Jump to content

Rep:Mod:Chem1235058

From ChemWiki

NH3 Molecule

Information Output

Molecular formula: NH3

Calculation method: RB3LYP

Basis set: 6-31G(d.p)

E(R3BLYP): -56.55640542 a.u

RMS gradient: 0.00980112 a.u

Point group: C3v

N-H Bond distance: 1.03844 Angstroms

H-N-H Bond angle: 101.721 degrees

Geometry Information


       Item               Value     Threshold  Converged?<br>
 Maximum Force            0.000004     0.000450     YES<br>
 RMS     Force            0.000004     0.000300     YES<br>
 Maximum Displacement     0.000072     0.001800     YES<br>
 RMS     Displacement     0.000035     0.001200     YES<br>
 Predicted change in Energy=-5.986281D-10<br>
 Optimization completed.<br>
    -- Stationary point found.<br>
                           ----------------------------<br>
                           !   Optimized Parameters   !<br>
                           ! (Angstroms and Degrees)  !<br>
 --------------------------                            --------------------------<br>
 ! Name  Definition              Value          Derivative Info.                !<br>
 --------------------------------------------------------------------------------<br>
 ! R1    R(1,2)                  1.018          -DE/DX =    0.0                 !<br>
 ! R2    R(1,3)                  1.018          -DE/DX =    0.0                 !<br>
 ! R3    R(1,4)                  1.018          -DE/DX =    0.0                 !<br>
 ! A1    A(2,1,3)              105.7412         -DE/DX =    0.0                 !<br>
 ! A2    A(2,1,4)              105.7412         -DE/DX =    0.0                 !<br>
 ! A3    A(3,1,4)              105.7412         -DE/DX =    0.0                 !<br>
 ! D1    D(2,1,4,3)           -111.8571         -DE/DX =    0.0                 !<br>
 --------------------------------------------------------------------------------<br>


Optimized Ammonia

Calculation method: RB3LYP

Basis Set: 6-31G(d.p)

Final Energy E(RB3LYP): -56.55776873 a.u

Point Group: C3V

Jmol

[NB1516_NH3_OPT.LOG ]

test molecule

[Optimized Ammonia Link]

Geometry Information of Optimized Ammonia:

  Item               Value     Threshold  Converged?
 Maximum Force            0.000004     0.000450     YES
 RMS     Force            0.000004     0.000300     YES
 Maximum Displacement     0.000072     0.001800     YES
 RMS     Displacement     0.000035     0.001200     YES
 Predicted change in Energy=-5.986281D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.018          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.018          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.018          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              105.7412         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              105.7412         -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              105.7412         -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -111.8571         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Vibrational Analysis

Link here

Number of vibrational modes: (12-6)= 6

Degeneracy: modes 2 & 3 and 5 & 6 have the same energy

Types of vibrations -those that are stretch: 1,4,5,6 -those that are bend: 2 & 3

The highly symmetric mode is 4 as it does not change the symmetry of the molecule.

The umbrella mode is mode 1.

In the experimental spectrum of ammonia there are 6 different modes but 2 cases of degeneracy- so I would expect to see 4.

Charge Distribution

Nitrogen Molecule

Formula: N2

After Optimization :

N-N bond distance: 1.10550 Angstroms

N2 is linear and hence N-N triple bond angle is 180 degrees.

Calculation method: RB3LYP

Basis set: 6-31G(d.p)

E(R3BLYP): -109.52412868 a.u

RMS gradient: 6.0 x 10-7 a.u

Point group: D*H

Diatomic nitrogen is a symmetric covalent molecule (with no formal charge) and hence has symmetric electron distribution over the molecule.


Geometry Information

  Item               Value     Threshold  Converged?
 Maximum Force            0.000200     0.000450     YES
 RMS     Force            0.000200     0.000300     YES
 Maximum Displacement     0.000062     0.001800     YES
 RMS     Displacement     0.000088     0.001200     YES
 Predicted change in Energy=-1.246449D-08
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1056         -DE/DX =   -0.0002              !
 --------------------------------------------------------------------------------

Vibrational Analysis

Link: here

Jmol

test molecule

Link: here

Hydrogen Molecule

Formula: H2

After Optimization :

H-H bond distance:0.74279 Angstroms

H2 is linear and hence H-H bond angle is 180 degrees.

Calculation method: RB3LYP

Basis set: 6-31G(d.p)

E(R3BLYP): -1.17853936 a.u

RMS gradient: 4.0 x 10-8 a.u

Point group: D*H

Diatomic hydrogen is a symmetric covalent compound (with no formal charge) and therefore symmetric electron distribution over the molecule.

Geometry Information

 Item               Value     Threshold  Converged?
 Maximum Force            0.000000     0.000450     YES
 RMS     Force            0.000000     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000000     0.001200     YES
 Predicted change in Energy=-6.835427D-15
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  0.7428         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Vibrational Analysis

Link: here

Jmol

test molecule

Link: here

Haber-Bosch Process

The Haber-Bosch process is used to make ammonia from gaseous hydrogen and nitrogen. It is a thermodynamically unfavourable process and hence very high pressure is needed to drive the equilibrium towards the product: ammonia. A low temperature favours formation of ammonia, however the activation energy is very high so heat energy is needed to overcome this energy barrier. To overcpome the activation energy but not drive the equilibrium too far towards the reactants, and iron oxide catalyst is used to lower the energy barrier.

The equation for the reaction is: N2 = 3H2 --> 2NH3

Enthalpy Changes

E(NH3)= -148492.50 kJmol-1

   2*E(NH3)= -296985.01 kJmol-1
   E(N2)= -287555.26 kJmol-1
   E(H2)= -3094.26 kJmol-1
   3*E(H2)= -9282.77 kJmol-1
   ΔE=2*E(NH3)-[E(N2)+3*E(H2)]= -296985.01 - (-287555.26 - 9282.77) = -146.98 kJmol-1

The reactants are more stable than the product, since the N-N triple bond is very strong, hence why diatomic nitrogen is at such an exothermic energy value. Also 4 moles of gas go to 2 moles of ammonia as illustrated in the reaction equation, which is unfavorable by the second law of thermodynamics.

Chlorine Molecule

Information Output

Molecular formula: Cl2

Calculation method: RB3LYP

Basis set: 6-31G(d.p)

E(R3BLYP): -920.34987886 a.u

RMS gradient: 0.00002511 a.u

Point group: D*H

Cl-Cl Bond distance: 2.04174 Angstroms

Cl-Cl Bond angle: 180 degrees (linear molecule)

Diatomic chlorine is a symmetric covalent molecule with no formal charge, it has symmetrical electron distribution over the molecule.


Geometry Information

 Item               Value     Threshold  Converged?
 Maximum Force            0.000043     0.000450     YES
 RMS     Force            0.000043     0.000300     YES
 Maximum Displacement     0.000121     0.001800     YES
 RMS     Displacement     0.000172     0.001200     YES
 Predicted change in Energy=-5.277248D-09
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  2.0417         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Vibrational Analysis

Link here