Jump to content

Rep:Mod:CAS1997

From ChemWiki

NH3 Molecule

N-H bond distance = 1.01798angstroms

H-N-H bond angle = 105.741


         Item               Value     Threshold  Converged?
 Maximum Force            0.000004     0.000450     YES
 RMS     Force            0.000004     0.000300     YES
 Maximum Displacement     0.000072     0.001800     YES
 RMS     Displacement     0.000035     0.001200     YES
 Predicted change in Energy=-5.986267D-10
 Optimization completed.

NH3

File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -56.55776873 a.u.
RMS Gradient Norm 0.00000485 a.u.
Imaginary Freq 0
Dipole Moment 1.8466 Debye
Point Group C3V
   -- Stationary point found.
                          ----------------------------
                          !   Optimized Parameters   !
                          ! (Angstroms and Degrees)  !
--------------------------                            --------------------------
! Name  Definition              Value          Derivative Info.                !
--------------------------------------------------------------------------------
! R1    R(1,2)                  1.018          -DE/DX =    0.0                 !
! R2    R(1,3)                  1.018          -DE/DX =    0.0                 !
! R3    R(1,4)                  1.018          -DE/DX =    0.0                 !
! A1    A(2,1,3)              105.7412         -DE/DX =    0.0                 !
! A2    A(2,1,4)              105.7412         -DE/DX =    0.0                 !
! A3    A(3,1,4)              105.7412         -DE/DX =    0.0                 !
! D1    D(2,1,4,3)           -111.8571         -DE/DX =    0.0                 !


test molecule

The optimisation file is liked to here

Questions:

Modes for 3N-6: 2

Degenerate: 2&3, 5&6

Bending vibrations:1,2,3

Bond stretch vibrations:4,5,6,

Highly symmetric:4

Umbrella:6

How many bands expected to be seen: 4 due to 2 pairs of degenerate energies

N charge of -1.25, H charge of 0.375, due to electronegativity of N being greater than

H. this causes N to draw more electrons to its self and away from the H atoms making it more polar negative and causing polar positive formation of H atoms.

H2

summary H2 optimisation
File Name H2 optimisation
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -1.17853936 a.u.
RMS Gradient Norm 0.00000017 a.u.
Imaginary Freq 0
Dipole Moment 0.0000 Debye
Point Group D*H

Convergence of structure

  Item               Value     Threshold  Converged?
Maximum Force            0.000000     0.000450     YES
RMS     Force            0.000000     0.000300     YES
Maximum Displacement     0.000000     0.001800     YES
RMS     Displacement     0.000001     0.001200     YES
Predicted change in Energy=-1.164080D-13
Optimization completed.
   -- Stationary point found.
                          ----------------------------
                          !   Optimized Parameters   !
                          ! (Angstroms and Degrees)  !

N2

N2 optimisation

File Name N2 optimisation
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP)
RMS Gradient Norm 0.00000060 a.u.
Imaginary Freq 0
Dipole Moment 0.0000 Debye
Point Group D*H
Item               Value     Threshold  Converged?
Maximum Force            0.000001     0.000450     YES
RMS     Force            0.000001     0.000300     YES
Maximum Displacement     0.000000     0.001800     YES
RMS     Displacement     0.000000     0.001200     YES
Predicted change in Energy=-3.401114D-13
Optimization completed.
   -- Stationary point found.
                          ----------------------------
                          !   Optimized Parameters   !
                          ! (Angstroms and Degrees)  !


Haber process reaction energy

In atomic units:

   E(NH3)= -56.55776873
   2*E(NH3)= -113.1155375
   E(N2)=-109.52412868
   E(H2)=-1.17853936
   3*E(H2)= -3.53561808
   ΔE=2*E(NH)-[E(N2)+3*E(H2)]= -0.05579074

In kj/mol ΔE=2*E(NH)-[E(N2)+3*E(H2)]= -146.4785879


The product is more stable due to reaction being energetically negative so favouring RHS products formation

Project molecule, Cl2

test molecule


Cl2 molecule summary
File Name Cl2
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -920.34987886 a.u.
RMS Gradient Norm 0.00002511 a.u.
Imaginary Freq 0
Dipole Moment 0.0000 Debye
Point Group D*H

Charges on Cl2 molecule displayed below

Convergence of molecule

Item               Value     Threshold  Converged?
Maximum Force            0.000043     0.000450     YES
RMS     Force            0.000043     0.000300     YES
Maximum Displacement     0.000121     0.001800     YES
RMS     Displacement     0.000172     0.001200     YES
Predicted change in Energy=-5.277261D-09
Optimization completed.


Five MOs for the Cl2 molecule are shown below

All MOs shown below are occupied by electrons.

Charge is distributed evenly due to Cl2 being no polar. Any uneven charge distribution would be created by an instantaneous dipole.

MOs for Cl2
MO diagram information energy of MO
MO diagram shows bonding MO between the 2 chlorine atoms. MO forms from the overlap of in-phase 3s orbitals. -0.93313
this MO shows the anti-bonding for the MO formed by the overlap of in-phase 3s orbitals -0.77746
MO shown for anti-bonding combination of 2p orbitals in an x orientation -7.20743
MO shown for anti-bonding combination of 2p orbitals in an y orientation -7.20743
anti-Bonding combination of 2s orbitals -9.51829

HOMO

The MO shows the highest bonding molecular orbital for the Cl2 molecule. It is an occupied anti-bonding MO created from 3p orbitals of x orientation.


LUMO

The MO shows the lowest unoccupied molecular orbital for the Cl2 molecule. It is an anti-bonding MO formed from 3p orbitals of z orientation. It is unoccupied with electrons.

Comparison Molecule; HCl

Above the charge distribution of a HCl molecule is shown. There is a charge difference between the 2 atoms due to Cl being a more electronegative than H, so therefore Cl draws electrons towards itself. This creates a polar molecule with Cl experiencing a slight negative charge and H experiencing a Slight positive charge. This differs from the Cl2 molecule that is non-polar due to charge being equally distributed.