Jump to content

Rep:Mod:cwjhunt

From ChemWiki

Third year inorganic computational chemistry

Cameron Jellett

Using the computational chemistry software packages Gaussian and Gaussview, main group molecules will be created, their structures optimised, stretching frequencies calculated and their molecular orbitals visualised and analysed. Using knowledge of main group chemistry the results will be interpreted and the merit and usefulness of computational methods will be conveyed.

Optimisation of BH3

Optimisation of bond lengths and angles

The OPT optimisation for a BH3 molecule was carried out using an initial B-H bond length of 1.18000A and 120 degrees, using the B3LYP method and a 3-21G basis set, giving and optimised bond angle of 120 degrees and an optimised bond length 1.19453A of the following results: File:CWJBH3 321G.LOG

Planar D3h structure of BH3
BH3 optimisation
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 3-21G
Charge 0
Spin Singlet
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 3-21G
Charge 0
Spin Singlet
E(RB3LYP) -26.46226433a.u.
RMS Gradient Norm 0.00004507a.u.
Dipole Moment 0.0000Debye
Point Group D3H
Job cpu time 10.0 seconds.

Item Value Threshold Converged?

Maximum Force            0.000090     0.000450     YES
RMS     Force            0.000059     0.000300     YES
Maximum Displacement     0.000352     0.001800     YES
RMS     Displacement     0.000230     0.001200     YES
Predicted change in Energy=-4.580970D-08
Optimization completed.
   -- Stationary point found.
                          ----------------------------
                          !   Optimized Parameters   !
                          ! (Angstroms and Degrees)  !
--------------------------                            --------------------------
! Name  Definition              Value          Derivative Info.                !
--------------------------------------------------------------------------------
! R1    R(1,2)                  1.1945         -DE/DX =   -0.0001              !
! R2    R(1,3)                  1.1945         -DE/DX =   -0.0001              !
! R3    R(1,4)                  1.1945         -DE/DX =   -0.0001              !
! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
--------------------------------------------------------------------------------

Using the 6-31G(d,p) basis set, an optimisation on the previous optimised structure was carried out File:CWJBH6 31G.LOG. Optimised bond length = 1.19453, bond angle=120.00

BH3 optimisation
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 3-21G
Charge 0
Spin Singlet
E(RB3LYP) -26.61531709a.u.
RMS Gradient Norm 0.00052443a.u.
Dipole Moment 0.0000Debye
Point Group D3H
Job cpu time 13.0 seconds.


Item Value Threshold Converged?

Maximum Force            0.000009     0.000450     YES
RMS     Force            0.000006     0.000300     YES
Maximum Displacement     0.000038     0.001800     YES
RMS     Displacement     0.000025     0.001200     YES
Predicted change in Energy=-5.342736D-10
Optimization completed.
   -- Stationary point found.
                          ----------------------------
                          !   Optimized Parameters   !
                          ! (Angstroms and Degrees)  !
--------------------------                            --------------------------
! Name  Definition              Value          Derivative Info.                !
--------------------------------------------------------------------------------
! R1    R(1,2)                  1.1923         -DE/DX =    0.0                 !
! R2    R(1,3)                  1.1923         -DE/DX =    0.0                 !
! R3    R(1,4)                  1.1923         -DE/DX =    0.0                 !
! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
--------------------------------------------------------------------------------

Structural optimisation of thallium tribromide

TlBr3 with a restricted symmetry of D3h and a "very tight" tolerance of 0.0001 and and initial Tl-Br bond length of A was optimised using, to give an equilibrium bond length of 2.69000 and a predetermined bond angle of 120.000 degrees, giving an optimised bond length of 2.65095A. The literature value for this bond length is 2.5122A[1] Pseudo potentials were used due to the atoms in the molecule being of a high atomic number, allowing the non-valence electrons to be modeled. DOI:10042/23352

Planar D3h structure of TlBr3


Energy for each calculation iteration
RMS energy gradient for each calculation iteration
TlBr3 optimisation
Calculation Type FOPT
Calculation Method RB3LYP
Charge 0
Spin Singlet
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set LANL2DZ
Charge 0
Spin Singlet
E(RB3LYP) -91.21812851a.u
RMS Gradient Norm 0.00000090a.u
Dipole Moment 0.0000Debye
Point Group D3H
Job cpu time 57.9 seconds.
Item               Value     Threshold  Converged?
 Maximum Force            0.000002     0.000450     YES
 RMS     Force            0.000001     0.000300     YES
 Maximum Displacement     0.000022     0.001800     YES
 RMS     Displacement     0.000014     0.001200     YES
 Predicted change in Energy=-6.084107D-11
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  2.651          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  2.651          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  2.651          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Bond and angle optimsiation of BBr3

Using the GEN basis set, the LANL2DZ basis set could be used on the heavy bromine atoms and the 6-31G basis set on the boron atom, allowing the accurate analysis of BBr3 using the appropriate basis set for each atom. Inital B-Br bond length = 2.0200A and bond angle of 120.000o

Structure of BBr3
TlBr3 optimisation
Calculation Type FOPT
Calculation Method RB3LYP
Charge 0
Spin Singlet
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set Gen
Charge 0
Spin Singlet
E(RB3LYP) -64.43645296a.u
RMS Gradient Norm 0.00000382a.u
Dipole Moment 0.0000Debye
Point Group D3H
Job cpu time 36.3 seconds.


Item               Value     Threshold  Converged?
 Maximum Force            0.000008     0.000450     YES
 RMS     Force            0.000005     0.000300     YES
 Maximum Displacement     0.000036     0.001800     YES
 RMS     Displacement     0.000023     0.001200     YES
 Predicted change in Energy=-4.027422D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.934          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.934          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.934          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 -------------------------------------------------------------------------------- 

Summary of results

All calculations carried out using the 6-31G(d,p) basis set or LanL2DZ basis set where appropriate.

BH3 BBr3 Tl3
bond legnth(A) 1.19231 1.93396 2.65095
Bond angle 120.00 120.00 120.00

Chemical bonds, and covalent bonds specifically, can be considered to be an area between two atoms where there is a high electron probability density, which is considered to be an attractive interaction between the atoms. This can be also be thought of or rationalised more visually as a constructive interference of the electron clouds (utilising the 'wave-like' properties of electrons).

The relative bond lengths are as expected for these compounds, with bonds between larger atoms being longer. This is due to several factors, one being that orbitals become more diffuse and larger as one progresses down a group, meaning the overlap is not as large and the bond is longer and not as strong. H and Br both require one electron to fill their valence shell and form sigma bonds but hydrogen uses its 1s shell to overlap with the 2p shell of the boron, whereas the bromine uses its 4p shell to overlap and form a sigma bond. The B-Br bond is also more polarised than the B-H bond due to the difference in electronegativities being larger.

Thallium and boron are both in group 13, meaning the two bromides would be expected to be similar in terms of structure, the bonds are longer for the larger central atom. This is for the same reasons as discussed for comparison of bromine and hydrogen.

The angles are all at 120 degrees to minimise repulsion. The absence of non-bonding orbitals on the central atom mean there is no deviation from the trigonal planar structure

Vibrational calculations and analysis

Vibrational analysis of BH3

File:BH3 FREQUENCYCWJ.LOG

Predicted IR specturm of BH3
Low frequencies ---   -3.6018   -1.1356   -0.0054    1.3735    9.7036    9.7698
 Low frequencies --- 1162.9825 1213.1733 1213.1760
 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                    A"                     E'                     E'
 Frequencies --  1162.9825              1213.1733              1213.1760
 Red. masses --     1.2531                 1.1072                 1.1072
 Frc consts  --     0.9986                 0.9601                 0.9601
 IR Inten    --    92.5497                14.0545                14.0581
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z
     1   5     0.00   0.00   0.16     0.00   0.10   0.00    -0.10   0.00   0.00
     2   1     0.00   0.00  -0.57     0.00   0.08   0.00     0.81   0.00   0.00
     3   1     0.00   0.00  -0.57    -0.39  -0.59   0.00     0.14   0.39   0.00
     4   1     0.00   0.00  -0.57     0.39  -0.59   0.00     0.14  -0.39   0.00
Vibrational modes of BH3
# Animation Physical form of vibration Frequency (cm-1) Rel. intensity Irreducible represenation
1 H atoms vibrate paralell to the principle axis of symmetry in a concerted motion, with a stationary boron 1162.98 92.5497 A2'
2 Two adjacent hydrogens move in the plane σh plane of the molecule in opposite directions at the same time, with the remaining hydrogen and boron atom remaining stationary 1213.17 14.0545 E'
3 all three hydrogen atoms move in plane perpendicular to the principle axis, two in the same direction and the other in the opposite direction, in a concerted motion. The boron atom remains stationary 1213.18 14.0581 E'
4 all three hydrogen atoms move in a concerted motion perpendicular to the principle axis of symmetry in the σv 2582.32 0 Totally symmetric (IR inactive) A1
5 one hydrogen atom remains stationary where the other two move perpendicular to the principle axis of rotation in the direction of the B-H bond, directly out of phase with each other. The boron moves slightly, towards the hydrogen which is moving towards the boron 2715.50 126.3285 E'
6 the boron atom remains stationary and all three hydrogen atoms move in the σh plane, in a concerted motion, with one out of phase 2715.50 126.3184 E'

VIbrational analysis of TlBr3

DOI:10042/23453

Predicted IR spectrum of TlBr3
TlBr3 frequency
File Name    TlBr3_frequency
File Type    .log
Calculation Type    FREQ
Calculation Method    RB3LYP
Basis Set    LANL2DZ
Charge    0
Spin    Singlet
E(RB3LYP)    -91.21812851     a.u.
RMS Gradient Norm    0.00000088     a.u.
Imaginary Freq    0
Dipole Moment    0.0000     Debye
Point Group    D3H
Job cpu time:  0 days  0 hours  0 minutes  9.0 seconds.
 Low frequencies ---   -3.4213   -0.0026   -0.0004    0.0015    3.9367    3.9367
 Low frequencies ---   46.4289   46.4292   52.1449
 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                    E'                     E'                     A2"
 Frequencies --    46.4289                46.4292                52.1449
 Red. masses --    88.4613                88.4613               117.7209
 Frc consts  --     0.1124                 0.1124                 0.1886
 IR Inten    --     3.6867                 3.6867                 5.8466
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z
     1  81     0.00   0.28   0.00    -0.28   0.00   0.00     0.00   0.00   0.55
     2  35     0.00   0.26   0.00     0.74   0.00   0.00     0.00   0.00  -0.48
     3  35     0.43  -0.49   0.00    -0.01  -0.43   0.00     0.00   0.00  -0.48
     4  35    -0.43  -0.49   0.00    -0.01   0.43   0.00     0.00   0.00  -0.48


Vibrational modes of TlBr3
# Physical form of vibration Frequency (cm-1) Rel. intensity Irreducible representation
1 Br atoms vibrate perpendicular to the xy plane in a concerted motion, with a stationary thallium 46.43 3.6867 E'
2 the angle between a BrBBr bonds remains the same, as one Br atom moves in the σh plane of the molecule, with no change in bond length 46.43 3.6867 E'
3 all atoms move, with the Br atoms moving in a concerted motion and the B atom moving in the opposite direction, in the direction of the principle axis 52.14 5.8466 A2'
4 All B-Br bonds move in a concerted motion in the direction of the σv planes 165.27 0 Totally symmetric (IR inactive) A1
5 one Br atom remains stationary where the other two move in the σh plane in the direction of the B-Br bond, directly out of phase with each other. The boron moves slightly, towards the bromine which is moving towards the boron 210.69 25.4830 E'
6 the boron atom remains stationary and all three bromine atoms move in the σh plane, in a concerted motion, with one out of phase 210.69 25.4797 E'

Orbital analysis of BH3

The energy analysis of BH3 was carried out using the 6-31G(d,p) basis set. A molecular orbital diagram using the LCAO method was constructed to compare to the calculated MOs, revealing an elegant correlation between the two methods and highlighting the usefulness of a qualitative MO diagram. The lobes do appear to not be as narrow for the LUMO but this is not a large difference and does not discredit the qualitative method.

the constructed MO diagram for BH3 with the eqivalent calculated MOs
BH3 energy
File Name	BH3_energy
File Type	.fch
Calculation Type	SP
Calculation Method	RB3LYP
Basis Set	6-31G(D,P)
Charge	0
Spin	Singlet
Total Energy	-26.61532363	 a.u.
RMS Gradient Norm	0.00000000	 a.u.
Imaginary Freq
Dipole Moment	0.0000	 Debye
Point Group

Ammonia

NH3 optimisation

A structure optimisation using the 6-31G(d,p) basis set was carried out on a trigonal pyramidal NH3 molecule. The initial N-H bond lengths were 1.00000A and the initial HNH bond angle was 109.471 degrees, giving optimised parameters of 1.01797A and 105.741 degrees respectively. The reference values for the bond length and angles are 1.017A and 107.8o [2]. This is an agreement to 2dp and is quite close considering the simple basis set

Optimisation log file File:NH3 OPTIMISATION cwj2.LOG

optimised trigonal planar C3v structure of BH3
NH3 optimisation
File Name	NH3_optimisation
File Type	.log
Calculation Type	FOPT
Calculation Method	RB3LYP
Basis Set	6-31G(d,p)
Charge	0
Spin	Singlet
E(RB3LYP)	-56.55776856	 a.u.
RMS Gradient Norm	0.00000885	 a.u.
Imaginary Freq
Dipole Moment	1.8464	 Debye
Point Group	C1
Job cpu time:  0 days  0 hours  0 minutes 12.0 seconds.
         Item               Value     Threshold  Converged?
 Maximum Force            0.000024     0.000450     YES
 RMS     Force            0.000012     0.000300     YES
 Maximum Displacement     0.000079     0.001800     YES
 RMS     Displacement     0.000053     0.001200     YES
 Predicted change in Energy=-1.629729D-09
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.018          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.018          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.018          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              105.7413         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              105.7486         -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              105.7479         -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -111.8631         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Frequency analysis

The vibrational analysis was carried out with the 'nosymm' keyword.

Log file File:NH3 FREQUENCY cwj.LOG

The predicted IR spectrum of ammonia
Vibration summary
# animation frequency relative intensity
1 1089.56 145.4398
2 1694.12 13.5558
3 1694.19 13.5559
4 3460.98 1.0593
5 3689.40 0.2700
6 3589.52 0.2709
 Low frequencies ---  -30.7038   -0.0017   -0.0008    0.0009   20.2701   28.2996
 Low frequencies --- 1089.5562 1694.1244 1694.1865
 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                     A                      A                      A
 Frequencies --  1089.5562              1694.1244              1694.1865
 Red. masses --     1.1800                 1.0644                 1.0644
 Frc consts  --     0.8253                 1.8000                 1.8001
 IR Inten    --   145.4398                13.5558                13.5559
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z
     1   7     0.12   0.00   0.00     0.00  -0.02  -0.06     0.00   0.06  -0.02
     2   1    -0.53  -0.21   0.00    -0.07  -0.04   0.73     0.25   0.14   0.20
     3   1    -0.53   0.11   0.18     0.25  -0.24  -0.03    -0.07  -0.62   0.40
     4   1    -0.53   0.11  -0.18    -0.18   0.52   0.18    -0.18  -0.41  -0.36

Energy, population and NBO analysis of NH3

The NBO analysis has given the expected information, with a higher electron density on the nitrogen due to its high electronegativity compared to the hydrogen atoms. Information about the hybridisation and the occupancy of the bonds and MOs are also as expected, with (almost) two electrons in each N-H bond and the lone pair.

The NBO charge distribution of NH3. The hydrogen atom is highlited in order to enable the magnitude of the charge to be read

File:NH3 ENERGY CWJ.log

NH3 energy
File Name	log_72698
File Type	.log
Calculation Type	SP
Calculation Method	RB3LYP
Basis Set	6-31G(d,p)
Charge	0
Spin	Singlet
E(RB3LYP)	-56.55776856	 a.u.
RMS Gradient Norm	 a.u.
Imaginary Freq
Dipole Moment	1.8464	 Debye
Point Group	C1
Job cpu time:  0 days  0 hours  0 minutes 11.0 seconds.
 Summary of Natural Population Analysis:                  
                                                          
                                       Natural Population 
                Natural  -----------------------------------------------
    Atom  No    Charge         Core      Valence    Rydberg      Total
 -----------------------------------------------------------------------
      N    1   -1.12515      1.99982     6.11104    0.01429     8.12515
      H    2    0.37505      0.00000     0.62250    0.00246     0.62495
      H    3    0.37505      0.00000     0.62250    0.00246     0.62495
      H    4    0.37505      0.00000     0.62249    0.00246     0.62495
 =======================================================================
   * Total *    0.00000      1.99982     7.97852    0.02166    10.00000
    (Occupancy)   Bond orbital/ Coefficients/ Hybrids
 ---------------------------------------------------------------------------------
     1. (1.99909) BD ( 1) N   1 - H   2  
                ( 68.83%)   0.8297* N   1 s( 24.87%)p 3.02( 75.05%)d 0.00(  0.09%)
                                           -0.0001 -0.4986 -0.0059  0.0000 -0.2910
                                            0.0052  0.8155  0.0277  0.0000  0.0000
                                            0.0281  0.0000  0.0000  0.0032  0.0082
                ( 31.17%)   0.5583* H   2 s( 99.91%)p 0.00(  0.09%)
                                           -0.9996  0.0000  0.0072 -0.0289  0.0000
     2. (1.99909) BD ( 1) N   1 - H   3  
                ( 68.83%)   0.8297* N   1 s( 24.86%)p 3.02( 75.05%)d 0.00(  0.09%)
                                            0.0001  0.4986  0.0059  0.0000  0.2910
                                           -0.0052  0.4077  0.0138  0.7062  0.0240
                                            0.0140  0.0243  0.0076  0.0033  0.0031
                ( 31.17%)   0.5583* H   3 s( 99.91%)p 0.00(  0.09%)
                                            0.9996  0.0000 -0.0072 -0.0145 -0.0250
     3. (1.99909) BD ( 1) N   1 - H   4  
                ( 68.83%)   0.8297* N   1 s( 24.87%)p 3.02( 75.05%)d 0.00(  0.09%)
                                            0.0001  0.4986  0.0059  0.0000  0.2909
                                           -0.0052  0.4077  0.0138 -0.7062 -0.0239
                                            0.0140 -0.0243 -0.0076  0.0033  0.0031
                ( 31.17%)   0.5583* H   4 s( 99.91%)p 0.00(  0.09%)
                                            0.9996  0.0000 -0.0072 -0.0145  0.0250
     4. (1.99982) CR ( 1) N   1           s(100.00%)
                                            1.0000 -0.0002  0.0000  0.0000  0.0000
                                            0.0000  0.0000  0.0000  0.0000  0.0000
                                            0.0000  0.0000  0.0000  0.0000  0.0000
     5. (1.99721) LP ( 1) N   1           s( 25.38%)p 2.94( 74.52%)d 0.00(  0.10%)
                                            0.0001  0.5036 -0.0120  0.0000 -0.8618
                                            0.0505  0.0000  0.0000  0.0000  0.0000
                                            0.0000  0.0000  
 Natural Bond Orbitals (Summary):

                                                            Principal Delocalizations
           NBO                        Occupancy    Energy   (geminal,vicinal,remote)
 ====================================================================================
 Molecular unit  1  (H3N)
     1. BD (   1) N   1 - H   2          1.99909    -0.60417   
     2. BD (   1) N   1 - H   3          1.99909    -0.60417   
     3. BD (   1) N   1 - H   4          1.99909    -0.60416   
     4. CR (   1) N   1                  1.99982   -14.16768   
     5. LP (   1) N   1                  1.99721    -0.31756  

The dissociation energy of the borane-ammonia adduct

Optimisation of structure

The ammonia-borane structure was optimised using the 6-31G(d,p) basis set and RB3LYP method to optimise the structure. Initial bond lengths for BH and NH were set to that of the uncomplexed molecules. Frequency and population calculations were also carried out, all in an identical fashion as for borane and ammonia, allowing valid comparisions to be made between their ground state energies and some figures to be calculated. Using microwave spectroscopy data for the gas phase, valid comparisons can be made[3]. (very accurate neutron diffraction data for this compound is available but the calculations carried out are assumed to be in the gas phase and for a single molecule so comparing parameters is not valid. Interestingly, the B-N bond length in the solid phase is quite a bit shorter, 1.5646A, due to intermolecular forces, which were not considered for this calculation.)[4]).

File:NH3BH3 OPTIMISATION CWJ.LOG

Bond lengths and angles
atoms initial optimised Microwave spectroscopy data
NB 1.50025A 1.66769A 1.67225A
NH 1.11717A 1.01846A 1.014A
BH 1.11715A 1.20978A 1.216A
HBH 108.192o 113.872o 113.8o
HNH 108.196o 107.876o 108.7o
NH3BH3 optimisation
File Name	NH3BH3_optimisation_frequency
File Type	.log
Calculation Type	FOPT
Calculation Method	RB3LYP
Basis Set	6-31G(d,p)
Charge	0
Spin	Singlet
E(RB3LYP)	-83.22468936	 a.u.
RMS Gradient Norm	0.00000424	 a.u.
Imaginary Freq
Dipole Moment	5.5647	 Debye
Point Group	C1
Job cpu time:  0 days  0 hours  1 minutes 32.0 seconds.
 Item               Value     Threshold  Converged?
 Maximum Force            0.000011     0.000015     YES
 RMS     Force            0.000003     0.000010     YES
 Maximum Displacement     0.000023     0.000060     YES
 RMS     Displacement     0.000008     0.000040     YES
 Predicted change in Energy=-3.637174D-10
 Optimization completed.
    -- Stationary point found.
                         

frequency analysis

File:NH3BH3 FREQUENCY CWJ.LOG

The vibrational energies and relative intensities of NH3BH3
The spectrum of NH3BH3
NH3BH3 optimisation
File Name	NH3BH3_FREQUENCY
File Type	.log
Calculation Type	FREQ
Calculation Method	RB3LYP
Basis Set	6-31G(d,p)
Charge	0
Spin	Singlet
E(RB3LYP)	-83.22468919	 a.u.
RMS Gradient Norm	0.00000402	 a.u.
Imaginary Freq	0
Dipole Moment	5.5647	 Debye
Point Group	C1
Job cpu time:  0 days  0 hours  0 minutes 39.0 seconds.
 Low frequencies ---  -22.4465   -0.0013   -0.0010   -0.0008    5.2919   15.8327
 Low frequencies ---  262.7181  633.0640  638.0599
 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                     A                      A                      A
 Frequencies --   262.7166               633.0637               638.0599
 Red. masses --     1.0078                 4.9929                 1.0452
 Frc consts  --     0.0410                 1.1790                 0.2507
 IR Inten    --     0.0000                13.9852                 3.5550
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z
     1   1     0.00  -0.36  -0.07     0.31   0.00   0.03    -0.17   0.13   0.07
     2   1     0.00   0.24  -0.28     0.28  -0.02  -0.03     0.45   0.10   0.05
     3   1     0.00   0.12   0.34     0.28   0.03  -0.02    -0.28   0.10   0.09
     4   1     0.00  -0.44  -0.08    -0.34   0.00   0.00    -0.22   0.18   0.10
     5   1     0.00   0.15   0.42    -0.37   0.00  -0.01    -0.36   0.16   0.12
     6   1     0.00   0.29  -0.34    -0.37   0.00  -0.01     0.58   0.15   0.09
     7   5     0.00   0.00   0.00     0.48   0.00   0.00     0.00  -0.02  -0.02
     8   7     0.00   0.00   0.00    -0.36   0.00   0.00     0.00  -0.04  -0.03

Energy analysis

File:NH3BH3 ENERGY CWJ.LOG

NH3BH3 optimisation
File Name	NH3BH3_ENERGY
File Type	.log
Calculation Type	SP
Calculation Method	RB3LYP
Basis Set	6-31G(d,p)
Charge	0
Spin	Singlet
E(RB3LYP)	-83.22468919	 a.u.
RMS Gradient Norm	 a.u.
Imaginary Freq
Dipole Moment	5.5647	 Debye
Point Group	C1
Job cpu time:  0 days  0 hours  0 minutes  7.0 seconds.
Ground state energy values
Molecule energy (a.u)
NH3 -56.55776856
BH3 -26.61531709
NH3BH3 -83.22468919


Using the energy values obtained for BH3, NH3 and NH3BH3, the association/dissociation energy can be found. It is important that the values from identical basis sets and methods are used, in this case the 6-31G(d,p) basis set and RB3LYP method.

The association energy is equal to the ground state energy of the adduct minus the sum of the ground state energy of the borane and ammonia.

Association energy= -83.22468919-(-26.61531709-56.55776856)a.u. =-0.05160354a.u. Conversion of a.u. to Kjmol-1 = a.u.*2625.50=-0.0516035*2625.50 =-135.48509427 Kjmol-1

Since borane does not exist in its monomeric form without being coordinated, it is difficult to compare the calculated energy with experimental reference values, as they do not proceed via a direct reaction in the gas phase

Ionic liquid cations: onium ions

Ionic liquids are ionic compounds that have a very low melting point, rendering them liquids at room temperature. Due to the almost infinite number of combinations available to synthesise them, computational methods are used in order to try and make predictions about the properties of a given ionic liquid.

Imidazolium derivatives are the cation of choice for the best performing ionic liquids but for the purpose of this experiment simple ions will be considered. Simple alkyl Ammonium, sulphonium and phosphonium ions are all possible choices for the synthesis and their structures and MOs will be analysed and interpreted

Tetramethylammonium

Optimisation

DOI:10042/23545

Tetrahedral structure of the tetramethylammonium ion
Iterations showing that a minimum force and displacement was reached
Bond lengths and angles
atoms initial optimised
CN 1.51404A 1.50942A
CH 1.11646A 1.09017A
CNC 108.306o 109.471o
File Name	ammonium_optimisation
File Type	.log
Calculation Type	FOPT
Calculation Method	RB3LYP
Basis Set	6-31G(d,p)
Charge	1
Spin	Singlet
E(RB3LYP)	-214.18127245	 a.u.
RMS Gradient Norm	0.00000318	 a.u.
Imaginary Freq
Dipole Moment	0.0000	 Debye
Point Group	C1
Job cpu time:  0 days  0 hours 32 minutes 58.9 seconds.
         Item               Value     Threshold  Converged?
 Maximum Force            0.000007     0.000015     YES
 RMS     Force            0.000002     0.000010     YES
 Maximum Displacement     0.000049     0.000060     YES
 RMS     Displacement     0.000017     0.000040     YES
 Predicted change in Energy=-7.577346D-12
 Optimization completed.
    -- Stationary point found.                   

Frequency analysis

DOI:10042/23568

File Name	ammonium_optimisation
File Type	.log
Calculation Type	FOPT
Calculation Method	RB3LYP
Basis Set	6-31G(d,p)
Charge	1
Spin	Singlet
E(RB3LYP)	-214.17522293	 a.u.
RMS Gradient Norm	0.00943397	 a.u.
Imaginary Freq
Dipole Moment	0.0091	 Debye
Point Group	C1
Job cpu time:  0 days  0 hours 32 minutes 58.9 seconds.
 Low frequencies ---   -8.8708   -0.0004    0.0007    0.0009    3.1678    7.3859
 Low frequencies ---  182.6329  288.5463  288.8383
 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                     A                      A                      A
 Frequencies --   182.6328               288.5462               288.8383
 Red. masses --     1.0078                 1.0331                 1.0331
 Frc consts  --     0.0198                 0.0507                 0.0508
 IR Inten    --     0.0000                 0.0000                 0.0000
=== Energy and NBO analysis ===

DOI:10042/23652

Ammonium energy
File Name	ammonium_energy
File Type	.fch
Calculation Type	SP
Calculation Method	RB3LYP
Basis Set	6-31G(D,P)
Charge	1
Spin	Singlet
Total Energy	-214.18127340	 a.u.
RMS Gradient Norm	0.00000000	 a.u.
Imaginary Freq
Dipole Moment	0.0000	 Debye
Point Group
Frontier orbitals
Orbital no Visualisation Energy(a.u) Bonding description
6 -1.19645 This is the first non-core MO and shows 100% bonding character, being very localised
10 -0.80746 This MO shows strong constructive overlap between the atoms of the methyl group and a node inbetween these groups and the nitrogen atom, which has an electron density which is out of phase with the methyl group. THis MO is quite localised
21(HOMO) -0.57934 There is a strong through bond and space bonding section of the MO between two methyl groups, and a more anti-bonding part when considering the remaining methyl groups and the nitrogen atom. This MO is more delocalised than the previous examples
22(LUMO) -0.13302 the electron cloud surrounding the nitrogen and methyl groups are of the same phase but electron density out of phase fills in the space remaining between the methyl groups and the nitrogen atom. There are 8 nodes, two for each Me-N bond.
24 -0.0663 This orbital is strongly anti-bonding, with no apparent through space positive interactions. There appears to be four nodes (nodal planes?). This orbital is far more diffuse than the previous MOs
NBO charges
atom charge
C -0.483
N -0.295
H 0.269

Tetramethyl phosphonium

Optimisation

DOI:10042/23559

Tetrahedral tetramethylphosphonium cation
Minimum force and displacement reached
Bond lengths and angles
atoms initial optimised
CP 1.51404A 1.81638A
CH 1.11646A 1.09329A
CPC 110.603o 109.472o
tetramethylphosphonium optimisation
File Name	phosphonium optimisation
File Type	.log
Calculation Type	FOPT
Calculation Method	RB3LYP
Basis Set	6-31G(d,p)
Charge	1
Spin	Singlet
E(RB3LYP)	-500.82701012	 a.u.
RMS Gradient Norm	0.00000459	 a.u.
Imaginary Freq
Dipole Moment	0.0000	 Debye
Point Group	C1
Job cpu time:  0 days  0 hours 54 minutes 17.6 seconds.
 Item               Value     Threshold  Converged?
 Maximum Force            0.000013     0.000015     YES
 RMS     Force            0.000003     0.000010     YES
 Maximum Displacement     0.000050     0.000060     YES
 RMS     Displacement     0.000016     0.000040     YES
 Predicted change in Energy=-1.199087D-10
 Optimization completed.
    -- Stationary point found.

Frequency analysis

DOI:10042/23653

tetramethylphosphonium frequency
File Name	phosphonium frequency
File Type	.log
Calculation Type	FREQ
Calculation Method	RB3LYP
Basis Set	6-31G(d,p)
Charge	1
Spin	Singlet
E(RB3LYP)	-500.82701069	 a.u.
RMS Gradient Norm	0.00000528	 a.u.
Imaginary Freq	0
Dipole Moment	0.0000	 Debye
Point Group	C1
Job cpu time:  0 days  0 hours 20 minutes 37.2 seconds.
Low frequencies ---   -9.8943   -6.0983   -0.0025   -0.0024   -0.0020    9.8062
 Low frequencies ---  155.9463  190.9155  191.6684
 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                     A                      A                      A
 Frequencies --   155.9456               190.9135               191.6683
 Red. masses --     1.0078                 1.0255                 1.0255
 Frc consts  --     0.0144                 0.0220                 0.0222
 IR Inten    --     0.0000                 0.0000                 0.0000

Energy and NBO analysis

Frontier orbitals
Visualisation Energy(a.u)
HOMO -0.53298
LUMO -0.11004
NBO -

DOI:10042/23654

tetramethylphosphonium energy
File Name	phosphonium_energy
File Type	.fch
Calculation Type	FREQ
Calculation Method	RB3LYP
Basis Set	6-31G(D,P)
Charge	1
Spin	Singlet
Total Energy	-500.82701069	 a.u.
RMS Gradient Norm	0.00000528	 a.u.
Imaginary Freq
Dipole Moment	0.0000	 Debye
Point Group

Trimethylsulphonium

Optimisation

The structure was drawn and the "clean" button was used to give a rough optimised structure, changing the structure from an initial trigonal planar structure to a trigonal pyramidal structure.

trigonal pyramidal-like structure of sulphonium cation
Bond lengths and angles
atoms initial optimised
CS 1.78000A 1.82263A
CH 1.07000A 1.09195A
CSC 109.126o 102.748o
sulphonium optimisation
File Name	sulphonium_optimisation
File Type	.log
Calculation Type	FOPT
Calculation Method	RB3LYP
Basis Set	6-31G(d,p)
Charge	1
Spin	Singlet
E(RB3LYP)	-517.67146472	 a.u.
RMS Gradient Norm	0.01337505	 a.u.
Imaginary Freq
Dipole Moment	2.4542	 Debye
Point Group	C3V
Job cpu time:  0 days  0 hours  9 minutes 45.1 seconds.
   Item               Value     Threshold  Converged?
 Maximum Force            0.000000     0.000015     YES
 RMS     Force            0.000000     0.000010     YES
 Maximum Displacement     0.000042     0.000060     YES
 RMS     Displacement     0.000015     0.000040     YES
 Predicted change in Energy=-1.715935D-11
 Optimization completed.
    -- Stationary point found.

Frequency analysis

Early attempts for this calculation led to very large low frequency values (-187! DOI:10042/23597 ) with the integral=grid=ultrafine key words. When the optimisation and frequency analysis was carried out using the "nosymm" keyword, these issues were resolved

sulphonium optimisation
File Name	sulphonium_frequency
File Type	.log
Calculation Type	FREQ
Calculation Method	RB3LYP
Basis Set	6-31G(d,p)
Charge	1
Spin	Singlet
E(RB3LYP)	-517.68327433	 a.u.
RMS Gradient Norm	0.00000059	 a.u.
Imaginary Freq	0
Dipole Moment	2.6179	 Debye
Point Group	C1
Job cpu time:  0 days  0 hours 10 minutes  1.7 seconds.
 Low frequencies ---   -5.5886   -0.0041   -0.0038   -0.0036    2.0026    4.7146
 Low frequencies ---  161.9128  199.8413  200.5485

Energy

DOI:10042/23691

sulphonium optimisation
File Name    sulphonium_energy
File Type    .log
Calculation Type    SP
Calculation Method    RB3LYP
Basis Set    6-31G(d,p)
Charge    1
Spin    Singlet
E(RB3LYP)    -517.68327433     a.u.
RMS Gradient Norm     a.u.
Imaginary Freq
Dipole Moment    2.6179     Debye
Point Group    C1
Job cpu time:  0 days  0 hours  1 minutes 28.5 seconds.
Frontier orbitals
Visualisation Energy(a.u)
HOMO -0.51512
LUMO -0.17626
NBO -

Summary: Comparing onium ions

The liquid state of such salts is due to complex intramolecular ionic interactions. One reason for their low melting point is the formation of ion-pairs, which screen charge and reduce the attractive force between ions, localising the colombic interaction. There are also other very complicated dipole-dipole interactions and dipole-ion interactions which are beyond the scope of these calculations. The reference also mentions that asymmetry reduces these culombic attractions.[5] From the charge distribution data, some interesting differences can be found between the molecules. Comparisons down a group (nitrogen and phosphorous) and across a period (phosphorous and sulphur) can be made, their relative electronegativities and size being considered. The charges on the atoms of the ions is somewhat in agreement with their electronegativities, with the majority of the positive charge lying on the hydrogen atoms in each case. However, the central atom charge difference between the carbons is not in agreement, with a higher positive charge than expected in each case.

Trimethylhydroxylmethylammonium ion

Optimisation

DOI:10042/23639

optimised structure
Title Card Required
File Name	NOH_optimisation_cwj
File Type	.log
Calculation Type	FOPT
Calculation Method	RB3LYP
Basis Set	6-31G(d,p)
Charge	1
Spin	Singlet
E(RB3LYP)	-289.39321740	 a.u.
RMS Gradient Norm	0.00000130	 a.u.
Imaginary Freq
Dipole Moment	1.5785	 Debye
Point Group	CS
Job cpu time:  0 days  0 hours 16 minutes 38.3 seconds.
         Item               Value     Threshold  Converged?
 Maximum Force            0.000003     0.000015     YES
 RMS     Force            0.000001     0.000010     YES
 Maximum Displacement     0.000035     0.000060     YES
 RMS     Displacement     0.000010     0.000040     YES
 Predicted change in Energy=-8.844343D-11
 Optimization completed.
    -- Stationary point found.

Frequency analysis

DOI:10042/24020

NOH frequency
File Name	NOH_frequency2_cwj
File Type	.log
Calculation Type	FREQ
Calculation Method	RB3LYP
Basis Set	6-31G(d,p)
Charge	1
Spin	Singlet
E(RB3LYP)	-289.39470635	 a.u.
RMS Gradient Norm	0.00000125	 a.u.
Imaginary Freq	0
Dipole Moment	4.7782	 Debye
Point Group	C1
Job cpu time:  0 days  0 hours 28 minutes  7.0 seconds.
 Low frequencies ---  -11.5812   -4.5952   -0.0013   -0.0010   -0.0008    3.0716
 Low frequencies ---  130.7595  214.4481  255.5359
 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                     A                      A                      A
 Frequencies --   130.7569               214.4478               255.5356
 Red. masses --     2.1678                 1.1196                 2.7347
 Frc consts  --     0.0218                 0.0303                 0.1052
 IR Inten    --     5.1700                 3.3960                27.6789

MO and energy analysis

DOI:10042/24019

NOH frequency
File Name    energy
File Type    .log
Calculation Type    SP
Calculation Method    RB3LYP
Basis Set    6-31G(d,p)
Charge    1
Spin    Singlet
E(RB3LYP)    -289.39470717     a.u.
RMS Gradient Norm     a.u.
Imaginary Freq
Dipole Moment    2.1358     Debye
Point Group    C1
Job cpu time:  0 days  0 hours  2 minutes 56.1 seconds.
Frontier orbitals
Visualisation Energy(a.u)
HOMO -0.48763
LUMO -0.12459
NBO -

Summary

Trimethylacetonitrileammonium ion

Optimisation

DOI:10042/23650

Optimised structure
Graph showing convergence of force and displacement
NR3CN
File Name	NR3CN_optimisation_cwj
File Type	.log
Calculation Type	FOPT
Calculation Method	RB3LYP
Basis Set	6-31G(d,p)
Charge	1
Spin	Singlet
E(RB3LYP)	-306.39376190	 a.u.
RMS Gradient Norm	0.00000072	 a.u.
Imaginary Freq
Dipole Moment	4.1224	 Debye
Point Group	C1
Job cpu time:  0 days  0 hours 28 minutes 25.2 seconds.
        Item               Value     Threshold  Converged?
 Maximum Force            0.000001     0.000015     YES
 RMS     Force            0.000000     0.000010     YES
 Maximum Displacement     0.000054     0.000060     YES
 RMS     Displacement     0.000016     0.000040     YES
 Predicted change in Energy=-1.064161D-10
 Optimization completed.
    -- Stationary point found.

Frequency analysis

DOI:10042/24023

NR3CN frequency
File Name	NR3CN_frequency_cwj
File Type	.log
Calculation Type	FREQ
Calculation Method	RB3LYP
Basis Set	6-31G(d,p)
Charge	1
Spin	Singlet
E(RB3LYP)	-306.39376190	 a.u.
RMS Gradient Norm	0.00000074	 a.u.
Imaginary Freq	0
Dipole Moment	4.1224	 Debye
Point Group	C1
Job cpu time:  0 days  0 hours 31 minutes 40.0 seconds.
 Low frequencies ---   -4.9511   -2.5804    0.0009    0.0009    0.0013    4.8385
 Low frequencies ---   91.6979  153.9763  211.2379

Energy and NBO analysis

DOI:10042/24024

NR3CN frequency
File Name    NCN3_energy
File Type    .log
Calculation Type    SP
Calculation Method    RB3LYP
Basis Set    6-31G(d,p)
Charge    1
Spin    Singlet
E(RB3LYP)    -306.39376190     a.u.
RMS Gradient Norm     a.u.
Imaginary Freq
Dipole Moment    4.1224     Debye
Point Group    C1
Job cpu time:  0 days  0 hours  3 minutes 22.6 seconds.
Frontier orbitals
Visualisation Energy(a.u)
HOMO -0.48763
LUMO -0.12459
NBO -

Summary

HOMO-LUMO gap = 0.61222a.u

References

  1. J.Glaser, G.Johansson, Acta Chemica Scandanavica, 1982, 36A, 125-35
  2. Linstrom, P.J.; Mallard, W.G. (eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD
  3. Suenram, R. D., and F. J. Lovas. "Microwave spectrum, torsional barrier, and structure of BH3NH3." The Journal of Chemical Physics 78.1 (1983): 167-171.
  4. Stephens, Frances H., Vincent Pons, and R. Tom Baker. "Ammonia–borane: the hydrogen source par excellence?." Dalton Transactions 25 (2007): 2613-2626.
  5. Weingärtner, Hermann. "Understanding ionic liquids at the molecular level: facts, problems, and controversies." Angewandte Chemie International Edition 47.4 (2007): 654-670.