Jump to content

Rep:Mod:DMS3053-10

From ChemWiki
   from matplotlib import pylab as pl
   import numpy as np
   def extract_data_c(file):
       data_array = np.loadtxt(file)
       temps = data_array[:,0]
       heat_cap_per_spin = data_array[:,5]
       return temps, heat_cap_per_spin
   
   def plotdata(file):
       file_data = extract_data_c(file)
       T_min = 2.15
       T_max = 2.55 # Min and Max altered to get good peak fit
       T_range = np.linspace(T_min, T_max, 1000) #g= Generates 1000 evenly spaced points between T_min and T_max
       selection = np.logical_and(file_data[0] > T_min, file_data[0] < T_max) # Selects rows of data for which both conditions are met
       peak_T_values = file_data[0][selection] # Selects the appropriate temperature values
       peak_C_values = file_data[1][selection] # Selects the appropriate heat capacity values
       fit = np.polyfit(peak_T_values, peak_C_values, 3) # Fits a third order polynomial
       fitted_C_values = np.polyval(fit, T_range) # Uses the fit object to generate the corresponding values of C
       Cmax = np.max(fitted_C_values) # Locates the maximum in heat capacity
       Tmax = T_range[fitted_C_values == Cmax] # Locates the corresponding value of temperature
       pl.ylabel("Heat Capacity")
       pl.xlabel("Temperature")
       pl.ylim([0.0, 2.0])
       pl.plot(file_data[0], file_data[1], T_range, fitted_C_values)
       pl.legend(['Data', 'Polynomial fit'], loc='upper center', bbox_to_anchor=(0.5, 1.10),
             ncol=5)
       pl.show()
       print(Cmax)
       print(Tmax)