0.14   0.00   0.00
     4   6     0.00   0.00   0.08     0.00   0.00   0.22     0.23  -0.21   0.00
     5   6     0.00   0.00   0.14     0.00   0.00  -0.23    -0.22  -0.21   0.00
     6   1     0.00   0.00   0.35     0.00   0.00   0.36    -0.34  -0.06   0.00
     7   1     0.00   0.00   0.20     0.00   0.00  -0.52     0.31   0.08   0.00
     8   1     0.00   0.00  -0.38     0.00   0.00   0.00    -0.21   0.00   0.00
     9   1     0.00   0.00   0.20     0.00   0.00   0.52     0.31  -0.08   0.00
    10   1     0.00   0.00   0.35     0.00   0.00  -0.36    -0.34   0.06   0.00
    11   1     0.00   0.00  -0.62     0.00   0.00   0.00     0.29   0.00   0.00
    12   5     0.00   0.00  -0.25     0.00   0.00   0.00    -0.17   0.00   0.00

IR Spectrum of boratabenzene

The IR spectrum was shown as follow:


MO Analysis of Boratabenzene

Open the chk file for optimised benzene from previous steps and save a copy. The benzene molecule was then further optimised with calculation:

Job type:energy

Method:DFT B3LYP

Basis set: 6-31G(d,p)

NBO: full NBO

Additional keywords:'pop=full'

Run calculation using HPC service.

Boratabenzene Population Analysis "D-space" File

The Population Analysis "D-space" file is linked to DOI:10042/23889

Boratabenzne MO Analysis Summary Table

Boratabenzne MO Analysis Summary Table
MO of Boratabenzne Summary Table
File Name log_73412-BORATABENZENE-MO
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge -1
Spin Singlet
E(RB3LYP) -219.02052984 a.u.
RMS Gradient Norm
Imaginary Freq
Dipole Moment 2.8465 Debye
Point Group C1
Job CPU Time 0 days 0 hours 0 minutes 46.0 seconds

MO Analysis Log File of Boratabenzene

The MO analysis file is linked to here

NBO Analysis of Boratabenzene

select type: NBO

Charge Distribution by Colour(range between -0.588 and 0.588)

NBO colour of Boratabenzene
NBO colour of Boratabenzene

Charge Distribution by Numbers

NBO charge of Boratabenzene
NBO charge of Boratabenzene

Pyridinium

Create and optimise Pyridinium

Create a pyridinium molecule and then optimise with calculation:

Job type:optimisation

Method:DFT B3LYP

Basis set: 6-31G(d,p)

Run calculation using HPC service.

Pyridinium Optimisation "D-space" File

The optimisation "D-space" file is linked to DOI:10042/23923

Pyridinium Optimisation Summary Table

Pyridinium Optimisation Summary Table
Pyridinium Optimisation Summary Table
File Name log_73414-pyridinium-re
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 1
Spin Singlet
E(RB3LYP) -248.66807396 a.u.
RMS Gradient Norm 0.00003894 a.u.
Imaginary Freq
Dipole Moment 1.8727 Debye
Point Group C1
Job CPU Time 0 days 0 hours 4 minutes 1.3 seconds.

Optimised Bond Length and Bond Angle for Pyridinium

Optimised N-C bond distance 1.35237;1.35234 angstrom.

Optimised C-C bond distance 1.38386;1.39876;1.39879;1.38384 angstrom.

Optimised N-H bond distance 1.01692 angstrom.

Optimised C-H bond distance 1.08324; 1.08352; 1.08520 angstrom.

Optimisd C-N-H bond angle 118.34498;138.34624 degree.

Optimisd N-C-H bond angle 116.83192;116.83400 degree.

Optimisd C-C-H bond angle 123.92972;119.41926;121.49880;119.97397;119.97112;121.49597;119.42133;123.93269 degree.

Optimisation Log File of Pyridinium

The optimisation file is linked to here

Item Table for Pyridinium Optimisation

         Item               Value     Threshold  Converged?
 Maximum Force            0.000065     0.000450     YES
 RMS     Force            0.000023     0.000300     YES
 Maximum Displacement     0.000826     0.001800     YES
 RMS     Displacement     0.000176     0.001200     YES
 Predicted change in Energy=-6.972574D-08
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.3988         -DE/DX =    0.0                 !
 ! R2    R(1,5)                  1.3838         -DE/DX =    0.0                 !
 ! R3    R(1,6)                  1.0835         -DE/DX =    0.0                 !
 ! R4    R(2,3)                  1.3988         -DE/DX =    0.0                 !
 ! R5    R(2,7)                  1.0852         -DE/DX =    0.0                 !
 ! R6    R(3,4)                  1.3839         -DE/DX =    0.0                 !
 ! R7    R(3,8)                  1.0835         -DE/DX =    0.0                 !
 ! R8    R(4,9)                  1.0832         -DE/DX =    0.0                 !
 ! R9    R(4,12)                 1.3523         -DE/DX =    0.0001              !
 ! R10   R(5,11)                 1.0832         -DE/DX =    0.0                 !
 ! R11   R(5,12)                 1.3524         -DE/DX =    0.0                 !
 ! R12   R(10,12)                1.0169         -DE/DX =    0.0                 !
 ! A1    A(2,1,5)              119.0827         -DE/DX =    0.0                 !
 ! A2    A(2,1,6)              121.496          -DE/DX =   -0.0001              !
 ! A3    A(5,1,6)              119.4213         -DE/DX =    0.0                 !
 ! A4    A(1,2,3)              120.0549         -DE/DX =    0.0                 !
 ! A5    A(1,2,7)              119.9711         -DE/DX =    0.0                 !
 ! A6    A(3,2,7)              119.974          -DE/DX =    0.0                 !
 ! A7    A(2,3,4)              119.082          -DE/DX =    0.0                 !
 ! A8    A(2,3,8)              121.4988         -DE/DX =   -0.0001              !
 ! A9    A(4,3,8)              119.4192         -DE/DX =    0.0001              !
 ! A10   A(3,4,9)              123.9297         -DE/DX =    0.0                 !
 ! A11   A(3,4,12)             119.2363         -DE/DX =    0.0                 !
 ! A12   A(9,4,12)             116.834          -DE/DX =    0.0                 !
 ! A13   A(1,5,11)             123.9327         -DE/DX =    0.0                 !
 ! A14   A(1,5,12)             119.2354         -DE/DX =    0.0                 !
 ! A15   A(11,5,12)            116.8319         -DE/DX =    0.0                 !
 ! A16   A(4,12,5)             123.3088         -DE/DX =    0.0                 !
 ! A17   A(4,12,10)            118.3463         -DE/DX =    0.0                 !
 ! A18   A(5,12,10)            118.345          -DE/DX =    0.0                 !
 ! D1    D(5,1,2,3)              0.0006         -DE/DX =    0.0                 !
 ! D2    D(5,1,2,7)           -180.0023         -DE/DX =    0.0                 !
 ! D3    D(6,1,2,3)            180.0015         -DE/DX =    0.0                 !
 ! D4    D(6,1,2,7)             -0.0014         -DE/DX =    0.0                 !
 ! D5    D(2,1,5,11)          -180.0005         -DE/DX =    0.0                 !
 ! D6    D(2,1,5,12)             0.0021         -DE/DX =    0.0                 !
 ! D7    D(6,1,5,11)            -0.0014         -DE/DX =    0.0                 !
 ! D8    D(6,1,5,12)           180.0012         -DE/DX =    0.0                 !
 ! D9    D(1,2,3,4)             -0.0024         -DE/DX =    0.0                 !
 ! D10   D(1,2,3,8)           -180.0018         -DE/DX =    0.0                 !
 ! D11   D(7,2,3,4)            180.0005         -DE/DX =    0.0                 !
 ! D12   D(7,2,3,8)              0.0012         -DE/DX =    0.0                 !
 ! D13   D(2,3,4,9)            180.0002         -DE/DX =    0.0                 !
 ! D14   D(2,3,4,12)             0.0015         -DE/DX =    0.0                 !
 ! D15   D(8,3,4,9)             -0.0004         -DE/DX =    0.0                 !
 ! D16   D(8,3,4,12)           180.0008         -DE/DX =    0.0                 !
 ! D17   D(3,4,12,5)             0.0014         -DE/DX =    0.0                 !
 ! D18   D(3,4,12,10)         -180.001          -DE/DX =    0.0                 !
 ! D19   D(9,4,12,5)           180.0025         -DE/DX =    0.0                 !
 ! D20   D(9,4,12,10)            0.0001         -DE/DX =    0.0                 !
 ! D21   D(1,5,12,4)            -0.0032         -DE/DX =    0.0                 !
 ! D22   D(1,5,12,10)         -180.0008         -DE/DX =    0.0                 !
 ! D23   D(11,5,12,4)         -180.0007         -DE/DX =    0.0                 !
 ! D24   D(11,5,12,10)           0.0016         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Discussion

Frequency analysis for Pyridinium

Open the log file for optimised pyridinum 6-31G(d,p) from last step and save a copy. The pyridinium molecule was then further optimised with calculation:

Job type:frequency

Method:DFT B3LYP

Basis set: 6-31G(d,p)

Run calculation using HPC service.

Pyridinium Frequency Analysis "D-space" File

The frequency analysis "D-space" file is linked to DOI:10042/23924

Pyridinium Frequency Summary Table

Pyridinium Frequency Summary Table
Pyridinium Frequency Analysis Summary Table
File Name log_73421-pyridinium-freq
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 1
Spin Singlet
E(RB3LYP) -248.66807396 a.u.
RMS Gradient Norm 0.00003897a.u.
Imaginary Freq
Dipole Moment 1.8727 Debye
Point Group C1
Job CPU Time 0 days 0 hours 5 minutes 38.8 seconds.

Frequency Analysis Log File of Pyridinium

The frequency analysis file is linked to here

Item Table for Pyridinium Frequency Analysis

 Low frequencies ---   -7.2115   -0.0003   -0.0003    0.0009   17.3444   18.5499
 Low frequencies ---  392.4572  404.0614  620.4717
 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                     A                      A                      A
 Frequencies --   392.4571               404.0614               620.4717
 Red. masses --     2.9474                 2.7453                 6.2544
 Frc consts  --     0.2675                 0.2641                 1.4187
 IR Inten    --     0.9649                 0.0000                 0.0144
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z
     1   6     0.00   0.00  -0.14     0.00   0.00   0.20     0.03   0.23   0.00
     2   6     0.00   0.00   0.25     0.00   0.00   0.00     0.39   0.00   0.00
     3   6     0.00   0.00  -0.14     0.00   0.00  -0.20     0.03  -0.23   0.00
     4   6     0.00   0.00  -0.11     0.00   0.00   0.19    -0.03  -0.20   0.00
     5   6     0.00   0.00  -0.11     0.00   0.00  -0.19    -0.03   0.20   0.00
     6   1     0.00   0.00  -0.29     0.00   0.00   0.40    -0.25   0.08   0.00
     7   1     0.00   0.00   0.61     0.00   0.00   0.00     0.39   0.00   0.00
     8   1     0.00   0.00  -0.29     0.00   0.00  -0.40    -0.25  -0.08   0.00
     9   1     0.00   0.00  -0.20     0.00   0.00   0.51     0.25  -0.01   0.00
    10   1     0.00   0.00   0.46     0.00   0.00   0.00    -0.35   0.00   0.00
    11   1     0.00   0.00  -0.20     0.00   0.00  -0.51     0.25   0.01   0.00
    12   7     0.00   0.00   0.21     0.00   0.00   0.00    -0.34   0.00   0.00

IR Spectrum of pyridinium

The IR spectrum was shown as follow:

MO Analysis of Pyridinium

Open the chk file for optimised pyridinium from previous steps and save a copy. The pyridinium molecule was then further optimised with calculation:

Job type:energy

Method:DFT B3LYP

Basis set: 6-31G(d,p)

NBO: full NBO

Additional keywords:'pop=full'

Run calculation using HPC service.

Pyridinium Population Analysis "D-space" File

The Population Analysis "D-space" file is linked to DOI:10042/23926

Pyridinium MO Analysis Summary Table

Pyridinium MO Analysis Summary Table
Pyridinium MO Summary Table
File Name log_73423-pyridinium-MO
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 1
Spin Singlet
E(RB3LYP) -248.66807396 a.u.
RMS Gradient Norm
Imaginary Freq
Dipole Moment 1.8727 Debye
Point Group C1
Job CPU Time 0 days 0 hours 1 minutes 20.9 seconds

MO Analysis Log File of Pyridinium

The MO analysis file is linked to here

NBO Analysis of Pyridinium

select type: NBO

Charge Distribution by Colour(range between -0.483 and 0.483)

NBO colour of Pyridinium
NBO colour of Pyridinium

Charge Distribution by Numbers

NBO charge of Pyridinium
NBO charge of Pyridinium

Borazine

Create and optimise Borazine

Create a borazine molecule and then optimise with calculation:

Job type:optimisation

Method:DFT B3LYP

Basis set: 6-31G(d,p)

Run calculation using HPC service.

Borazine Optimisation "D-space" File

The optimisation "D-space" file is linked to DOI:10042/23927

Borazine Optimisation Summary Table

Borazine Optimisation Summary Table
Borazine Optimisation Summary Table
File Name log_73424-borazine-re
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -242.68459789 a.u.
RMS Gradient Norm 0.00007128 a.u.
Imaginary Freq
Dipole Moment 0.0003 Debye
Point Group C1
Job CPU Time 0 days 0 hours 3 minutes 56.0 seconds.

Optimised Bond Length and Bond Angle for Borazine

Optimised N-B bond distance 1.43070;1.43063;1.43066;1.43068 angstrom.

Optimised N-H bond distance 1.00970 angstrom.

Optimised B-H bond distance 1.19488 angstrom.

Optimisd B-N-H bond angle 118.56716;118.56218;118.55542;118.56655;118.56631;118.55983 degree.

Optimisd N-B-H bond angle 121.43140;121.44383;121.43392;121.44572;121.43672;121.43696 degree.

Optimisation Log File of Borazine

The optimisation file is linked to here

Item Table for Borazine Optimisation

         Item               Value     Threshold  Converged?
 Maximum Force            0.000117     0.000450     YES
 RMS     Force            0.000036     0.000300     YES
 Maximum Displacement     0.000327     0.001800     YES
 RMS     Displacement     0.000104     0.001200     YES
 Predicted change in Energy=-1.206131D-07
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,9)                  1.0097         -DE/DX =    0.0                 !
 ! R2    R(2,11)                 1.1949         -DE/DX =    0.0001              !
 ! R3    R(3,8)                  1.0097         -DE/DX =    0.0                 !
 ! R4    R(4,12)                 1.1949         -DE/DX =    0.0001              !
 ! R5    R(5,7)                  1.0097         -DE/DX =    0.0                 !
 ! R6    R(6,10)                 1.1949         -DE/DX =    0.0001              !
 ! R7    R(7,10)                 1.4307         -DE/DX =    0.0                 !
 ! R8    R(7,12)                 1.4307         -DE/DX =   -0.0001              !
 ! R9    R(8,11)                 1.4306         -DE/DX =    0.0                 !
 ! R10   R(8,12)                 1.4307         -DE/DX =   -0.0001              !
 ! R11   R(9,10)                 1.4306         -DE/DX =    0.0                 !
 ! R12   R(9,11)                 1.4307         -DE/DX =   -0.0001              !
 ! A1    A(5,7,10)             118.5554         -DE/DX =    0.0                 !
 ! A2    A(5,7,12)             118.5605         -DE/DX =    0.0                 !
 ! A3    A(10,7,12)            122.884          -DE/DX =    0.0                 !
 ! A4    A(3,8,11)             118.5598         -DE/DX =    0.0                 !
 ! A5    A(3,8,12)             118.5663         -DE/DX =    0.0                 !
 ! A6    A(11,8,12)            122.8739         -DE/DX =    0.0                 !
 ! A7    A(1,9,10)             118.5621         -DE/DX =    0.0                 !
 ! A8    A(1,9,11)             118.5672         -DE/DX =    0.0                 !
 ! A9    A(10,9,11)            122.8707         -DE/DX =    0.0                 !
 ! A10   A(6,10,7)             121.4339         -DE/DX =    0.0                 !
 ! A11   A(6,10,9)             121.4439         -DE/DX =    0.0                 !
 ! A12   A(7,10,9)             117.1222         -DE/DX =    0.0                 !
 ! A13   A(2,11,8)             121.437          -DE/DX =    0.0                 !
 ! A14   A(2,11,9)             121.4314         -DE/DX =    0.0                 !
 ! A15   A(8,11,9)             117.1316         -DE/DX =    0.0                 !
 ! A16   A(4,12,7)             121.4457         -DE/DX =    0.0                 !
 ! A17   A(4,12,8)             121.4367         -DE/DX =    0.0                 !
 ! A18   A(7,12,8)             117.1176         -DE/DX =    0.0                 !
 ! D1    D(5,7,10,6)            -0.0006         -DE/DX =    0.0                 !
 ! D2    D(5,7,10,9)           179.9989         -DE/DX =    0.0                 !
 ! D3    D(12,7,10,6)          179.9979         -DE/DX =    0.0                 !
 ! D4    D(12,7,10,9)           -0.0026         -DE/DX =    0.0                 !
 ! D5    D(5,7,12,4)             0.0008         -DE/DX =    0.0                 !
 ! D6    D(5,7,12,8)           180.0            -DE/DX =    0.0                 !
 ! D7    D(10,7,12,4)         -179.9977         -DE/DX =    0.0                 !
 ! D8    D(10,7,12,8)            0.0015         -DE/DX =    0.0                 !
 ! D9    D(3,8,11,2)             0.0011         -DE/DX =    0.0                 !
 ! D10   D(3,8,11,9)          -180.0008         -DE/DX =    0.0                 !
 ! D11   D(12,8,11,2)          179.9997         -DE/DX =    0.0                 !
 ! D12   D(12,8,11,9)           -0.0022         -DE/DX =    0.0                 !
 ! D13   D(3,8,12,4)            -0.0012         -DE/DX =    0.0                 !
 ! D14   D(3,8,12,7)           179.9995         -DE/DX =    0.0                 !
 ! D15   D(11,8,12,4)          180.0002         -DE/DX =    0.0                 !
 ! D16   D(11,8,12,7)            0.0009         -DE/DX =    0.0                 !
 ! D17   D(1,9,10,6)             0.0011         -DE/DX =    0.0                 !
 ! D18   D(1,9,10,7)          -179.9984         -DE/DX =    0.0                 !
 ! D19   D(11,9,10,6)         -179.9993         -DE/DX =    0.0                 !
 ! D20   D(11,9,10,7)            0.0012         -DE/DX =    0.0                 !
 ! D21   D(1,9,11,2)            -0.0012         -DE/DX =    0.0                 !
 ! D22   D(1,9,11,8)           180.0007         -DE/DX =    0.0                 !
 ! D23   D(10,9,11,2)         -180.0008         -DE/DX =    0.0                 !
 ! D24   D(10,9,11,8)            0.0011         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Discussion

Frequency analysis for Borazine

Open the log file for optimised borazine 6-31G(d,p) from last step and save a copy. The borazine molecule was then further optimised with calculation:

Job type:frequency

Method:DFT B3LYP

Basis set: 6-31G(d,p)

Run calculation using HPC service.

Borazine Frequency Analysis "D-space" File

The frequency analysis "D-space" file is linked to DOI:10042/23928

Borazine Frequency Summary Table

Borazine Frequency Summary Table
Borazine Frequency Analysis Summary Table
File Name log_73467-borazine-freq
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -242.68459789 a.u.
RMS Gradient Norm 0.00007119 a.u.
Imaginary Freq
Dipole Moment 0.0003 Debye
Point Group C1
Job CPU Time 0 days 0 hours 5 minutes 31.4 seconds.

Frequency Analysis Log File of Borazine

The frequency analysis file is linked to here

Item Table for Borazine Frequency Analysis

 Low frequencies ---  -11.1123   -0.0005    0.0003    0.0008    8.6668   11.2356
 Low frequencies ---  288.5023  290.4097  404.0141
 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                     A                      A                      A
 Frequencies --   288.5022               290.4095               404.0136
 Red. masses --     2.9264                 2.9236                 1.9244
 Frc consts  --     0.1435                 0.1453                 0.1851
 IR Inten    --     0.0000                 0.0000                23.6788
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z
     1   1     0.00   0.00  -0.22     0.00   0.00  -0.15     0.00   0.00   0.16
     2   1     0.00   0.00  -0.06     0.00   0.00   0.69     0.00   0.00   0.53
     3   1     0.00   0.00   0.24     0.00   0.00  -0.11     0.00   0.00   0.16
     4   1     0.00   0.00  -0.57     0.00   0.00  -0.40     0.00   0.00   0.53
     5   1     0.00   0.00  -0.02     0.00   0.00   0.27     0.00   0.00   0.16
     6   1     0.00   0.00   0.63     0.00   0.00  -0.29     0.00   0.00   0.53
     7   7     0.00   0.00  -0.02     0.00   0.00   0.24     0.00   0.00  -0.13
     8   7     0.00   0.00   0.22     0.00   0.00  -0.10     0.00   0.00  -0.13
     9   7     0.00   0.00  -0.20     0.00   0.00  -0.14     0.00   0.00  -0.13
    10   5     0.00   0.00   0.20     0.00   0.00  -0.09     0.00   0.00   0.10
    11   5     0.00   0.00  -0.02     0.00   0.00   0.22     0.00   0.00   0.10
    12   5     0.00   0.00  -0.18     0.00   0.00  -0.13     0.00   0.00   0.10

IR Spectrum of borazine

The IR spectrum was shown as follow:

MO Analysis of Borazine

Open the chk file for optimised borazine from previous steps and save a copy. The borazine molecule was then further optimised with calculation:

Job type:energy

Method:DFT B3LYP

Basis set: 6-31G(d,p)

NBO: full NBO

Additional keywords:'pop=full'

Run calculation using HPC service.

Borazine Population Analysis "D-space" File

The Population Analysis "D-space" file is linked to DOI:10042/23980

Borazine MO Analysis Summary Table

Borazine MO Analysis Summary Table
Borazine MO Summary Table
File Name log_73470-borazine-MO
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -242.68459789 a.u.
RMS Gradient Norm
Imaginary Freq
Dipole Moment 0.0003 Debye
Point Group C1
Job CPU Time 0 days 0 hours 1 minutes 27.9 seconds

MO Analysis Log File of Borazine

The MO analysis file is linked to here

NBO Analysis of Borazine

select type: NBO

Charge Distribution by Colour(range between -1.102 and 1.102)

NBO colour of Borazine
NBO colour of Borazine

Charge Distribution by Numbers

NBO charge of Borazine
NBO charge of Borazine

Discussion

Charge Distribution Comparison

Molecule Charge distribution image Charge number of C Charge number of hetero-atom Charge number of H Overall charge number
Benzene -0.239 - 0.239 0
Boratabenzene -0.588, -0.250, -0.340 0.202(B) -0.096, 0.184, 0.179, 0.186 -1
Pyridinium 0.071, -0.241, -0.122 -0.476(N) 0.483, 0.285, 0.297, 0.292 +1
Borazine - 0.747(B), -1.102(N) 0.432, -0.077 0


Molecule Benzene Boratabenzene Pyridinium Borazine
MO 21(HOMO) energy -0.24691 0.01094 -0.47885 -0.27590
MO 20 energy -0.24692 -0.03493 -0.50847 -0.27591
MO 19 energy -0.33960 -0.08387 -0.57432 -0.31994

Molecular orbital Comparison

Molecule Benzene Boratabenzene Pyridinium Borazine
MO 21(HOMO)
MO 20
MO 19


Aromaticity

The compounds all fulfil Huckel's rules of aromaticity, which are 1)having 4n+2 pi electrons (n=0,1,2,3...), 2)being planar and 3) having a conjugated cyclic pi system perpendicular to the ring. From the MOs of the compounds, we can see that there are indeed pi systems sandwiching the ring. In addition, the molecular orbitals are spread over multiple carbon atoms. There are three bonding orbitals, which correspond to a total of 6 pi electrons.

Charge distribution

The charge distribution in benzene is uniform (-0.225), which is consistent with the fact that all the atoms have the same electronegativity. The negative sign indicates a build up of electron density in the ring, which conforms to the view of a pi electron cloud in the middle of the ring. It is also due to the fact that C is more electronegative than H.

In boratabenzene, the boron atom exhibits electron deficiency (+0.202) as compared to the C atoms (-0.588 to -0.250) due to its lower electronegativity. This is in spite of the fact that we draw a negative charge on the boron atom. This shows that the system of formal charges is merely for our convenience and is not representative of the real charge density that we observe in the molecule. We can also draw resonance forms that place the negative charge on the ortho (-0.588) and para (-0.340) positions, and thus these are more electron rich than the meta positions (-0.250).

This is also the case in pyridinium. In most representations of pydridinium, the positive charge is placed on the N atom, however it is shown to actually possess the most electron density out of all the atoms on the ring due to its high electronegativity (-0.475). Resonance forms place the positive charge on the ortho and para positions and thus these have less electron density (0.071 and -0.122 respectively) as compared to the meta position (-0.241).

In borazine, the alternation of B and N atoms leads to an alternation between electron poor (0.747) and electron rich (-1.102) areas on B and N respectively. As the molecule is symmetrical, the electron density on each of the B and N's are the same.

MOs

The MOs of the four aromatic molecules are roughly similar in terms of the number of lobes and the number of nodal planes. As benzene is symmetric, all its MOs have a certain degree of symmetry. However, the presence of heteroatoms in the other aromatics have an impact on the shape of the Mos.

Comparing boratabenzene to benzene, MO 21 of boratabenzene has a larger lobe on the side with the boron as compared to the side without boron. The p orbital on boron has a large coefficient as it is less contracted due to its lower electronegativity. MO 20 of boratabenzene is similar to MO 21 of benzene as the MO does not involve boron. Breaking the C2 symmetry of benzene also results in breaking of the degeneracy of MOs 20 and 21. MO 19 corresponds to MO 18 of benzene (not shown), which is degenerate with MO 19 of benzene. This degeneracy is broken, and MO 19 is the one higher in energy as there is less electron density on the electropositive B.

For pyridinium, the relative energies of MO 21 and 20 are different. Again the broken C2 symmetry results in this loss of degeneracy. MO 20 has a smaller lobe on the side containing nitrogen. This is because the N 2p orbital is contracted relative to the C 2p orbital as a result of its greater electronegativity. MO 19 has the same shape as its corresponding benzene counterpart, however, the lobe of N is smaller due to the high electronegativity of N.

In the case of borazine, MOs 21 and 20 are again degenerate since it has a C2 axis of symmetry. The shapes are roughly similar to those of benzene. MO 19 also has the same shape has that of benzene, however, the size of the lobes are larger on the B atoms for reasons as mentioned above.