Jump to content

Rep:Mod:Chunyi89

From ChemWiki

Week 1: Basic calculations & analysis of simple molecules: BH3, TlBr3, BBr3, NH3

BH3 Optimisation (Day 1)

This optimisation involved the usage of 'B3LYP' method and '3-21G' basis set, a more basic basis set. A better basis set will be used later in the week.


test molecule


Optimising BH3 molecule (3-21G basis set)

LOG FILE LINK: Media:Cma209 BH3 OPTIMISATION.LOG

Optimised B-H bond distance = 1.19 Å
Optimised H-B-H bond angle = 120.0o

Gaussian Calculation Summary

BH3 Optimisation 3-21G
File type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 3-21G
Final energy in atomic units (au) -26.46226338
Gradient 0.00020672 au
Dipole Moment 0.0000 Debye
Point Group D3H
Calculation Time Taken 4 min 56 sec

Logbook - "Item" table

         Item               Value     Threshold  Converged?
 Maximum Force            0.000413     0.000450     YES
 RMS     Force            0.000271     0.000300     YES
 Maximum Displacement     0.001610     0.001800     YES
 RMS     Displacement     0.001054     0.001200     YES
 Predicted change in Energy=-1.071764D-06
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1935         -DE/DX =    0.0004              !
 ! R2    R(1,3)                  1.1935         -DE/DX =    0.0004              !
 ! R3    R(1,4)                  1.1935         -DE/DX =    0.0004              !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Convergence has been achieved

Analysing the Optimised BH3 molecule (6-31G(d,p) basis set)

This optimisation involved the usage of 'B3LYP' method and '6-31G(d,p)' basis set, a better basis set. A better basis can optimise BH3 molecule with more accuracy, but the run takes slightly longer.

LOG FILE LINK: Media:CMA209 BH3 OPTIMISATION 631GDP.LOG

Optimised B-H bond distance = 1.19 Å
Optimised H-B-H bond angle = 120.0o

Gaussian Calculation Summary

BH3 Optimisation 6-31G(d,p)
File type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -26.61532363
Gradient 0.00000235 au
Dipole Moment 0.0000 Debye
Point Group D3H
Calculation Time Taken 2 min 50 sec

Logbook - "Item" table

        Item               Value     Threshold  Converged?
 Maximum Force            0.000005     0.000450     YES
 RMS     Force            0.000003     0.000300     YES
 Maximum Displacement     0.000019     0.001800     YES
 RMS     Displacement     0.000012     0.001200     YES
 Predicted change in Energy=-1.304899D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1923         -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.1923         -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.1923         -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Convergence has been achieved.

Energies of optimised BH3

For 3-21G optimised structure, total energy = -26.4622 au (4 d p)
For 6-31G(d,p) optimised structure, total energy = -26.6153 au (4 d p)

Energy Difference = 0.1531 au (4 d p) = 400 kJmol-1 (corrected to nearest 10 kJmol-1)

From the 2 different optimisations, we notice a drop in total energy from 3-21G optimised structure to 6-31G(d,p) optimised structure. This can be explained by the fact that the more accurately optimised structure allowed the observation the BH3 in a more stable state. Bond length of the 6-31G(d,p) optimised structure is also observed to be slightly lower than that of 3-21G optimised structure. The energy difference of both optimisations is ~400 kJmol-1, a rather significant diference considering it is similar to the bond length of a C-H bond.

TlBr3 / BBr3 Optimisation & Bond lengths comparison (Day 2)

Analysing the Optimised TlBr3 molecule (LanL2DZ basis set)

The optimisation of TlBr3 made use of pseudo-potentials and a larger basis set. Therefore, HPC is used in the optimisation calculation instead of Gaussian.

Optimised Tl-Br bond distance = 2.65 Å
Optimised Br-Tl-Br bond angle = 120.0o

Link to D-space

Link: DOI:10042/22521

Gaussian Calculation Summary

TlBr3 Optimisation (Lanl2dz)
File type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set LANL2DZ
Final energy in atomic units (au) -91.21812851
Gradient 0.00000090 au
Dipole Moment 0.0000 Debye
Point Group D3H
Calculation Time Taken 0 min 38.1 sec

Logbook - "Item" table


         Item               Value     Threshold  Converged?
 Maximum Force            0.000002     0.000450     YES
 RMS     Force            0.000001     0.000300     YES
 Maximum Displacement     0.000022     0.001800     YES
 RMS     Displacement     0.000014     0.001200     YES
 Predicted change in Energy=-6.084112D-11
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  2.651          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  2.651          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  2.651          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Convergence has been achieved

Comparison with Literature (Tl-Br Bond Distance)

Literature Tl-Br Bond Distance: 2.51 Å [1]

  1. 10.3891/acta.chem.scand.36a-0125

Analysing the Optimised BBr3 molecule (GEN basis set)

Optimised B-Br bond distance = 1.93 Å
Optimised Br-B-Br bond angle = 120.0o

Link to D-space

Link: DOI:10042/22522

Gaussian Calculation Summary

BBr3 Optimisation (Gen Basis set)
File type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set Gen
Final energy in atomic units (au) -64.43645296
Gradient 0.00000382 au
Dipole Moment 0.0000 Debye
Point Group D3H
Calculation Time Taken 0 min 33.8 sec

Logbook - "Item" table


        Item               Value     Threshold  Converged?
 Maximum Force            0.000008     0.000450     YES
 RMS     Force            0.000005     0.000300     YES
 Maximum Displacement     0.000036     0.001800     YES
 RMS     Displacement     0.000023     0.001200     YES
 Predicted change in Energy=-4.027600D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.934          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.934          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.934          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Convergernce has been achieved

Table of Bond Lengths

Comparison of Bond Lengths
  BH3 TlBr3 BBr3
Bond Lengths / Å 1.1923 2.6510 1.9340

Bond Angles for all 3 molecules are equal at 120o.

Discussion points

In the 3 molecules used for comparison, changing the ligand from H to Br increases the bond length as the Br is a much larger atom and is more diffuse compared to H. However, besides the bond length, bond angle remains unchanged as the geometry of all three compounds are the same (Trigonal planar). This is because H & Br are similar in terms of their bonding to the central atom as both contribute a single electron into formation of a single sigma bond. The preservation of trigonal planar geometry could only occur if the central elements are of valency of +3. Therefore, while changing the central element from B to Tl increases the bond length of the molecule, it did not change the bond angle as they are both in the same group in the periodic table. Alternatively, changing the central element to another one not in the same group will cause a change in both bond length and bond angle as the geometry of the molecule will be altered (ref NH3 tetrahedral geometry). Also, changing the ligand to one which is not a sigma donor would also alter the structure of the molecule as it may be capable of different kinds of bonding such as Tl d --> pi* backbonding.

In Gaussview, a bond is representative of the attractive interaction between 2 or more atoms. Bond strengths are determined by factors such as extent of nuclei-nuclei and extent of attractive forces between oppositely charged ions. An attractive interaction can only be considered a bond if it is deemed as significant enough in Gaussview. When interaction is too low, it will not show up as a bond in Gaussview.

Frequency analysis: Day 3

Frequency analysis for BH3

Link: Media:CMA209 BH3 FRQUENCY 1.LOG

Low frequencies ---   -0.9034   -0.7346   -0.0054    6.7355   12.2480   12.2812
Low frequencies --- 1163.0003 1213.1853 1213.1880

Gaussian Calculation Summary

BH3 Frequency (Gen Basis set)
File type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -26.61532363
Gradient 0.00000237 au
Dipole Moment 0.0000 Debye
Point Group D3H
Calculation Time Taken 0 min 4.0 sec

Table of Molecular Vibrations

Table of Molecular Vibrations
No. Form of Vibration Frequency Intensity Symmetry (D3H)
1 Wagging: B atom moves in and out of the plane of the molecule. 1163.00 92.5478 A2"
2 Symmetrical Stretching: 2 of the H atoms scissoring about B in the plane. 1213.19 14.0553 E'
3 Rocking: 2 H atoms moves anticlockwise, while the other H atom moves clockwise. 1213.19 14.0589 E'
4 Symmetric Stretching: All 3 H atoms 'breathing' as they move inwards and outward in sync in the same plane 2582.26 0.0000 A1'
5 Asymmetrical Stretching: 2 H atoms stretches and contracts while the other remains stationary. 2715.43 126.3307 E'
6 Symmetrical Stretching: 2 H atoms strech in one direction while the other stretches in the opposite direction. 2715.43 126.3211 E'

IR Spectrum of BH3


The missing peaks are due to some vibrations being very close in energies (Scissoring and rocking frequencies). Thus they show up as a single peak in the IR Spectrum. Also, for a vibrational mode in a molecule to be "IR active," it must be associated with changes in the dipole. A permanent dipole is not necessary, as the rule requires only a change in dipole moment.However, with symmetric stretching at 2582.26 cm-1, no change in dipole moment will be observed as the 3 H atoms move in the same direction thus are symmetric and IR-inactive.

Frequency analysis for TlBr3

Low frequencies ---   -3.4213   -0.0026   -0.0004    0.0015    3.9367    3.9367
Low frequencies ---   46.4289   46.4292   52.1449

Link to D-space

Link: DOI:10042/22557

Gaussian Calculation Summary

TlBr3 Frequency
File type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set LANL2DZ
Final energy in atomic units (au) -91.21812851
Gradient 0.00000088 au
Dipole Moment 0.0000 Debye
Point Group D3H
Calculation Time Taken 0 min 28.1 sec

IR Spectrum of TlBr3


Comparing the vibrational frequencies of BH3 and TlBr3

Comparing vibrational frequencies
BH3 Vibrational Frequency / kJmol-1 TlBr3 Vibrational Frequency / kJmol-1
1213.19, 1213.19 (E') 46.43, 46.43 (E')
1163.00 (A2") 52.14 (A2")
2582.26 (A1') 165.27 (A1')
2715.43, 2715.43 (E') 210.69, 210.69 (E')


Comparison of IR spectra

The IR spectra shapes for both BH3 and TlBr3 are quite similar, indicative similar molecular structure, having similar vibrational modes. The value of frequencies of BH3 and TlBr3 are however quite different as B and H atoms are much lighter than Tl and Br atoms. Therefore, less energy is required for B and H to vibrate. Thus they are able to vibrate much more and much faster than Tl and Br. As such, higher frequencies of vibration will naturally be observed for BH3 as compared to TlBr3.

Reordering of modes could be observed. A2" is the lowest frequency vibration in BH3 but E' is the lowest frequency vibration in TlBr3, while A2" is swapped to the 2nd lowest frequency vibration above it. Reordering occurs as the effect on individual atoms in each vibration mode is different. Some atoms are stationary in certain vibrational modes, while others are in motion, and as such, change in mass of that atom will alter the overall vibrational frequency to different extents.

For both spectra two modes lie fairly closely together, the A2 and E' modes and then the other two modes also lie fairly close together, the A1' and E' modes, but higher in energy. This is because A2 and E' modes are bending frequencies while A1' and E' modes are stretching frequencies which are generally much higher in frequencies compared to bending ones.

Discussion

Using different methods and basis sets would give rise to different levels of accuracies measured. As shown in earlier analysis of BH3 optimisation, difference in energy could be as great as 400 kJ/mol, almost equivalent to the bond strength of a C-H bond. This makes the analysis and comparisons rather meaningless due to the inaccuracy. Hence it is crucial that all analysis are made based on the same method and basis sets used.

A frequency analysis allows us to make sure that the optimisation was done correctly. A correct optimisation has to be either a highest point/peak (transition state) or a lowest point/trough (ground state). This is carried out by taking the first and second derivatives of the optimisation. At any stationary point, the first derivative should be close to 0. The frequency analysis test the second derivative. If all second derivative are positive, a minima(ground state) is obtained. If one negative value is obtained, then a maxima(transition state) is obtained. If more than 1 negative value is obtained, the optimisation is not successful.

Low frequencies represent the deviation from 0 based on the basis set used. The better the basis set, the closer the low frequencies values will be observed for each of the vibrational state.

MO Diagram of BH3




There are no significant differences between real and LCAO MOs. Nevertheless, real MOs present a more general view of electronic distribution in the entire molecule, together with clear notification regarding location the nodal planes, while LCAO MOs can give us a more atoms-focussed picture of its bonding and anti-bonding nature in different orbital states.

Therefore, the qualitative MO theory using LCAO MOs are quite useful and accurate. However, as the molecule gets more complex, real MOs will be able to provide a better representation.

NH3(Day 4)

Analysing the Optimised NH3 molecule (6-31G(d,p) basis set)

Link: Media:NH3 OPTIMISATION 631GDP.LOG

Gaussian Calculation Summary

NH3 Optimisation (6-31G(d,p))
File type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -56.55776854
Gradient 0.00003886 au
Dipole Moment 1.8463 Debye
Point Group C1
Calculation Time Taken 0 min 10.0 sec

Logbook - "Item" table


         Item               Value     Threshold  Converged?
 Maximum Force            0.000200     0.000450     YES
 RMS     Force            0.000124     0.000300     YES
 Maximum Displacement     0.000386     0.001800     YES
 RMS     Displacement     0.000261     0.001200     YES
 Predicted change in Energy=-1.088496D-07
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.0007         -DE/DX =    0.0002              !
 ! R2    R(1,3)                  1.0007         -DE/DX =    0.0002              !
 ! R3    R(1,4)                  1.0007         -DE/DX =    0.0002              !
 ! A1    A(2,1,3)              107.5868         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              107.5676         -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              107.5676         -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -115.6371         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Convergence has been achieved

Analysing the Frequency NH3 molecule (6-31G(d,p) basis set)

Link: Media:NH3 FREQ.LOG

Low frequencies ---   -9.4755   -0.0018   -0.0016    0.0011   33.0385   39.6310
Low frequencies --- 1089.7822 1694.1610 1694.3194

Gaussian Calculation Summary

NH3 Frequency (6-31G(d,p))
File type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -56.55776854
Gradient 0.00003881 au
Dipole Moment 1.8463 Debye
Point Group C1
Calculation Time Taken 0 min 8.0 sec

Analysing the Energies NH3 molecule (6-31G(d,p) basis set)

Link: Media:NH3 ENERGY.LOG

Gaussian Calculation Summary

NH3 Energy (6-31G(d,p))
File type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -56.55776854
Dipole Moment 1.8463 Debye
Point Group C1
Calculation Time Taken 0 min 2.0 sec

NBO analysis of NH3

Charge Distribution


Charge Limits: -1.0 to 1.0
Specific NBO Charge for Nitrogen: -1.125
Specific NBO Charge for Hydrogen: 0.375

Optimisation of NH3BH3

Link: Media:BH3NH3 OPTIMISATION.LOG

Gaussian Calculation Summary

NH3BH3 Optimisation (6-31G(d,p))
File type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -83.22469032
RMS Gradient Norm 0.00005936
Dipole Moment 5.5648 Debye
Point Group C1
Calculation Time Taken 0 min 47.0 sec

Logbook - "Item" table


         Item               Value     Threshold  Converged?
 Maximum Force            0.000121     0.000450     YES
 RMS     Force            0.000057     0.000300     YES
 Maximum Displacement     0.000508     0.001800     YES
 RMS     Displacement     0.000294     0.001200     YES
 Predicted change in Energy=-1.612062D-07
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,7)                  1.21           -DE/DX =   -0.0001              !
 ! R2    R(2,7)                  1.21           -DE/DX =   -0.0001              !
 ! R3    R(3,7)                  1.21           -DE/DX =   -0.0001              !
 ! R4    R(4,8)                  1.0186         -DE/DX =   -0.0001              !
 ! R5    R(5,8)                  1.0186         -DE/DX =   -0.0001              !
 ! R6    R(6,8)                  1.0186         -DE/DX =   -0.0001              !
 ! R7    R(7,8)                  1.6681         -DE/DX =   -0.0001              !
 ! A1    A(1,7,2)              113.8797         -DE/DX =    0.0                 !
 ! A2    A(1,7,3)              113.8797         -DE/DX =    0.0                 !
 ! A3    A(1,7,8)              104.5977         -DE/DX =    0.0                 !
 ! A4    A(2,7,3)              113.8726         -DE/DX =    0.0                 !
 ! A5    A(2,7,8)              104.5908         -DE/DX =    0.0                 !
 ! A6    A(3,7,8)              104.5908         -DE/DX =    0.0                 !
 ! A7    A(4,8,5)              107.8729         -DE/DX =    0.0                 !
 ! A8    A(4,8,6)              107.8729         -DE/DX =    0.0                 !
 ! A9    A(4,8,7)              111.0204         -DE/DX =    0.0                 !
 ! A10   A(5,8,6)              107.8692         -DE/DX =    0.0                 !
 ! A11   A(5,8,7)              111.0303         -DE/DX =    0.0                 !
 ! A12   A(6,8,7)              111.0303         -DE/DX =    0.0                 !
 ! D1    D(1,7,8,4)            179.9998         -DE/DX =    0.0                 !
 ! D2    D(1,7,8,5)            -60.0008         -DE/DX =    0.0                 !
 ! D3    D(1,7,8,6)             60.0004         -DE/DX =    0.0                 !
 ! D4    D(2,7,8,4)            -59.9965         -DE/DX =    0.0                 !
 ! D5    D(2,7,8,5)             60.0029         -DE/DX =    0.0                 !
 ! D6    D(2,7,8,6)           -179.9958         -DE/DX =    0.0                 !
 ! D7    D(3,7,8,4)             59.9961         -DE/DX =    0.0                 !
 ! D8    D(3,7,8,5)            179.9955         -DE/DX =    0.0                 !
 ! D9    D(3,7,8,6)            -60.0032         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Convergence has been achieved

Frequency analysis of NH3BH3

Link: Media:BH3NH3 FREQ.LOG

Low frequencies ---   -0.0010   -0.0008    0.0008   18.5298   23.7970   41.0509
Low frequencies ---  266.2912  632.2325  639.8330

Gaussian Calculation Summary

NH3BH3 Frequency (6-31G(d,p))
File type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -83.22469032
RMS Gradient Norm 0.00005949
Dipole Moment 5.5648 Debye
Point Group C1
Calculation Time Taken 0 min 38.0 sec

Associative Energies Calculation

E(NH3)= -56.55776854 au
E(BH3)= -26.61532363 au
E(NH3BH3)= -83.22469032 au

ΔE
=E(NH3BH3)-[E(NH3)+E(BH3)]
=-83.22469032 + 56.55776854 + 26.61532363
=-0.05159815 au
=-135.47 kJmol-1

Week 2 Project: Aromaticity

Benzene

Optimisation of Benzene: Reference molecule

Link: DOI:10042/22851

Gaussian Calculation Summary

Benzene Optimisation (6-31G(d,p))
File type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -232.25821186
RMS Gradient Norm 0.00009338
Dipole Moment 0.0001 Debye
Point Group C1
Calculation Time Taken 2 min 1.1 sec

Logbook - "Item" table


         Item               Value     Threshold  Converged?
 Maximum Force            0.000204     0.000450     YES
 RMS     Force            0.000084     0.000300     YES
 Maximum Displacement     0.000870     0.001800     YES
 RMS     Displacement     0.000313     0.001200     YES
 Predicted change in Energy=-4.983462D-07
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.3963         -DE/DX =    0.0001              !
 ! R2    R(1,6)                  1.3961         -DE/DX =    0.0002              !
 ! R3    R(1,7)                  1.0861         -DE/DX =    0.0002              !
 ! R4    R(2,3)                  1.3961         -DE/DX =    0.0002              !
 ! R5    R(2,8)                  1.0861         -DE/DX =    0.0002              !
 ! R6    R(3,4)                  1.3963         -DE/DX =    0.0001              !
 ! R7    R(3,9)                  1.0861         -DE/DX =    0.0002              !
 ! R8    R(4,5)                  1.3961         -DE/DX =    0.0002              !
 ! R9    R(4,10)                 1.0861         -DE/DX =    0.0002              !
 ! R10   R(5,6)                  1.3963         -DE/DX =    0.0001              !
 ! R11   R(5,11)                 1.0861         -DE/DX =    0.0002              !
 ! R12   R(6,12)                 1.0861         -DE/DX =    0.0002              !
 ! A1    A(2,1,6)              119.9996         -DE/DX =    0.0                 !
 ! A2    A(2,1,7)              119.9968         -DE/DX =    0.0                 !
 ! A3    A(6,1,7)              120.0036         -DE/DX =    0.0                 !
 ! A4    A(1,2,3)              120.0036         -DE/DX =    0.0                 !
 ! A5    A(1,2,8)              119.9916         -DE/DX =    0.0                 !
 ! A6    A(3,2,8)              120.0048         -DE/DX =    0.0                 !
 ! A7    A(2,3,4)              119.9967         -DE/DX =    0.0                 !
 ! A8    A(2,3,9)              120.0101         -DE/DX =    0.0                 !
 ! A9    A(4,3,9)              119.9932         -DE/DX =    0.0                 !
 ! A10   A(3,4,5)              119.9996         -DE/DX =    0.0                 !
 ! A11   A(3,4,10)             119.9891         -DE/DX =    0.0                 !
 ! A12   A(5,4,10)             120.0113         -DE/DX =    0.0                 !
 ! A13   A(4,5,6)              120.004          -DE/DX =    0.0                 !
 ! A14   A(4,5,11)             120.0048         -DE/DX =    0.0                 !
 ! A15   A(6,5,11)             119.9912         -DE/DX =    0.0                 !
 ! A16   A(1,6,5)              119.9965         -DE/DX =    0.0                 !
 ! A17   A(1,6,12)             120.0072         -DE/DX =    0.0                 !
 ! A18   A(5,6,12)             119.9963         -DE/DX =    0.0                 !
 ! D1    D(6,1,2,3)             -0.0059         -DE/DX =    0.0                 !
 ! D2    D(6,1,2,8)            180.0021         -DE/DX =    0.0                 !
 ! D3    D(7,1,2,3)           -180.0099         -DE/DX =    0.0                 !
 ! D4    D(7,1,2,8)             -0.0019         -DE/DX =    0.0                 !
 ! D5    D(2,1,6,5)             -0.0055         -DE/DX =    0.0                 !
 ! D6    D(2,1,6,12)          -179.9972         -DE/DX =    0.0                 !
 ! D7    D(7,1,6,5)           -180.0016         -DE/DX =    0.0                 !
 ! D8    D(7,1,6,12)             0.0068         -DE/DX =    0.0                 !
 ! D9    D(1,2,3,4)              0.0119         -DE/DX =    0.0                 !
 ! D10   D(1,2,3,9)            180.0087         -DE/DX =    0.0                 !
 ! D11   D(8,2,3,4)            180.0039         -DE/DX =    0.0                 !
 ! D12   D(8,2,3,9)              0.0007         -DE/DX =    0.0                 !
 ! D13   D(2,3,4,5)             -0.0064         -DE/DX =    0.0                 !
 ! D14   D(2,3,4,10)          -180.0058         -DE/DX =    0.0                 !
 ! D15   D(9,3,4,5)            179.9968         -DE/DX =    0.0                 !
 ! D16   D(9,3,4,10)            -0.0026         -DE/DX =    0.0                 !
 ! D17   D(3,4,5,6)             -0.005          -DE/DX =    0.0                 !
 ! D18   D(3,4,5,11)           180.0061         -DE/DX =    0.0                 !
 ! D19   D(10,4,5,6)          -180.0057         -DE/DX =    0.0                 !
 ! D20   D(10,4,5,11)            0.0055         -DE/DX =    0.0                 !
 ! D21   D(4,5,6,1)              0.011          -DE/DX =    0.0                 !
 ! D22   D(4,5,6,12)           180.0027         -DE/DX =    0.0                 !
 ! D23   D(11,5,6,1)           179.9999         -DE/DX =    0.0                 !
 ! D24   D(11,5,6,12)           -0.0085         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Convergence has been observed.

Frequency Analysis of Benzene: Reference molecule

Link: DOI:10042/22854

Gaussian Calculation Summary

Benzene Optimisation (6-31G(d,p))
File type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -232.25821186
RMS Gradient Norm 0.00009342
Dipole Moment 0.0001 Debye
Point Group C1
Calculation Time Taken 5 min 31.7 sec


Low frequencies ---  -14.2203   -2.7103   -0.0006   -0.0004    0.0004   10.0048
Low frequencies ---  413.7277  414.5531  621.0442

Energy Analysis of Benzene: Reference molecule

Link: DOI:10042/22860

Benzene Energy Analysis(6-31G(d,p))
File type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -232.30851149
Dipole Moment 0.0001 Debye
Point Group C1
Calculation Time Taken 1 min 34.2 sec

Pyridinium

Optimisation of Pyridinium

Link: DOI:10042/22870

Gaussian Calculation Summary

Pyridinium Optimisation(6-31G(d,p))
File type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -248.66807395
Gradient (au) 0.00003913
Dipole Moment 10.7545 Debye
Point Group C1
Calculation Time Taken 4 min 0.6 sec

Logbook - "Item" table


         Item               Value     Threshold  Converged?
 Maximum Force            0.000064     0.000450     YES
 RMS     Force            0.000023     0.000300     YES
 Maximum Displacement     0.000702     0.001800     YES
 RMS     Displacement     0.000176     0.001200     YES
 Predicted change in Energy=-6.968238D-08
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.3839         -DE/DX =    0.0                 !
 ! R2    R(1,5)                  1.3988         -DE/DX =    0.0                 !
 ! R3    R(1,6)                  1.0835         -DE/DX =    0.0                 !
 ! R4    R(2,7)                  1.0832         -DE/DX =    0.0                 !
 ! R5    R(2,12)                 1.3523         -DE/DX =    0.0001              !
 ! R6    R(3,4)                  1.3838         -DE/DX =    0.0                 !
 ! R7    R(3,9)                  1.0832         -DE/DX =    0.0                 !
 ! R8    R(3,12)                 1.3524         -DE/DX =    0.0                 !
 ! R9    R(4,5)                  1.3988         -DE/DX =    0.0                 !
 ! R10   R(4,10)                 1.0835         -DE/DX =    0.0                 !
 ! R11   R(5,11)                 1.0852         -DE/DX =    0.0                 !
 ! R12   R(8,12)                 1.0169         -DE/DX =    0.0                 !
 ! A1    A(2,1,5)              119.082          -DE/DX =    0.0                 !
 ! A2    A(2,1,6)              119.4192         -DE/DX =    0.0001              !
 ! A3    A(5,1,6)              121.4987         -DE/DX =   -0.0001              !
 ! A4    A(1,2,7)              123.9294         -DE/DX =    0.0                 !
 ! A5    A(1,2,12)             119.2362         -DE/DX =    0.0                 !
 ! A6    A(7,2,12)             116.8344         -DE/DX =    0.0                 !
 ! A7    A(4,3,9)              123.9326         -DE/DX =    0.0                 !
 ! A8    A(4,3,12)             119.2355         -DE/DX =    0.0                 !
 ! A9    A(9,3,12)             116.832          -DE/DX =    0.0                 !
 ! A10   A(3,4,5)              119.0826         -DE/DX =    0.0                 !
 ! A11   A(3,4,10)             119.4215         -DE/DX =    0.0                 !
 ! A12   A(5,4,10)             121.4958         -DE/DX =   -0.0001              !
 ! A13   A(1,5,4)              120.0549         -DE/DX =    0.0                 !
 ! A14   A(1,5,11)             119.974          -DE/DX =    0.0                 !
 ! A15   A(4,5,11)             119.9711         -DE/DX =    0.0                 !
 ! A16   A(2,12,3)             123.3087         -DE/DX =    0.0                 !
 ! A17   A(2,12,8)             118.3464         -DE/DX =    0.0                 !
 ! A18   A(3,12,8)             118.3448         -DE/DX =    0.0                 !
 ! D1    D(5,1,2,7)           -180.0014         -DE/DX =    0.0                 !
 ! D2    D(5,1,2,12)             0.0031         -DE/DX =    0.0                 !
 ! D3    D(6,1,2,7)             -0.0012         -DE/DX =    0.0                 !
 ! D4    D(6,1,2,12)           180.0032         -DE/DX =    0.0                 !
 ! D5    D(2,1,5,4)             -0.0003         -DE/DX =    0.0                 !
 ! D6    D(2,1,5,11)          -180.0014         -DE/DX =    0.0                 !
 ! D7    D(6,1,5,4)           -180.0005         -DE/DX =    0.0                 !
 ! D8    D(6,1,5,11)            -0.0015         -DE/DX =    0.0                 !
 ! D9    D(1,2,12,3)            -0.0045         -DE/DX =    0.0                 !
 ! D10   D(1,2,12,8)          -180.0031         -DE/DX =    0.0                 !
 ! D11   D(7,2,12,3)          -180.0003         -DE/DX =    0.0                 !
 ! D12   D(7,2,12,8)             0.001          -DE/DX =    0.0                 !
 ! D13   D(9,3,4,5)            180.0008         -DE/DX =    0.0                 !
 ! D14   D(9,3,4,10)            -0.0003         -DE/DX =    0.0                 !
 ! D15   D(12,3,4,5)             0.0            -DE/DX =    0.0                 !
 ! D16   D(12,3,4,10)         -180.001          -DE/DX =    0.0                 !
 ! D17   D(4,3,12,2)             0.0029         -DE/DX =    0.0                 !
 ! D18   D(4,3,12,8)           180.0015         -DE/DX =    0.0                 !
 ! D19   D(9,3,12,2)           180.0022         -DE/DX =    0.0                 !
 ! D20   D(9,3,12,8)             0.0009         -DE/DX =    0.0                 !
 ! D21   D(3,4,5,1)             -0.0012         -DE/DX =    0.0                 !
 ! D22   D(3,4,5,11)          -180.0002         -DE/DX =    0.0                 !
 ! D23   D(10,4,5,1)           179.9999         -DE/DX =    0.0                 !
 ! D24   D(10,4,5,11)            0.0009         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Frequency Analysis of Pyridinium

Link: DOI:10042/22868

Gaussian Calculation Summary

Pyridinium Frequency(6-31G(d,p))
File type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -248.66807395
Gradient (au) 0.00003898
Dipole Moment 10.7545 Debye
Point Group C1
Calculation Time Taken 5 min 40.1 sec
Low frequencies ---   -7.2067   -0.0009   -0.0008   -0.0004   17.3442   18.5477
Low frequencies ---  392.4565  404.0619  620.4717

Energy analysis of Pyridinium

Link: DOI:10042/22871

Gaussian Calculation Summary

Pyridinium Frequency(6-31G(d,p))
File type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -248.66807395
Dipole Moment 10.7545 Debye
Point Group C1
Calculation Time Taken 1 min 12.3 sec

Boratabenzene

Boratabenzene Optimisation

Link: DOI:10042/22893

Gaussian Calculation Summary

Boratabenzene(6-31G(d,p))
File type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -219.02052559
Gradient (au) 0.00000465
Dipole Moment 4.7552 Debye
Point Group C1
Calculation Time Taken 5 min 54.0 sec

     Item               Value     Threshold  Converged?
 Maximum Force            0.000004     0.000450     YES
 RMS     Force            0.000001     0.000300     YES
 Maximum Displacement     0.000022     0.001800     YES
 RMS     Displacement     0.000006     0.001200     YES
 Predicted change in Energy=-2.198796D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.3989         -DE/DX =    0.0                 !
 ! R2    R(1,7)                  1.0968         -DE/DX =    0.0                 !
 ! R3    R(1,12)                 1.514          -DE/DX =    0.0                 !
 ! R4    R(2,3)                  1.4052         -DE/DX =    0.0                 !
 ! R5    R(2,8)                  1.0969         -DE/DX =    0.0                 !
 ! R6    R(3,4)                  1.4052         -DE/DX =    0.0                 !
 ! R7    R(3,9)                  1.0915         -DE/DX =    0.0                 !
 ! R8    R(4,5)                  1.3988         -DE/DX =    0.0                 !
 ! R9    R(4,10)                 1.0969         -DE/DX =    0.0                 !
 ! R10   R(5,11)                 1.0968         -DE/DX =    0.0                 !
 ! R11   R(5,12)                 1.514          -DE/DX =    0.0                 !
 ! R12   R(6,12)                 1.2185         -DE/DX =    0.0                 !
 ! A1    A(2,1,7)              116.0072         -DE/DX =    0.0                 !
 ! A2    A(2,1,12)             120.0601         -DE/DX =    0.0                 !
 ! A3    A(7,1,12)             123.9327         -DE/DX =    0.0                 !
 ! A4    A(1,2,3)              122.1773         -DE/DX =    0.0                 !
 ! A5    A(1,2,8)              120.3702         -DE/DX =    0.0                 !
 ! A6    A(3,2,8)              117.4524         -DE/DX =    0.0                 !
 ! A7    A(2,3,4)              120.4157         -DE/DX =    0.0                 !
 ! A8    A(2,3,9)              119.7954         -DE/DX =    0.0                 !
 ! A9    A(4,3,9)              119.7889         -DE/DX =    0.0                 !
 ! A10   A(3,4,5)              122.1793         -DE/DX =    0.0                 !
 ! A11   A(3,4,10)             117.4605         -DE/DX =    0.0                 !
 ! A12   A(5,4,10)             120.3603         -DE/DX =    0.0                 !
 ! A13   A(4,5,11)             116.0177         -DE/DX =    0.0                 !
 ! A14   A(4,5,12)             120.0604         -DE/DX =    0.0                 !
 ! A15   A(11,5,12)            123.9218         -DE/DX =    0.0                 !
 ! A16   A(1,12,5)             115.1071         -DE/DX =    0.0                 !
 ! A17   A(1,12,6)             122.4433         -DE/DX =    0.0                 !
 ! A18   A(5,12,6)             122.4496         -DE/DX =    0.0                 !
 ! D1    D(7,1,2,3)           -179.9997         -DE/DX =    0.0                 !
 ! D2    D(7,1,2,8)              0.0001         -DE/DX =    0.0                 !
 ! D3    D(12,1,2,3)             0.0001         -DE/DX =    0.0                 !
 ! D4    D(12,1,2,8)          -180.0001         -DE/DX =    0.0                 !
 ! D5    D(2,1,12,5)             0.0            -DE/DX =    0.0                 !
 ! D6    D(2,1,12,6)           179.9998         -DE/DX =    0.0                 !
 ! D7    D(7,1,12,5)           179.9997         -DE/DX =    0.0                 !
 ! D8    D(7,1,12,6)            -0.0005         -DE/DX =    0.0                 !
 ! D9    D(1,2,3,4)             -0.0002         -DE/DX =    0.0                 !
 ! D10   D(1,2,3,9)           -180.0            -DE/DX =    0.0                 !
 ! D11   D(8,2,3,4)            180.0            -DE/DX =    0.0                 !
 ! D12   D(8,2,3,9)              0.0002         -DE/DX =    0.0                 !
 ! D13   D(2,3,4,5)              0.0002         -DE/DX =    0.0                 !
 ! D14   D(2,3,4,10)          -179.9997         -DE/DX =    0.0                 !
 ! D15   D(9,3,4,5)            180.0            -DE/DX =    0.0                 !
 ! D16   D(9,3,4,10)             0.0            -DE/DX =    0.0                 !
 ! D17   D(3,4,5,11)          -180.0002         -DE/DX =    0.0                 !
 ! D18   D(3,4,5,12)            -0.0001         -DE/DX =    0.0                 !
 ! D19   D(10,4,5,11)           -0.0003         -DE/DX =    0.0                 !
 ! D20   D(10,4,5,12)          179.9998         -DE/DX =    0.0                 !
 ! D21   D(4,5,12,1)             0.0            -DE/DX =    0.0                 !
 ! D22   D(4,5,12,6)          -179.9998         -DE/DX =    0.0                 !
 ! D23   D(11,5,12,1)          180.0001         -DE/DX =    0.0                 !
 ! D24   D(11,5,12,6)            0.0003         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
     

Boratabenzene Frequency Analysis

Link: DOI:10042/22894

Gaussian Calculation Summary

Boratabenzene Freq
Boratabenzene(6-31G(d,p))
File type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -219.02052559
Gradient (au) 0.00000471
Dipole Moment 4.7552 Debye
Point Group C1
Calculation Time Taken 5 min 54.0 sec

 Low frequencies ---  -14.2027   -0.0003   -0.0002    0.0003    9.1600   14.3420
 Low frequencies ---  371.0584  404.5446  565.0798

Boratabenzene Energy Analysis

Link: DOI:10042/22898

Gaussian Calculation Summary

Boratabenzene energy(6-31G(d,p))
File type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -219.02052559
Dipole Moment 4.7552 Debye
Point Group C1
Calculation Time Taken 1 min 10.3 sec

Borazine

Borazine Optimisation

Link: DOI:10042/22899

Gaussian Calculation Summary

Borazine Optimsation (6-31G(d,p))
File type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -242.68459819
Gradient (au) 0.00006417
Dipole Moment 0.0003Debye
Point Group C1
Calculation Time Taken 3 min 36.2 sec

Logbook - "Item" table


         Item               Value     Threshold  Converged?
 Maximum Force            0.000086     0.000450     YES
 RMS     Force            0.000033     0.000300     YES
 Maximum Displacement     0.000252     0.001800     YES
 RMS     Displacement     0.000077     0.001200     YES
 Predicted change in Energy=-9.332344D-08
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,8)                  1.1949         -DE/DX =    0.0001              !
 ! R2    R(2,11)                 1.0097         -DE/DX =    0.0                 !
 ! R3    R(3,9)                  1.1949         -DE/DX =    0.0001              !
 ! R4    R(4,12)                 1.0097         -DE/DX =    0.0                 !
 ! R5    R(5,7)                  1.1949         -DE/DX =    0.0001              !
 ! R6    R(6,10)                 1.0097         -DE/DX =    0.0                 !
 ! R7    R(7,10)                 1.4307         -DE/DX =   -0.0001              !
 ! R8    R(7,12)                 1.4307         -DE/DX =   -0.0001              !
 ! R9    R(8,10)                 1.4306         -DE/DX =   -0.0001              !
 ! R10   R(8,11)                 1.4307         -DE/DX =   -0.0001              !
 ! R11   R(9,11)                 1.4307         -DE/DX =   -0.0001              !
 ! R12   R(9,12)                 1.4307         -DE/DX =   -0.0001              !
 ! A1    A(5,7,10)             121.437          -DE/DX =    0.0                 !
 ! A2    A(5,7,12)             121.4399         -DE/DX =    0.0                 !
 ! A3    A(10,7,12)            117.123          -DE/DX =    0.0                 !
 ! A4    A(1,8,10)             121.4407         -DE/DX =    0.0                 !
 ! A5    A(1,8,11)             121.4364         -DE/DX =    0.0                 !
 ! A6    A(10,8,11)            117.1229         -DE/DX =    0.0                 !
 ! A7    A(3,9,11)             121.4415         -DE/DX =    0.0                 !
 ! A8    A(3,9,12)             121.4374         -DE/DX =    0.0                 !
 ! A9    A(11,9,12)            117.1211         -DE/DX =    0.0                 !
 ! A10   A(6,10,7)             118.5602         -DE/DX =    0.0                 !
 ! A11   A(6,10,8)             118.5628         -DE/DX =    0.0                 !
 ! A12   A(7,10,8)             122.877          -DE/DX =    0.0                 !
 ! A13   A(2,11,8)             118.5609         -DE/DX =    0.0                 !
 ! A14   A(2,11,9)             118.561          -DE/DX =    0.0                 !
 ! A15   A(8,11,9)             122.8781         -DE/DX =    0.0                 !
 ! A16   A(4,12,7)             118.5641         -DE/DX =    0.0                 !
 ! A17   A(4,12,9)             118.5579         -DE/DX =    0.0                 !
 ! A18   A(7,12,9)             122.878          -DE/DX =    0.0                 !
 ! D1    D(5,7,10,6)             0.0003         -DE/DX =    0.0                 !
 ! D2    D(5,7,10,8)           179.997          -DE/DX =    0.0                 !
 ! D3    D(12,7,10,6)         -179.9999         -DE/DX =    0.0                 !
 ! D4    D(12,7,10,8)           -0.0032         -DE/DX =    0.0                 !
 ! D5    D(5,7,12,4)             0.0036         -DE/DX =    0.0                 !
 ! D6    D(5,7,12,9)          -179.9997         -DE/DX =    0.0                 !
 ! D7    D(10,7,12,4)         -179.9962         -DE/DX =    0.0                 !
 ! D8    D(10,7,12,9)            0.0005         -DE/DX =    0.0                 !
 ! D9    D(1,8,10,6)            -0.0025         -DE/DX =    0.0                 !
 ! D10   D(1,8,10,7)          -179.9992         -DE/DX =    0.0                 !
 ! D11   D(11,8,10,6)          179.9975         -DE/DX =    0.0                 !
 ! D12   D(11,8,10,7)            0.0008         -DE/DX =    0.0                 !
 ! D13   D(1,8,11,2)            -0.0057         -DE/DX =    0.0                 !
 ! D14   D(1,8,11,9)          -179.9955         -DE/DX =    0.0                 !
 ! D15   D(10,8,11,2)          179.9944         -DE/DX =    0.0                 !
 ! D16   D(10,8,11,9)            0.0045         -DE/DX =    0.0                 !
 ! D17   D(3,9,11,2)             0.0035         -DE/DX =    0.0                 !
 ! D18   D(3,9,11,8)           179.9933         -DE/DX =    0.0                 !
 ! D19   D(12,9,11,2)         -179.9968         -DE/DX =    0.0                 !
 ! D20   D(12,9,11,8)           -0.007          -DE/DX =    0.0                 !
 ! D21   D(3,9,12,4)             0.0007         -DE/DX =    0.0                 !
 ! D22   D(3,9,12,7)          -179.996          -DE/DX =    0.0                 !
 ! D23   D(11,9,12,4)         -179.9989         -DE/DX =    0.0                 !
 ! D24   D(11,9,12,7)            0.0044         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

 

Borazine Frequency Analysis

Link: DOI:10042/22900

Gaussian Calculation Summary

Borazine Frequency (6-31G(d,p))
File type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -242.68459819
Gradient (au) 0.00006420
Dipole Moment 0.0003 Debye
Point Group C1
Calculation Time Taken 5 min 32.6 sec
Low frequencies ---   -7.1011    0.0003    0.0009    0.0010    7.3491   13.0340
Low frequencies ---  288.5920  290.5613  404.2303

Borazine Energy Analysis

Link: DOI:10042/22901

Gaussian Calculation Summary

Borazine Energy (6-31G(d,p))
File type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Final energy in atomic units (au) -242.68459819
Dipole Moment 0.0003 Debye
Point Group C1
Calculation Time Taken 1 min 18.9 sec

Analysis

Charge Distribution

Benzene Boratabenzene Borazine Pyridinium

The charge distribution of benzene is observed to be very even distribution. All the 6 carbon atoms in the ring possess the same charge number of -0.239. However, in boratabenzene and pyridinium, due to the hetero atom in the ring, the charges are not evenly distributed though aromaticity is preserved.

In the case of boratabenzene, the boron atom carries a positive charge (+0.202), while the neighbouring carbon atoms are more negatively charged compared to benzene. Carbon is more electronegative than boron, thus electron densities on boron is lower than on the carbon atoms. This difference in charge distribution would consequently affect the reactivity of the molecule. The proximity of the carbon atoms and boron also plays a part in the charge distribution as carbon atoms which are closer to boron has a more negative charge (-0.588) compared to carbons which are further away from boron (-0.250, -0.340).

On the other hand, in pyridinium, the negative charge is concentrated on the nitrogen (-0.476), as it is more electronegative. The carbons in the ring are all less negatively charged than benzene and the closer the carbons to nitrogen in proximity, the more positive it gets. For instance, the carbons adjacent to nitrogen has a charge of +0.071 compared to atoms further away from nitrogen (-0.241, -0.122).

Interestingly, the charge distribution on the meta positions of boratabenzene and pyridinium are least affected by the change in heteroatom. In benzene, the charge at all carbon positions are -0.239, while they are -0.250 and -0.241 in boratabenzene and pyridinium respectively. This is most probably due to the resonance effect of the heteroatom activating mostly only the ortho and para positions of the ring. Thus, reactivity in these heterocyclic rings are typically higher in the ortho and para positions, as compared to the meta positions.

In borazine, due to the alternating nitrogen and boron atoms, they have a very distinct charge distribution where all boron atoms carry a highly positive charge of +0.747, while nitrogens all carry the same negative charge of -1.102. Therefore, even though borazine is an aromatic compound, its alternating charge distribution pattern makes it more vulnerable to attack from nucleophiles (at B atoms) and electrophiles (at N atoms). In comparison, borazine is consequently much more reactive than benzene.

Molecular Orbitals of Benzene (sigma & pi orbitals only)

The red LCAO MO states the usual pi-orbitals that are always shown in textbooks. In aromatic systems, the electrons are delocalised and this can be observed from the real MO diagrams. MOs which are more stable are highly symmetrical and have less nodal plans so electrons could be easily spread out in the structure. This effect cannot be fully represented by LCAO representations as they show electrons in their localised states.

Comparing Molecular Orbitals


MO Benzene Boratabenzene Borazine Pyridinium
7 (fully-sigma)





17 (pi)





21 (HOMO)






MO 7 is a σ fully bonding orbital. Benzene shows a regular and symmetrical hexagonal shape, showing that the electron is distributed evenly among all C atoms. In pyridinium and boratabenzene, the shape was distorted slightly. In pyridinium, the MO shifted towards N atom and the MO shifted away from B atom. MO 7 for borazine follows the same trend with pyridinium and boratabenzene. Electrons are more likely to be found closer to N than to B given the higher electronegativity of N. Therefore, it formed a triangle shape, with the boron atom exposed, showing low electron density near boron. The MO comparisons very much agree with the analysis and comparison of charge distributions in the previous section.

MO 17 is a pi fully bonding orbital. The stability of aromatic compound is conferred by the delocalised pi orbitals electron cloud present. As with all pi orbitals, the top and bottom of the planar strucutre are of opposite phases. Similar to MO 7, when substituted, electron density shifts towards the more electronegative N atom and moves away from boron tyipcally. Pyridinium MO 17 is distorted slightly towards N while boratabenzene MO 17 is distorted slightly away from B. Borazine MO 17 also has a hexagonal shape but with 3 boron ends sticking out, showing high electron density present on the electronegative N atoms in the ring.

MO 21 is the HOMO of the molecule. it has 1 nodal planes dissecting the ring across two atoms across one another. This splits the orbitals into 2 sections of pi electrons in the opposite phase. In benzene, the 2 pi orbitals are the symmetrical and of the same size. In pyridinium, there is a slight distortion in the pi orbital shape as the neighbouring carbons to nitrogen have less electron density.. This distortion effect is not as pronounced as that in MO7/17 as the nitrogen atom (on the nodal plane) is not directly involved in formation of the MO. In boratabenzene, similarly, B atom is found on one of the nodal plane but exerts an influence on distorting electron density of neighbouring carbon atoms towards the Boron end. In Borazine MO 21, this secondary distortion effect is more pronounced as an obvious increase in electron density is observed from the nitrogen end to the boron end of the nodal plane.

Effect of Substitution

When carbon atoms are substituted by hetero atoms, the degenerate states observed in the LCAO MOs become non-degenerate and will increase or decrease depending on nature of hetero atom and which MO is influenced more by the hetero atom. A more symmetric molecule typically has more degenerate states compared to a less symmetric one and addition of hetero atom lowers the symmetry of the molecule.

The substitution also may result in the raising or lowering of energy levels of molecular orbitals that are formed from LCAOs. The atomic orbital of more electronegative atoms are usually lower than that of less electronegative atoms especially when comparing isoelectronic compounds.For instance, when carbon is substituted by nitrogen in pyridinium, due to increased electronegativity, the bonding orbitals will likely observe a decrease in energy levels due to a lower energy nitrogen AO. Correspondingly, the energy gaps between the MOs will become closer or further from one another due to the same reason.