Jump to content

Rep:Mod:kgw15

From ChemWiki

NH3 Optimisation

Calculation method: RB3LYP

Basis set: 6-31G(d,p)

Final energy E(RB3LYP) in atomic units (au): -56.55776873

RMS Gradient (au): 0.00000485

The point group of your molecule: C3V

Optimisation Result

Optimised N-H bond distance: 1.01798Å

Optimised H-N-H bond angle: 105.741°

Item Log:

Item               Value     Threshold  Converged?
 Maximum Force            0.000004     0.000450     YES
 RMS     Force            0.000004     0.000300     YES
 Maximum Displacement     0.000072     0.001800     YES
 RMS     Displacement     0.000035     0.001200     YES
 Predicted change in Energy=-5.986275D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.018          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.018          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.018          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              105.7412         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              105.7412         -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              105.7412         -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -111.8571         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

NH3

The optimisation file is liked to here

Animating the vibrations

Screenshot of the vibration modes is here

Questions

How many modes do you expect from the 3N-6 rule? 6

Which modes are degenerate (ie have the same energy)? 2&3 and 5&6

Which modes are "bending" vibrations and which are "bond stretch" vibrations? Bending: 1,2,3; Stretching: 4,5,6

Which mode is highly symmetric? 4

One mode is known as the "umbrella" mode, which one is this? 1

How many bands would you expect to see in an experimental spectrum of gaseous ammonia? 2

Charge Analysis

The charge on N is -1.125

The charge on H is 0.375

So the expected charges on N and H are -3 and +1 respectively. The reason N has a negative charge is that it is more electronegative than H.

Reactivity of NH 3

N2 Optimisation

Calculation method: RB3LYP

Basis set: 6-31G(d,p)

Final energy E(RB3LYP) in atomic units (au): -109.52412868

RMS Gradient (au): 0.00000060

The point group of your molecule: D*H

Vibration frequency: 2457.33

Item Log:

         Item               Value     Threshold  Converged?
 Maximum Force            0.000001     0.000450     YES
 RMS     Force            0.000001     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000000     0.001200     YES
 Predicted change in Energy=-3.401039D-13
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1055         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
N2

The optimisation file is liked to here

H2 Optimisation

Calculation method: RB3LYP

Basis set: 6-31G(d,p)

Final energy E(RB3LYP) in atomic units (au): -1.17853936

RMS Gradient (au): 0.00000017

The point group of your molecule: D*H

Vibration frequency: 4465.68

Item Log:

         Item               Value     Threshold  Converged?
 Maximum Force            0.000000     0.000450     YES
 RMS     Force            0.000000     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000001     0.001200     YES
 Predicted change in Energy=-1.164080D-13
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  0.7428         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
H2

The optimisation file is liked to here

Energy for Haber-Bosch process

E(NH3)= -56.55776873

2*E(NH3)= -113.11553746

E(N2)= -109.52412868

E(H2)= -1.17853936

3*E(H2)= -3.53561808

ΔE=2*E(NH3)-[E(N2)+3*E(H2)]= -0.0557907

ΔE in kJ/mol: -146.47849401

Thus we can see that the product is more stable. (which is comparable to known values)

CH4 Investigation

Calculation method: RB3LYP

Basis set: 6-31G(d,p)

Final energy E(RB3LYP) in atomic units (au): -40.52401404

RMS Gradient (au): 0.00003263

The point group of your molecule: TD

Item Log:

         Item               Value     Threshold  Converged?
 Maximum Force            0.000063     0.000450     YES
 RMS     Force            0.000034     0.000300     YES
 Maximum Displacement     0.000179     0.001800     YES
 RMS     Displacement     0.000095     0.001200     YES
 Predicted change in Energy=-2.256043D-08
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.092          -DE/DX =   -0.0001              !
 ! R2    R(1,3)                  1.092          -DE/DX =   -0.0001              !
 ! R3    R(1,4)                  1.092          -DE/DX =   -0.0001              !
 ! R4    R(1,5)                  1.092          -DE/DX =   -0.0001              !
 ! A1    A(2,1,3)              109.4712         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              109.4712         -DE/DX =    0.0                 !
 ! A3    A(2,1,5)              109.4712         -DE/DX =    0.0                 !
 ! A4    A(3,1,4)              109.4712         -DE/DX =    0.0                 !
 ! A5    A(3,1,5)              109.4712         -DE/DX =    0.0                 !
 ! A6    A(4,1,5)              109.4712         -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -120.0            -DE/DX =    0.0                 !
 ! D2    D(2,1,5,3)            120.0            -DE/DX =    0.0                 !
 ! D3    D(2,1,5,4)           -120.0            -DE/DX =    0.0                 !
 ! D4    D(3,1,5,4)            120.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
CH4

The optimisation file is linked to here

Details on the Molecule

The frequency analysis shows that there are 9 vibrational modes, which is consistent with the expected 3N-6 calculation. However, only 2 peaks should be observed in IR spectrum since some of them are degenerate and some are IR inactive.

Frequency analysis of molecule.


The charge analysis predicts that the charges on C & H are -4 and +1 respectively. Once again, this resonates with the fact that C is more electronegative than H and thus has a negative charge.

Charge analysis of molecule.

MOs of CH4

LUMO of the molecule.

The LUMO has energy of 0.11824au. It should be the anti-bond between 2s of C and 1s of H. We can see the nodal plane between the red electron density of C and the green of H.

HOMO of the molecule.(1/3)
HOMO of the molecule.(2/3)
HOMO of the molecule.(3/3)

There are 3 degenerate HOMOs of energy at -0.38831au. They should be made of the 2px, 2py and 2pz of C mixing with the 1s of H.

2nd lowest MO of the molecule.
Lowest MO of the molecule.

The 2nd lowest MO composes of the 2s of C and 1s of H. Energy: -0.69041au

The lowest MO is only the 1s of C. The 1s of H does not mix with it because the energy gap is too large. Energy: -10.16707au

CN- Investigation

Calculation method: RB3LYP

Basis set: 6-31G(d,p)

Final energy E(RB3LYP) in atomic units (au): -92.82453153

RMS Gradient (au): 0.00000704

The point group of your molecule: C*V

Item Log:

         Item               Value     Threshold  Converged?
 Maximum Force            0.000012     0.000450     YES
 RMS     Force            0.000012     0.000300     YES
 Maximum Displacement     0.000005     0.001800     YES
 RMS     Displacement     0.000008     0.001200     YES
 Predicted change in Energy=-6.650389D-11
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1841         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
CN-

The optimisation file is linked to here

Details on the Molecule

As a linear molecule, the frequency analysis is consistent with the 3N-5 calculation. There is only 1 vibrational mode.

Frequency analysis of molecule.

Charge analysis shows that the negative charge is spread unevenly over the molecule, with N having a higher share since it is more electronegative than C. The sum of the charges equals one, the charge we see on the molecule.

Moreover, this also supports our understanding of the molecule in terms of resonance structure. Instead of a -1 charge on an individual atom, as predicted with Lewis structure. We can see that the charge is spread over the molecule.

Charge analysis of molecule.

MOs of CN-

1s Orbitals
1s of N (-14.00393au) 1s of C (-9.86720au)

1s of N has a lower energy than that of C since it has one more proton in its nucleus, thus a higher effective nuclear charge and lowering the energy of the orbital. The two AOs do not form MO since the energy difference is too large.


3σ and 4σ*MOs
3σ (-0.56195au) * (-0.10636au)

These MOs are formed from the 2s AOs. Here we can see the higher distribution from N in 3σ and higher from C in 4σ* due to the higher nuclear charge of N, making it closer in energy to the bonding MO and further to anti-bonding MO.

1π MOs
x (-0.01696au) y (-0.01696au)

The 1π MOs are formed from the 2p, they are degenerate and orthogonal to each other.

HOMO
(0.01857au)

The HOMO is from the overlapping of the 2pz along the bond. The reason we see the lobe pointing away the molecule being larger, despite being a bonding MO is that it is mixed with the 3σ orbital in a out-of-phase fashion. This is also the reason C has a larger lobe.


LUMO
x (0.35435au) y (0.35435au)

The LUMO is a 2π* from the anti-phase overlapping of orthogonal 2p orbitals.

Thank you for your time.