Jump to content

Rep:Mod:Hz6416

From ChemWiki

NH3 molecule

Molecule: NH3

Method: RB3LYP

Basis Set: 6-31G(d,p)

E(RB3LYP): -56.55776873 a.u

RMS Gradient Norm: 0.00000485 a.u

Point Group: C3V

Bond distance N-H: 1.01798 A

Bond angle H-N-H: 105.74115°


  Item               Value     Threshold  Converged?
 Maximum Force            0.000004     0.000450     YES
 RMS     Force            0.000004     0.000300     YES
 Maximum Displacement     0.000072     0.001800     YES
 RMS     Displacement     0.000035     0.001200     YES
 
test molecule

File:Hyz ch4 optf pop.gjf

Modes from the 3N-6 rule: 6

Degenerate modes: Modes 2 and 3, Modes 5 and 6

Bending vibrations: Modes 1,2 and 3

Bond stretch vibrations: Mode 4

Highly Symmetric: Modes 1 and 4

Umbrella Mode: Mode 1

Bands in an experimental spectrum of gaseous ammonia: 4

Charge on the N-atom: -1.125

Charge on the H-atom: 0.375

The Energy for the reaction of N2 + 3H2 -> 2NH3

E(NH3)=-56.55776873 a.u

2*E(NH3)= 2*(-56.55776873 a.u)

E(N2)= -109.52359111 a.u

E(H2)= -1.15928020 a.u

3*E(H2)= 3*(-1.17853936 a.u)

ΔE=2*E(NH3)-[E(N2)+3*E(H2)] = 2*(-56.55776873 a.u)-[-109.52359111 a.u + 3*(-1.17853936 a.u)]

= -0.05632827 a.u

= -0.05632827*2625.5 kJ/mol

= -147.8898729 kJ/mol

Conclusion: according to the negative result, it is clearly that this reaction is a exothermic reaction.

Therefore, the gaseous reactants is more stable than the ammonia product.

N2 molecule

Molecule: N2

Method: RB3LYP

Basis set: 6-31G(d.p)

E(RB3LYP): -109.52359111 a.u

RMS Gradient Norm: 0.02473091 a.u

Point Group: D*H

The Bond Length of N2: 1.10550 A

The Bond Angle of N2: 180°

The frequence of N2: 2457.33


Item               Value     Threshold  Converged?
 Maximum Force            0.000001     0.000450     YES
 RMS     Force            0.000001     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000000     0.001200     YES
 

H2 molecule

Molecule H2

Method: RB3LYP

Basis Set: 6-31G(d,p)

E(RB3LYP): -1.17853936 a.u

RMS Gradient Norm: 0.00002276 a.u

Point Group: D*H

Bond distance H-H: 0.60000A

Bond angle H-H: 180°

The Frequency of H2: 0, because H2 is a homogeneous molecule.


Item               Value     Threshold  Converged?
 Maximum Force            0.168347     0.000450     NO 
 RMS     Force            0.097195     0.000300     NO 
 Maximum Displacement     0.087680     0.001800     NO 
 RMS     Displacement     0.050622     0.001200     NO 

CH4 Molecule

Molecule: CH4

Method: RB3LYP

Basis Set: 6-31G(d,p)

E(RB3LYP): -40.52401404 a.u

RMS Gradient Norm: 0.00003263 a.u

Point Group: Td

Bond distance C-H: 1.09197 A

Bond angle H-C-H: 109.47122°


Item               Value     Threshold  Converged?
 Maximum Force            0.000063     0.000450     YES
 RMS     Force            0.000034     0.000300     YES
 Maximum Displacement     0.000179     0.001800     YES
 RMS     Displacement     0.000095     0.001200     YES

Hyz ch4 optf pop.gjf

test molecule

Hyz ch4 optf pop.gjf


Modes from the 3N-6 rule: 9

Degenerate modes: Modes 1, 2 and 3, Modes 4 and 5, Modes 7, 8 and 9

Bending vibrations: Modes 1,2,3,4 and 5

Bond stretch vibrations: Mode 6

Highly Symmetric: Modes 1 and 4

Bands in an experimental spectrum of gaseous methane: 4

Charge on the C-atom: -0.930

Charge on the H-atom: 0.233

This is the 1s core AOs one the C atom in methane

This is the 2s AOs on the C atom

This is the combination(overlap) of the p orbital on the C atom and s orbital on the H atom

This is also the combination(overlap) of the p orbital on the C atom and s orbital on the H atom.

These two picture show that two MOs all have the same energy. This is because they all have the same symmetry but different orientation.

This is the antibonding orbital of the C atom