Jump to content

Rep:Mod:CLR110

From ChemWiki

NH3 Molecule

General Information

Name: Ammonia (NH3 )

Calculation Method:RB3LYP

Basis Set: 6-31G(d,p)

Final Energy [E(RB3LYP)] = -56.55776873 a.u.

RMS Gradient = 0.00000485 a.u.

Symmetry=C3v

Geometric Information

For Optimised Structure

Bond Distance (N-H): 1.01798Å

Bond Angle (H-N-H): 105.741°


         Item               Value     Threshold  Converged?
 Maximum Force            0.000004     0.000450     YES
 RMS     Force            0.000004     0.000300     YES
 Maximum Displacement     0.000072     0.001800     YES
 RMS     Displacement     0.000035     0.001200     YES
 Predicted change in Energy=-5.986258D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.018          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.018          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.018          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              105.7412         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              105.7412         -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              105.7412         -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -111.8571         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad


NH3 Molecule


The optimisation file is liked to here

Vibrational Analysis

From the 3N-6 Rule, we should expect NH3 to have 6 vibrational modes. From the table above, it is clear that Mode 2 and 3 are degenerate, and Mode 5 and 6 are degenerate; this suggests that we can expect to see 4 bands in the experimental spectrum of gaseous ammonia. Modes 1, 2 and 3 are "bending" vibrations and Modes 4, 5 and 6 are "bond stretch" vibrations, with Mode 4 being highly symmetric. Mode 1 is known as the "umbrella mode".

Charge Analysis

Since nitrogen is an electronegative atom, we can expect its charge to be negative. We can also expect the charge on a hydrogen atom to be positive.

Charge on N-atom = -1.125C

Charge on H-atom = 0.375C


N2 Molecule

General Information

Name: Nitrogen (N2)

Calculation Method:RB3LYP

Basis Set: 6-31G(d,p)

Final Energy [E(RB3LYP)] = -109.52412868 a.u.

RMS Gradient = 0.00000365 a.u.

Symmetry=D∞h

Geometric Information

For Optimised Structure

Bond Distance (N-N): 1.10550Å

Bond Angle (N-N): 180°


         Item               Value     Threshold  Converged?
 Maximum Force            0.000006     0.000450     YES
 RMS     Force            0.000006     0.000300     YES
 Maximum Displacement     0.000002     0.001800     YES
 RMS     Displacement     0.000003     0.001200     YES
 Predicted change in Energy=-1.248809D-11
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1055         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
    


N2 Molecule


The optimisation file is liked to here

Vibrational Analysis


The table shows that a nitrogen molecule has one vibrational mode. This mode is a "bond stretch" vibration which is highly symmetric.


H2 Molecule

General Information

Name: Hydrogen (H2)

Calculation Method:RB3LYP

Basis Set: 6-31G(d,p)

Final Energy [E(RB3LYP)] = -1.17853930 a.u.

RMS Gradient = 0.00012170 a.u.

Symmetry=D∞h

Geometric Information

For Optimised Structure

Bond Distance (H-H): 0.74309Å

Bond Angle (H-H): 180°

         Item               Value     Threshold  Converged?
 Maximum Force            0.000211     0.000450     YES
 RMS     Force            0.000211     0.000300     YES
 Maximum Displacement     0.000278     0.001800     YES
 RMS     Displacement     0.000393     0.001200     YES
 Predicted change in Energy=-5.852867D-08
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  0.7431         -DE/DX =   -0.0002              !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad




H2 Molecule


The optimisation file is liked to here

Vibrational Analysis

The table shows that a hydrogen molecule has one vibrational mode. This mode is a "bond stretch" vibration which is highly symmetric. It is of a very high vibrational frequency because H atoms have a very low atomic mass.

Reaction of N2 with H2

E(NH3)= -56.55776873 a.u.

2*E(NH3)= -113.11537460 a.u.

E(N2)= -109.52412868 a.u.

E(H2)= -1.17853930 a.u.

3*E(H2)= -3.53561790 a.u.

ΔE=2*E(NH3)-[E(N2)+3*E(H2)]= -0.0556281 a.u. = -146.0515765kJ/mol = -146.05kJ/mol (2dp)

The energy of the reactants is higher than the energy of the products, showing that the ammonia product is more stable than the gaseous reactants.


Project Molecule - HCl Molecule

General Information

Name: HCl

Calculation Method:RB3LYP

Basis Set: 6-31G(d,p)

Final Energy [E(RB3LYP)] = -460.80077876 a.u.

RMS Gradient = 0.00000004 a.u.

Symmetry=C∞v

Geometric Information

For Optimised Structure

Bond Distance (H-Cl): 1.28613Å

Bond Angle (H-Cl): 180°


         Item               Value     Threshold  Converged?
 Maximum Force            0.000000     0.000450     YES
 RMS     Force            0.000000     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000000     0.001200     YES
 Predicted change in Energy=-9.317109D-15
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.2861         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad



HCl Molecule


The optimisation file is liked to here

Vibrational Analysis


The table shows that HCl has one vibrational mode which is a "bond stretch". This is highly symmetric.


Charge Analysis

Chlorine is an electronegative atom so we can expect its charge to be negative. We can also expect the charge on the hydrogen atom to be positive.

Charge on Cl-atom = -0.284C

Charge on H-atom = 0.284C


Molecular Orbitals

The figure above shows the non-bonding molecular orbital of HCl. This molecular orbital has complete s character since it has contribution solely from the 3s atomic orbital of the Cl atom. It is a low energy molecular orbital.

The figure on the left shows the σ3pz bonding molecular orbital of HCl. It has 50:50 s to p character since it is made from the linear combination of the 1s atomic orbital from H and the 3pz atomic orbital from Cl - each of these atomic orbitals contributes one electron. This is also the HOMO (highest energy occupied molecular orbital).

The figures on the right and the centre show non-bonding molecular orbitals of HCl. They have 100% p character since their electrons come from the 3px and 3py atomic orbitals of Cl. They are both degenerate and are higher energy than the σ3pz orbital (because they are non bonding and are therefore less stable).


The figure above shows the antibonding molecular orbital of HCl (which is part of the bonding/antibonding pair with the σ3pz molecular orbital). It is generated from the linear combination (out of phase) of the 1s atomic orbital from H and the 3pz atomic orbital from Cl. This orbital is the LUMO (lowest energy unoccupied molecular orbital).