Jump to content

Rep:Mod:HRC115

From ChemWiki

Molecular Modelling

NH3 Molecule

Key Information

Molecule: NH3

Calculation Method: RB3LYP

Basis Set: 6-31G (d,p)

Final Energy: -56.44397188 a.u

RMS Gradient: 0.05399560 a.u

Point Group: C3V

Bond Length: 1.3 angstrom

Bond Angle: 109.471°

Optimised NH3 Molecule

Key Information

Molecule:NH3

Calculation Method: RB3LYP

Basis Set: 6-31G (d,p)

Final Energy: -56.55776873 a.u

RMS Gradient: 0.00000485 a.u

Point Group: C3V


 Item               Value     Threshold  Converged?
 Maximum Force            0.000004     0.000450     YES
 RMS     Force            0.000004     0.000300     YES
 Maximum Displacement     0.000072     0.001800     YES
 RMS     Displacement     0.000035     0.001200     YES
 Predicted change in Energy=-5.986290D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.018          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.018          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.018          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              105.7412         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              105.7412         -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              105.7412         -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -111.8571         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

    -- Stationary point found.

As seen, the structure has converged.

The optimisation file is liked to here

NH3 Molecule

Charge on Nitrogen: -1.125

Charge on Hydrogen: 0.375

It is expected that nitrogen would have a negative charge as it has a higher electronegativity than that of hydrogen, so will hold the electrons closer, resulting in an overall negative charge. This means the charge on hydrogen is positive.

Frequency Analysis

Vibrations for an NH3 Molecule

From the 3N-6 rule, where N is the number of atoms, 6 vibrational modes are expected to be seen, which is observed in the table. Modes 2 and 3, and 5 and 6, are degenerate as they have the same frequencies. Modes 1-3 are bond bending modes and 4-6 are bond stretching. Mode 4 is highly symmetric. Mode 1 is known as the umbrella mode. In a spectrum of gaseous ammonia, it would be expected that you would see 9 bands.

H2 Molecule

Key Information

Molecule: H2

Calculation Method: RB3LYP

Basis Set: 6-31G (d,p)

RMS Gradient: 0.000000017 a.u

Final Energy: -1.17853936 a.u

Point Group: D∞h

Bond Length: 0.74279 angstroms

Bond Angle: 180°

The optimisation file is liked to here

H2 Molecule
             Item               Value     Threshold  Converged?
 Maximum Force            0.000000     0.000450     YES
 RMS     Force            0.000000     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000001     0.001200     YES
 Predicted change in Energy=-1.164080D-13
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  0.7428         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

As seen, the structure has converged.

Frequency Analysis

Vibrations for an H2 Molecule

There are no negative frequencies seen.

N2 Molecule

Key Information

Molecule: N2

Calculation Method: RB3LYP

Basis Set: 6-31G (d,p)

RMS Gradient: 0.00000060 a.u

Final Energy: -109.52412868 a.u

Point Group: D∞h

Bond Length: 1.10550 angstroms

Bond Angle: 180°

The optimisation file is liked to here

N2 Molecule
Item               Value     Threshold  Converged?
 Maximum Force            0.000001     0.000450     YES
 RMS     Force            0.000001     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000000     0.001200     YES
 Predicted change in Energy=-3.401045D-13
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1055         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

As seen, the structure has converged.

Vibrations for an N2 Molecule

There are no negative frequencies seen.

Haber-Bosch Reaction Energy Calculation

E(NH3)= -56.55776873 a.u

2*E(NH3)= -113.11553746 a.u

E(N2)= -109.52412868 a.u

E(H2)= -1.17853936 a.u

3*E(H2)= -3.53561808 a.u

ΔE=2*E(NH3)-[E(N2)+3*E(H2)]= -0.0557907 a.u

ΔE=-146.4784829 kJ/mol

The gaseous reactants in the process are favoured.

H2CO Molecule

Key Information

Molecule: H2CO

Calculation Method: RB3LYP

Basis Set: 6-31G (d,p)

RMS Gradient: 0.00007368 a.u

Final Energy: -114.50319933 a.u

Point Group: CS

Bond Length: C=O = 1.20676, C=H = 1.110565

Bond Angle: O=C-H = 122.395, H-C-H = 115.219

The optimisation file is liked to here

H2CO Molecule

The hydrogen molecules show a charge of 0.150, and carbon of 0.197. Oxygen, however, displays a negative charge at -0.497, due to it having the highest electronegativity, therefore pulling the electrons closer to it.

Item               Value     Threshold  Converged?
 Maximum Force            0.000197     0.000450     YES
 RMS     Force            0.000085     0.000300     YES
 Maximum Displacement     0.000232     0.001800     YES
 RMS     Displacement     0.000149     0.001200     YES
 Predicted change in Energy=-3.772186D-08
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.2068         -DE/DX =   -0.0002              !
 ! R2    R(2,3)                  1.1106         -DE/DX =   -0.0001              !
 ! R3    R(2,4)                  1.1106         -DE/DX =   -0.0001              !
 ! A1    A(1,2,3)              122.3859         -DE/DX =    0.0                 !
 ! A2    A(1,2,4)              122.3954         -DE/DX =    0.0                 !
 ! A3    A(3,2,4)              115.2188         -DE/DX =    0.0                 !
 ! D1    D(1,2,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

As seen, the structure has converged.

Frequency Analysis

Vibrations for a H2CO Molecule

Modes 1 and 2 correspond to bond bending, whilst in modes 3 and 4, both bond bending and stretching are seen. In modes 5 and 6, only bond stretching is seen. Again due to 3N-6, it is expected to see 6 vibrational modes, which is what is shown.

H2CO Molecular Orbitals

Shown above are the five lowest energy MO's observed for H2CO. Their respective energies are -19.17003 a.u, -10.28952 a.u, -1.06085 a.u, -0.63678 a.u, and -0.49430 a.u, going from left to right. The first two shown are MO's surrounding oxygen, and then carbon, due to 1s electrons. The next two are a result of the 2s electrons. One shows the bonding orbital completely surrounding the molecule, and the other the bonding and antibonding orbital. There is a big jump in energy when considering the 2s electrons as opposed to just the 1s electrons. In the final picture, the orbitals observed are made from the 2p electrons. The red MO is showing the bonding orbital, and green the antibonding. Here, overlaping p orbitals are shown.