Jump to content

Rep:Mod:WorkshopMC11

From ChemWiki

Ammonia

Molecule Infromation

Calculation method: RB3LYP
Basis set: 6-31G(d,p)
Final energy E(RB3LYP) in atomic units (au): -56.55776873
Point group: C3V
RMS gradient: 0.00000485 a.u.
Optimised N-H bond distance: 1.018 A
Optimised H-N-H bond angle: 105.741 degrees

Optimisation Table


Item               Value     Threshold  Converged?
 Maximum Force            0.000004     0.000450     YES
 RMS     Force            0.000004     0.000300     YES
 Maximum Displacement     0.000072     0.001800     YES
 RMS     Displacement     0.000035     0.001200     YES
 Predicted change in Energy=-5.986295D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.018          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.018          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.018          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              105.7412         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              105.7412         -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              105.7412         -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -111.8571         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
Ammonia

Link to completed NH3 optimisation

Molecule Vibrations

Display Vibrations IR Spectrum

Modes expected from the 3N-6 rule: 6
Degenarate modes (ie have the same energy): 2-3 & 5-6
"Bending" vibrations and "bond stretch" vibrations: Bending = 1,2,3 Bond Stretch= 4,5,6
Highly symmetric mode: 4
"Umbrella" mode: 1
Number of bands expected in an experimental spectrum of gaseous ammonia: 2

Ammonia has 4 atoms therefore according to the equation 3N-6 N=4 and the number of modes expected are 6 as seen on the Display Vibrations. Bending Vibrations consist of the vibrations lower in energy, hence the 1st three whereas the last three are of higher energy and stretching vibrational modes. Number of bands that would be expected in a spectrum are 2 because there are 2 degenerate pairs of modes which would give 4 bands, as symmetric band that does not appear on the spectrum. Lastly a lower frequency mode that does not result to a band in the spectrum because the change in dipole is minor and dipole moment is proportional to band intensity. therefore the intensity of the band is too low and does not appear on the spectra. In conclusion two bands consisting of: 1 & 2/3.[1]

NH3 Charge Distribution

Charges on Ammonia

N-atom: -1.125
H-atoms: +0.357
Nitrogen has a much greater EN than the H hence it would be expected to have a negative charge due to its ability to attract electron density.

H2 Molecule

Molecule Infromation

Calculation method: RB3LYP

Basis set: 6-31G(d,p)

Final energy: -1.17853936 a.u.

RMS Gradient: 0.00000017 a.u.

Point Group: D*H

Bond distance: 0.74 Å

H-H bond angle: 180 °

Optimisation Table

         Item               Value     Threshold  Converged?
 Maximum Force            0.000000     0.000450     YES
 RMS     Force            0.000000     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000001     0.001200     YES
 Predicted change in Energy=-1.164080D-13
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  0.7428         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
  
H2 Molecule

Link to completed H2 optimisation

Molecule Vibrations

Charge distribution on H2

H2 is diatomic and both atoms have the same EN therefore there is no dipole moment and no charge on the molecule.

Nitrogen: N2

Molecule Information

Calculation Method: RB3LYP

Basis Set: 6-31G(d,p)

Final Energy: -109.52412868 a.u.

RMS gradient: 0.00000060 a.u.

Point Group: D*H

N-N bond distance: 1.11 Å

Optimisation Table


         Item               Value     Threshold  Converged?
 Maximum Force            0.000001     0.000450     YES
 RMS     Force            0.000001     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000000     0.001200     YES
 Predicted change in Energy=-3.401143D-13
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1055         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
N2

Link to completed N2 optimisation


Vibrational Modes

Charge Distribution


N2 is a diatomic molecule consisting of the same atoms which have the same EN hence no dipole and no charges.

N2 Molecular Orbitals





Molecular Orbitals of nitrogen presented in order of increasing energy.

Reaction Energies

E(NH3)= -56.55776873 a.u.

2*E(NH3)= -113.1155375 a.u.

E(N2)= -109.52412868 a.u.

E(H2)= -1.17853936 a.u.

3*E(H2)= -3.53561808 a.u.

ΔE=2*E(NH3)-[E(N2)+3*E(H2)]= -0.05579074 a.u.

Total Energy Change: -146.48 kJ/mol

The total energy for ammonia formation is negative therefore ammonia production is more energetically favorable as ammonia is more stable than its gaseous starting materials.[2]

Sulfur: S2

Molecule Information

Calculation Method: RB3LYP

Basis Set: 6-31G(d,p)

Final Energy: -796.32599779 a.u.

RMS gradient: 0.00000372 a.u.

Point Group: D*H

S-S bond distance: 1.93 Å

Optimisation Table


          Item               Value     Threshold  Converged?
 Maximum Force            0.000006     0.000450     YES
 RMS     Force            0.000006     0.000300     YES
 Maximum Displacement     0.000011     0.001800     YES
 RMS     Displacement     0.000016     0.001200     YES
 Predicted change in Energy=-7.077700D-11
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.9294         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
S2

Link to completed S2 optimisation

Vibrational Modes

Charge Distribution


S2 is a diatomic molecule consisting of the same atoms which have the same EN hence no dipole and no charges.

S2 Molecular Orbitals


The molecular orbital energy-level diagram of S2:[3]

σ*u anti-bonding orbital


  • Energy:-7.99769 a.u.
  • Combination of two 2s atomic orbitals
  • Ungerade orientation, antibonding mixture
  • Occupied molecular orbital

    σg bonding orbital
  • Energy:-0.39516 a.u.
  • Combination of two pz atomic orbitals
  • Gerade orientation of bonding mixture
  • Occupied molecular orbital

    πu bonding orbital
  • Energy:-0.36284 a.u.
  • Combination of two pz/ py atomic orbitals
  • Gerade orientation of bonding mixture
  • Occupied molecular orbital

    π*g anti-bonding orbital
  • Energy:-0.21842 a.u.
  • Combination of two pz/ py atomic orbitals
  • Gerade orientation of anti-bonding mixture
  • Occupied molecular orbital

    σ*u anti-bonding orbital
  • Energy:-0.01305 a.u.
  • Combination of two px atomic orbitals
  • Ungerade orientation of anti-bonding mixture
  • Unoccupied molecular orbital
    [4]

    NO-

    Molecule Information

    Calculation Method: RB3LYP

    Basis Set: 6-31G(d,p)

    Final Energy: -129.81016799 a.u.

    RMS gradient: 0.00000011 a.u.

    Point Group: C*V

    Dipole Moment:0.9230 Debye

    NO- bond distance: 1.28 Å

    Optimisation Table

    
             Item               Value     Threshold  Converged?
     Maximum Force            0.000000     0.000450     YES
     RMS     Force            0.000000     0.000300     YES
     Maximum Displacement     0.000000     0.001800     YES
     RMS     Displacement     0.000000     0.001200     YES
     Predicted change in Energy=-3.236925D-14
     Optimization completed.
        -- Stationary point found.
                               ----------------------------
                               !   Optimized Parameters   !
                               ! (Angstroms and Degrees)  !
     --------------------------                            --------------------------
     ! Name  Definition              Value          Derivative Info.                !
     --------------------------------------------------------------------------------
     ! R1    R(1,2)                  1.276          -DE/DX =    0.0                 !
     --------------------------------------------------------------------------------
    
    NO

    Link to completed NO- optimisation

    Vibrational Modes

    Charge Distribution


    NO- is a molecule consisting of atoms with different EN and therefore has a dipole. O is more EN than N hence has a higher charge however as the difference in O & N EN is small the difference in the charges is small as well.

    NO- Molecular Orbitals


    The molecular orbital energy-level diagram of NO-[3]:






    Molecular Orbitals are presented in order of increasing energy. The factor contributing to different sized MO's is the difference in EN between the atoms.

    References

    IR Spectroscopy[1] The Haber–Bosch process [2] Molecular Orbital Diagrams[3] Molecular Orbital Theory[4]


    <references>

    [1]

    [2]

    [4]

    [3]