Jump to content

Rep:Mod:AN910105

From ChemWiki

Introduction

Why do computational chemistry

For discovering the structure and bonding of molecules, it is relatively straight forward in organic system. However, it is not the case for inorganic system. In order to overcome this problem, the computational chemistry was introduced around 1930. By using the correlated chemistry theory as well as suitable computer programs, it gives us a significant amount of information about complexes' structure.The position of the transition states(TS) or active species can be determined, which can be difficult to observe experimentally.The energy of stable states are used to analysis thermodynamic data while the kinetic data can be obtained from the energy of TS.

What programme is used

GaussView 5.0.9 is used here.


Optimisation

BH3 Optimisation

BH3 Optimisation(Calculation Method: RB3LYP,Basis Set:3-21G)

Before optimistation:

A Gaussview image of a BH3 molecule before optimisation.

The bond length of B-H bond is manually altered to 1.50Å

After optimisation:

The log file of optimisation:click here

A Gaussview image of a BH3 molecule after optimisation
Table (1)
BH3 Optimisation(Basis Set:3-21G)
File Name BH3
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 3-21G
Charge 0
Spin Singlet
E(RB3LYP) -26.46226338 a.u.
RMS Gradient Norm 0.00020672 a.u.
Imaginary Freq
Dipole Moment 0.0000 Debye
Point Group D3H
Job cpu time: 0 days 0 hours 0 minutes 27.0 seconds.

The "real" output:the final set of forces and displacements,which gives an indication of the calculation convergence

Item               Value     Threshold  Converged?
 Maximum Force            0.000413     0.000450     YES
 RMS     Force            0.000271     0.000300     YES
 Maximum Displacement     0.001610     0.001800     YES
 RMS     Displacement     0.001054     0.001200     YES
 Predicted change in Energy=-1.071764D-06
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1935         -DE/DX =    0.0004              !
 ! R2    R(1,3)                  1.1935         -DE/DX =    0.0004              !
 ! R3    R(1,4)                  1.1935         -DE/DX =    0.0004              !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

From the data obtained above, it is clearly stated that the structure of the molecule is D3H, trigonal planar.The optimised B-H bond length is 1.193Å. The angel between two B-H bond is 120°

The energy change and gradient change over the optimisation

The following graph describes how the potential energy changes during the optimisation. the horizontal axis is the optimization step number and the vertial axis is the potential energy in hartree.

The graph below tells us how the energy gradient changes for each optimisation step. Th gradient unit is hartree/Bohr.

The optimisation is the process of finding a potential energy minimum which is also referred as a equilibrium position of nuclear and electron by changing the molecule slightly, in this case the bond length has been adjusted.According to the graph, a potential minimum can be found when gradient is zero, in other words, the energy of the molecule does not change respect to different optimisations.

The graph about the bond change over the optimisation

BH3 Optimisation(Calculation Method: RB3LYP,Basis Set:6-31G(d,p))

Before optimistation:

The bond length of B-H bond is 1.193Å

After optimisation:

The log file of optimisation: click here

A Gaussview image of a BH3 molecule after optimisation using Basis Set:6-31G(d,p)
Table (2)
BH3 Optimisation(Basis Set:6-31G(d,p))
File Name BH3_6-31G_before
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -26.61532363 a.u.
RMS Gradient Norm 0.00000235 a.u.
Imaginary Freq
Dipole Moment 0.0000 Debye
Point Group D3H
Job cpu time: 0 days 0 hours 0 minutes 32.0 seconds.

The "real" output:the final set of forces and displacements,which gives an indication of the calculation convergence

Item               Value     Threshold  Converged?
 Maximum Force            0.000005     0.000450     YES
 RMS     Force            0.000003     0.000300     YES
 Maximum Displacement     0.000019     0.001800     YES
 RMS     Displacement     0.000012     0.001200     YES
 Predicted change in Energy=-1.304899D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1923         -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.1923         -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.1923         -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

From the data obtained above, it is also stated that the structure of the molecule is D3H, trigonal planar.The optimised B-H bond length is 1.192Å. The optimisd H-B-H bond angle is 120°,which is exactly the same as the data obtained from the optimisation using basis set 3-21G.

Comparison of two BH3 Optimisations

In terms of total energy of two different optimised molecule, the comparison has been made,which is shown below.

Table (3)
final energy difference of BH3 Optimisation
basis set energy/a.u.
3-21G -26.46226338
6-31G(d,p) -26.61532363
energy difference:0.15306025 a.u.

As you can see, the energy difference is around 402kJ/mol, which is fairly significant amount. The optimisation using basis set 6-31G(d,p)has a lower energy.

Optimisation of TIBr3

The D space calculation is provided:[| click here]

The log file of optimisation:click here

A Gaussview image of a TIBr3 molecule after optimisation
Table (4)
TIBr3 Optimisation
File Name TIBr3_optimisation
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set LANL2DZ
Charge 0
Spin Singlet
E(RB3LYP) -91.21812851 a.u.
RMS Gradient Norm 0.00000090 a.u.
Imaginary Freq
Dipole Moment 0.0000 Debye
Point Group D3H
Job cpu time: 0 days 0 hours 0 minutes 59.0 seconds.

The "real" output:the final set of forces and displacements,which gives an indication of the calculation convergence

Item               Value     Threshold  Converged?
 Maximum Force            0.000002     0.000450     YES
 RMS     Force            0.000001     0.000300     YES
 Maximum Displacement     0.000022     0.001800     YES
 RMS     Displacement     0.000014     0.001200     YES
 Predicted change in Energy=-6.084008D-11
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  2.651          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  2.651          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  2.651          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

From the data obtained above, the structure of the molecule is D3H, trigonal planar.The optimised TI-Br bond length is 2.65Å. The optimisd Br-TI-Br bond angle is 120°

The literature optimised Tl-Br bond distance is 2.71Å, It is more or less the same as calculated value

Optimisation of BBr3

The log file of optimisation:click here

A Gaussview image of a BBr3 molecule after optimisation
Table (5)
BBr3 Optimisation
File Name BBr3_6-31G
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set Gen
Charge 0
Spin Singlet
E(RB3LYP) -64.43645296 a.u.
RMS Gradient Norm 0.00000382 a.u.
Imaginary Freq
Dipole Moment 0.0000 Debye
Point Group D3H
Job cpu time: 0 days 0 hours 1 minutes 36.0 seconds.

The "real" output:the final set of forces and displacements,which gives an indication of the calculation convergence

Item               Value     Threshold  Converged?
 Maximum Force            0.000008     0.000450     YES
 RMS     Force            0.000005     0.000300     YES
 Maximum Displacement     0.000036     0.001800     YES
 RMS     Displacement     0.000023     0.001200     YES
 Predicted change in Energy=-4.026911D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.934          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.934          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.934          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

according to the item data, the optimisation is converged. Moreover,the structure of the molecule is D3H, trigonal planar.The optimised B-Br bond length is 1.93Å, three bonds are identical to each other.The optimisd Br-B-Br bond angle is 120°,three angles are identical.

Comparison of Bond Lengths and Bond Angles

After the optimisation of three different molecule which are all having the same symmetry,D3H,the bond length and bong angle have been analysed.

Table (6)
Bond Lengths and Bond Angles for BH3,TIBr3,BBr3
Molecule Bond Length /Å Bond Angle/degree
BH3 1.193 120.0
TIBr3 2.65 120.0
BBr3 1.93 120.0

As we can see from the table the bond angles are the same for three molecules. This tells us the 3-D structure of the molecule remains the same even the bonding atoms are changing.

However ,the bond length is changing along with the change in bonding orbital. Compared to BBr3 , BH3 has a shorter bond length due to the missing lone pair of electrons on the hydrogen which can donate to the p orbital of central boron Br has a lone pair of electrons that can donate, so better bonding between B and Br. For TI and B, the bonding orbitals of TI is larger in size, which results in poorer overlap between center TI atom and hydrogen.So TI-bond is longer than B-Br bond.

As gaussview shows the bond with in a range, sometimes the bond can not be shown as we expected but it does not mean there is no bonding between the atoms. The bond is a attractive interaction of 2 adjacent atoms. Covalent bond is two bonding share electron while the ionic bonding is the electrostatic attractions between two opposite charges.

Frequency Analysis and Association Energy

Frequency analysis for BH3

The log file of the frequency analysis:click here

A image of data summary of BH3 molecule frequency calculation
Table (7)
BH3 frequency analysis
File Name FOR_FREQUNCY_BH3_6_31G_NEW
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -26.61532363 a.u.
RMS Gradient Norm 0.00000480 a.u.
Imaginary Freq 0
Dipole Moment 0.0000 Debye
Point Group C3H
Job cpu time: 0 days 0 hours o minutes 35.0 seconds.

The item table from the "real" output is showing below.

 Item               Value     Threshold  Converged?
 Maximum Force            0.000010     0.000450     YES
 RMS     Force            0.000005     0.000300     YES
 Maximum Displacement     0.000038     0.001800     YES
 RMS     Displacement     0.000019     0.001200     YES
 Predicted change in Energy=-5.370783D-10
 Optimization completed.
    -- Stationary point found.
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

The low frequency is recorded in the text form file:

Low frequencies ---   -3.6018   -1.1356   -0.0054    1.3735    9.7036    9.7698
Low frequencies --- 1162.9825 1213.1733 1213.1760

It is fairly clear that each molecule has a 3N-6 vibration frequencies,the frequencies listed above are the "-6",which describes the motions of the center of mass of the molecule. Normally, these 6 frequencies are within a range of -15cm-1to+15cm-1. As we can see from the data above, the 6 frequencies of this calculation is within a range of -4cm-1 to 10cm-1. This gives us a indication that the frequency calculation has been carried out correctly.


The following table summary all 6 vibration motions with their relative frequencies and individual intensity.

Table (8) A summary of 6 vibration motions
Number Vibration motion Frequency//cm-1 Intensity Symmetry C3h point group
1
H atoms and B atom are wagging,moving in the opposite directions, all the H atoms move in the same direction
1162.98 92.55 A2''
2
Two hydrogen atoms scissor about the B atom, which are moving towards and away from each other while the positions of the third H atom and the B atom remain the same
1213.17 14.05 E'
3
All three H atoms are rocking,moving towards and away from each other as the center B atom remains stationary
1213.18 14.06 E'
4
Three H atoms are all totally symmetry stretching, which are moving inwards and outwards at the same time corresponds to the fixed center B atom
2582.32 0.00 A1'
5
Two H atoms are asymmetry stretching with each other.One of them moves towards the fixed B atom while the other moves outwards. The third H atom remains fixed
2715.50 126.33 E'
6
All H atoms are asymmetry stretching with each other.Two of them move towards the fixed B atom while one of them moves outwards.
2715.50 126.32 E'

The predicted IR spectrum is showing below:

It is obvious that there are no 6 different peak for those vibration motion mentioned above. In reality, there are only 3 major peaks,whose corresponding frequencies are around 1150,1200,2700cm-1 respectively.


The reason for this is:


a)some of the vibration motions's frequencies are too close each, almost the same if showing graphical.This results in that only a single IR peak represents two motion.Back to the table above, vibration motion 2(scissoring) and 3(rocking) show a peak at about 1213cm-1 while vibration motion 5(asymmetry stretching) and 6(asymmetry stretching) show a peak at about 2715cm-1


b)one of the motions is predicted to have zero intensity, in other word, there will be no absorbancce peak for that vibration motion. In this case, motion 4(symmetry stretching)dose not have a IR peak in the spectrum.

Frequency analysis for TIBr3

The D space calculation is provided:[| click here]

The log file of the frequency analysis:click here

A image of data summary of TIBr3 molecule frequency calculation
Table (9)
TIBr3 frequency analysis
File Name TIBR3_OPTIMISATION_fre
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set LANL2DZ
Charge 0
Spin Singlet
E(RB3LYP) -91.21812851 a.u.
RMS Gradient Norm 0.00000088 a.u.
Imaginary Freq 0
Dipole Moment 0.0000 Debye
Point Group D3H
Job cpu time: 0 days 0 hours o minutes 32.0 seconds.

The item table from the "real" output is showing below.

  Item               Value     Threshold  Converged?
 Maximum Force            0.000002     0.000450     YES
 RMS     Force            0.000001     0.000300     YES
 Maximum Displacement     0.000022     0.001800     YES
 RMS     Displacement     0.000011     0.001200     YES
 Predicted change in Energy=-5.660901D-11
 Optimization completed.
    -- Stationary point found.
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

The low frequency is recorded in the text form file:

Low frequencies ---   -3.4213   -0.0026   -0.0004    0.0015    3.9367    3.9367
Low frequencies ---   46.4289   46.4292   52.1449


The predicted IR spectrum is showing below:

Comparison between Vibrational Frequencies of BH3 and TlBr3

After the two frequency calculation for these two molecules, analysis has been done to discover the nature of two molecule in terms of frequency,vibration modes and IR spectrum.

comparison of BH3 and TlBr3 frequency and intensity
Vibration motion number Table (10) BH3 frequency/cm-1,intensity TlBr BBr3 frequency/cm-1,intensity
1 1162.98, 92.55 46.43, 3.6867
2 1213.17, 14.05 46.43, 3.6867
3 1213.18, 14.06 52.14, 5.8466
4 2582.32, 0.00 165.27, 0.0000
5 2715.50, 126.33 210.69, 25.4830
6 2715.50, 126.32 210.69, 25.4797

As we can see from the table above, all the frequencies for B-H bond is bigger than that of TI-Br bond. The difference in the reduced mass of two bond cause the reduce in frequency. TIBr3 is heavier than BH3 and absorbs more energy to vibrate. Recording of modes,A2’,E’ is recorded. Although the the frequency depends on the reduced mass of bonding atoms, the change in each vibration motion will be slightly different. For both molecules, they all have 6 vibration modes but all have only 3 major IR peak.

Using the same calculation method and basis set ensure all the calculations have been carried out at the same level of accuracy and the same possibility of finding error in the results. Threre is a energy different of 400kj/mol between the calculation basis 3-3G-21 and 6G-31(d,p). If method and basis sets of two calculation are different, the accuracy and possibility of find error will be different, which would leads the comparison to be incorrect.

The frequency analysis helps us to find the minimum of the reaction. As it is the derivative of the potential energy surface, negative frequencies represents a graphical maximum which is corresponding the transition state for the reaction.

The low frequencies are the indication of whether the optimisation is successful. If the value is negative, this indicates the calculation is failed to find the minimum and it usually requires better basis set to overcome the problem.

Molecular Orbitals of BH3

Not only the frequencies of vibration modes can be calculated, but also the graphical MO orbital is readily obtained if energy calculation which is also called population calculation is carried out under full NBO. It is essential to full in "pop=full" in to additional keywords section for MO analysis.

The D space calculation is provided:[| click here]

Calculated Molecular Orbital Diagram of BH3

Figure 1 Calculated BH3 molecule orbital

There is no significant differentce between the real and LCAO MOs. The calculation is fairly accurate for small molecule like BH3.

Analysis of NH3

Optimisation of NH3

Before optimistation:

N-H bond is 1.00Å and the H-N-H angle is 109.47°

After optimisation:

The optimisation calculation is carried out under those conditions: job type is optimization, method used is B3LYP, basis set is 6-31G(d,p), additional keyword is nosymm.

The log file of optimisation:click here

A Gaussview image of a NH3 molecule after optimisation
Table (11)
NH3 Optimisation
File Name NH_3_ORIGINAL
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d)
Charge 0
Spin Singlet
E(RB3LYP) -56.54794758 a.u.
RMS Gradient Norm 0.00000975 a.u.
Imaginary Freq
Dipole Moment 1.9121 Debye
Point Group C1
Job cpu time: 0 days 0 hours 1 minutes 18.0 seconds.

The "real" output:the final set of forces and displacements,which gives an indication of the calculation convergence

 Item               Value     Threshold  Converged?
 Maximum Force            0.000016     0.000450     YES
 RMS     Force            0.000013     0.000300     YES
 Maximum Displacement     0.000122     0.001800     YES
 RMS     Displacement     0.000074     0.001200     YES
 Predicted change in Energy=-2.899436D-09
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.0194         -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.0194         -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.0194         -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              105.7493         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              105.7607         -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              105.76           -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -111.8821         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

According to the calculation above, the optimised bond length is 1.02Å,the predicted H-N-H angle is 105.76°,three angels are identical.

Frequency analysis of NH3

The frequency calculation is carried out under those conditions: job type is frequency, method used is B3LYP, basis set is 6-31G(d,p).

The log file of the frequency analysis:click here

A image of data summary of NH3 molecule frequency calculation
Table (12)
NH3 frequency analysis
File Name NH_3_ORIGINAL_FOR_FRE
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -56.55776856 a.u.
RMS Gradient Norm 0.00000480 a.u.
Imaginary Freq 0
Dipole Moment 0.00000888 Debye
Point Group C1
Job cpu time: 0 days 0 hours o minutes 31.0 seconds.

The item table from the "real" output is showing below.

Item               Value     Threshold  Converged?
 Maximum Force            0.000021     0.000450     YES
 RMS     Force            0.000009     0.000300     YES
 Maximum Displacement     0.000077     0.001800     YES
 RMS     Displacement     0.000039     0.001200     YES
 Predicted change in Energy=-1.603126D-09
 Optimization completed.
    -- Stationary point found.
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

The low frequency is recorded in the text form file:

Low frequencies ---  -30.7764   -0.0014   -0.0011    0.0013   20.3142   28.2484
Low frequencies --- 1089.5557 1694.1237 1694.1868

Population analysis of NH3

The population calculation is carried out under those conditions: job type is energy, method used is B3LYP, basis set is 6-31G(d,p).The form of the input file should be the checkpoint .chk file, not the log file.

The D space calculation is provided:[| click here]

The log file of the population analysis:click here

A image of data summary of NH3 molecule frequency calculation
Table (13)
NH3 population analysis
File Name NH_3_ORIGINAL_POLULATION
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -56.55776338 a.u.
RMS Gradient Norm a.u.
Imaginary Freq
Dipole Moment 1.8456 Debye
Point Group C1
Job cpu time: 0 days 0 hours o minutes 13.0 seconds.

The following figure lists the lowest 8 molecular orbital:

Figure 2 Calculated NH3 molecule orbital

NMO analysis of NH3

By looking at charge distribution of the calculation results,the charge distribution can be visualized in terms of colour change as well as number

Figure 3 Calculated NH3 molecule orbital charge distribution by Colour
Figure 4 Calculated NH3 molecule orbital charge distribution range
Figure 5 Calculated NH3 molecule orbital charge distribution by number
Figure 5 Calculated NH3 molecule orbital charge distribution by number

Quantitative data is recorded in the log file of the calculation. All sort of information about the molecule can be found out, for example, the bonding in the compound,interactions between the various orbitals including mixing orbitals as well as the energy and population or occupation of the N-H bonds and the nitrogen lone pair

 Summary of Natural Population Analysis:                  
                                                          
                                       Natural Population 
                Natural  -----------------------------------------------
    Atom  No    Charge         Core      Valence    Rydberg      Total
 -----------------------------------------------------------------------
      N    1   -1.12578      1.99982     6.11176    0.01421     8.12578
      H    2    0.37526      0.00000     0.62228    0.00246     0.62474
      H    3    0.37526      0.00000     0.62228    0.00246     0.62474
      H    4    0.37527      0.00000     0.62228    0.00246     0.62473
 =======================================================================
   * Total *    0.00000      1.99982     7.97860    0.02158    10.00000
  (Occupancy)   Bond orbital/ Coefficients/ Hybrids
 ---------------------------------------------------------------------------------
     1. (1.99909) BD ( 1) N   1 - H   2  
                ( 68.84%)   0.8297* N   1 s( 24.83%)p 3.02( 75.08%)d 0.00(  0.09%)
                                           -0.0001 -0.4983 -0.0059  0.0000 -0.2915
                                            0.0052  0.8155  0.0275  0.0000  0.0000
                                            0.0281  0.0000  0.0000  0.0032  0.0082
                ( 31.16%)   0.5582* H   2 s( 99.91%)p 0.00(  0.09%)
                                           -0.9996  0.0000  0.0072 -0.0290  0.0000
     2. (1.99909) BD ( 1) N   1 - H   3  
                ( 68.84%)   0.8297* N   1 s( 24.83%)p 3.02( 75.08%)d 0.00(  0.09%)
                                            0.0001  0.4983  0.0059  0.0000  0.2915
                                           -0.0052  0.4077  0.0138  0.7062  0.0239
                                            0.0140  0.0243  0.0076  0.0034  0.0031
                ( 31.16%)   0.5582* H   3 s( 99.91%)p 0.00(  0.09%)
                                            0.9996  0.0000 -0.0072 -0.0145 -0.0251
     3. (1.99909) BD ( 1) N   1 - H   4  
                ( 68.84%)   0.8297* N   1 s( 24.83%)p 3.02( 75.08%)d 0.00(  0.09%)
                                            0.0001  0.4983  0.0059  0.0000  0.2915
                                           -0.0053  0.4077  0.0138 -0.7062 -0.0239
                                            0.0140 -0.0243 -0.0076  0.0034  0.0031
                ( 31.16%)   0.5582* H   4 s( 99.91%)p 0.00(  0.09%)
                                            0.9996  0.0000 -0.0072 -0.0145  0.0251
     4. (1.99982) CR ( 1) N   1           s(100.00%)
                                            1.0000 -0.0002  0.0000  0.0000  0.0000
                                            0.0000  0.0000  0.0000  0.0000  0.0000
                                            0.0000  0.0000  0.0000  0.0000  0.0000
     5. (1.99720) LP ( 1) N   1           s( 25.48%)p 2.92( 74.42%)d 0.00(  0.10%)
                                            0.0001  0.5046 -0.0120  0.0000 -0.8612
                                            0.0502  0.0000  0.0000  0.0000  0.0000
                                            0.0000  0.0000  0.0000 -0.0268  0.0155
     6. (0.00000) RY*( 1) N   1           s( 99.98%)p 0.00(  0.02%)d 0.00(  0.00%)
     7. (0.00000) RY*( 2) N   1           s(100.00%)
     8. (0.00000) RY*( 3) N   1           s(  0.03%)p99.99( 99.97%)d 0.01(  0.00%)
     9. (0.00000) RY*( 4) N   1           s(  0.00%)p 1.00(100.00%)d 0.00(  0.00%)
    10. (0.00000) RY*( 5) N   1           s(  0.00%)p 1.00(100.00%)d 0.00(  0.00%)
    11. (0.00000) RY*( 6) N   1           s(  0.00%)p 1.00(  0.12%)d99.99( 99.88%)
    12. (0.00000) RY*( 7) N   1           s(  0.00%)p 1.00(  0.12%)d99.99( 99.88%)
    13. (0.00000) RY*( 8) N   1           s(  0.00%)p 1.00(  0.01%)d99.99( 99.99%)
    14. (0.00000) RY*( 9) N   1           s(  0.01%)p 4.40(  0.06%)d99.99( 99.92%)
    15. (0.00000) RY*(10) N   1           s(  0.00%)p 1.00(  0.03%)d99.99( 99.97%)
    16. (0.00112) RY*( 1) H   2           s( 72.77%)p 0.37( 27.23%)
                                            0.0039  0.8530  0.5218 -0.0021 -0.0002
    17. (0.00045) RY*( 2) H   2           s( 26.60%)p 2.76( 73.40%)
                                           -0.0018  0.5158 -0.8437 -0.1490 -0.0011
    18. (0.00034) RY*( 3) H   2           s(  0.00%)p 1.00(100.00%)
                                            0.0000  0.0007 -0.0008 -0.0001  1.0000
    19. (0.00000) RY*( 4) H   2           s(  0.72%)p99.99( 99.28%)
    20. (0.00112) RY*( 1) H   3           s( 72.77%)p 0.37( 27.23%)
                                            0.0039  0.8530  0.5218  0.0012  0.0017
    21. (0.00045) RY*( 2) H   3           s( 26.60%)p 2.76( 73.40%)
                                           -0.0018  0.5158 -0.8437  0.0754  0.1285
    22. (0.00034) RY*( 3) H   3           s(  0.00%)p 1.00(100.00%)
                                            0.0000  0.0006 -0.0008 -0.8660  0.5001
    23. (0.00000) RY*( 4) H   3           s(  0.72%)p99.99( 99.28%)
    24. (0.00112) RY*( 1) H   4           s( 72.75%)p 0.37( 27.25%)
                                            0.0039  0.8529  0.5220  0.0010 -0.0018
    25. (0.00044) RY*( 2) H   4           s( 26.62%)p 2.76( 73.38%)
                                           -0.0017  0.5159 -0.8436  0.0744 -0.1290
    26. (0.00034) RY*( 3) H   4           s(  0.00%)p 1.00(100.00%)
                                            0.0000  0.0000  0.0000  0.8660  0.5000
    27. (0.00000) RY*( 4) H   4           s(  0.72%)p99.99( 99.28%)
    28. (0.00000) BD*( 1) N   1 - H   2  
                ( 31.16%)   0.5582* N   1 s( 24.83%)p 3.02( 75.08%)d 0.00(  0.09%)
                ( 68.84%)  -0.8297* H   2 s( 99.91%)p 0.00(  0.09%)
    29. (0.00000) BD*( 1) N   1 - H   3  
                ( 31.16%)   0.5582* N   1 s( 24.83%)p 3.02( 75.08%)d 0.00(  0.09%)
                ( 68.84%)  -0.8297* H   3 s( 99.91%)p 0.00(  0.09%)
    30. (0.00000) BD*( 1) N   1 - H   4  
                ( 31.16%)   0.5582* N   1 s( 24.83%)p 3.02( 75.08%)d 0.00(  0.09%)
                ( 68.84%)  -0.8297* H   4 s( 99.91%)p 0.00(  0.09%)
 
Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis
Threshold for printing:   0.50 kcal/mol
                                                                              E(2)  E(j)-E(i) F(i,j)
         Donor NBO (i)                     Acceptor NBO (j)                 kcal/mol   a.u.    a.u. 
 ===================================================================================================
Natural Bond Orbitals (Summary):
                                                           Principal Delocalizations
           NBO                        Occupancy    Energy   (geminal,vicinal,remote)
 ====================================================================================
 Molecular unit  1  (H3N)
     1. BD (   1) N   1 - H   2          1.99909    -0.60344   
     2. BD (   1) N   1 - H   3          1.99909    -0.60344   
     3. BD (   1) N   1 - H   4          1.99909    -0.60344   
     4. CR (   1) N   1                  1.99982   -14.16853   
     5. LP (   1) N   1                  1.99720    -0.31788  24(v),16(v),20(v),17(v)
                                                    21(v),25(v)
     6. RY*(   1) N   1                  0.00000     1.20608   
     7. RY*(   2) N   1                  0.00000     3.73049   
     8. RY*(   3) N   1                  0.00000     0.73752   
     9. RY*(   4) N   1                  0.00000     0.77372   
    10. RY*(   5) N   1                  0.00000     0.77373   
    11. RY*(   6) N   1                  0.00000     2.28867   
    12. RY*(   7) N   1                  0.00000     2.28871   
    13. RY*(   8) N   1                  0.00000     2.40772   
    14. RY*(   9) N   1                  0.00000     2.16194   
    15. RY*(  10) N   1                  0.00000     2.32578   
    16. RY*(   1) H   2                  0.00112     1.11339   
    17. RY*(   2) H   2                  0.00045     1.84782   
    18. RY*(   3) H   2                  0.00034     2.31860   
    19. RY*(   4) H   2                  0.00000     2.94410   
    20. RY*(   1) H   3                  0.00112     1.11338   
    21. RY*(   2) H   3                  0.00045     1.84783   
    22. RY*(   3) H   3                  0.00034     2.31860   
    23. RY*(   4) H   3                  0.00000     2.94409   
    24. RY*(   1) H   4                  0.00112     1.11374   
    25. RY*(   2) H   4                  0.00044     1.84748   
    26. RY*(   3) H   4                  0.00034     2.31858   
    27. RY*(   4) H   4                  0.00000     2.94404   
    28. BD*(   1) N   1 - H   2          0.00000     0.48363   
    29. BD*(   1) N   1 - H   3          0.00000     0.48361   
    30. BD*(   1) N   1 - H   4          0.00000     0.48359   

Association energy analysis of product NH3BH3

Ammonia-borane has a high hydrogen content and is stable at standard condition. What is even more, it is acid-base complex. This makes the molecule to be very useful in terms of fuel.To determine the reaction energy,both reactant and product's energy is required.AS calculation has been done for both reactant,we can obtain the reaction energy quite simply.

As the molecule has more than 3 atoms, 2 optimisation calculations are recommended, in which the calculation use method used,B3LYP,and basis set,3-21G, while the second one use method used,B3LYP,and basis set,6-31G(d,p).For second calculation, a additional keywords,nosymm,is required.

First optimisation

The log file of optimisation:click here

A Gaussview image of a NH3BH3 molecule after optimisation
Table (14)
NH3BH3 Optimisation
File Name nh3bh3
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 3-21G
Charge 0
Spin Singlet
E(RB3LYP) -82.76661837 a.u.
RMS Gradient Norm 0.00003006 a.u.
Imaginary Freq
Dipole Moment 5.8431 Debye
Point Group C1
Job cpu time: 0 days 0 hours 1 minutes 55.0 seconds.

The "real" output:the final set of forces and displacements,which gives an indication of the calculation convergence

 Item               Value     Threshold  Converged?
 Maximum Force            0.000094     0.000450     YES
 RMS     Force            0.000030     0.000300     YES
 Maximum Displacement     0.000419     0.001800     YES
 RMS     Displacement     0.000178     0.001200     YES
 Predicted change in Energy=-5.742843D-08
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,7)                  1.0277         -DE/DX =   -0.0001              !
 ! R2    R(2,7)                  1.0277         -DE/DX =   -0.0001              !
 ! R3    R(3,7)                  1.0277         -DE/DX =    0.0                 !
 ! R4    R(4,8)                  1.212          -DE/DX =    0.0                 !
 ! R5    R(5,8)                  1.212          -DE/DX =   -0.0001              !
 ! R6    R(6,8)                  1.212          -DE/DX =   -0.0001              !
 ! R7    R(7,8)                  1.6854         -DE/DX =   -0.0001              !
 ! A1    A(1,7,2)              109.3469         -DE/DX =    0.0                 !
 ! A2    A(1,7,3)              109.35           -DE/DX =    0.0                 !
 ! A3    A(1,7,8)              109.5925         -DE/DX =    0.0                 !
 ! A4    A(2,7,3)              109.3462         -DE/DX =    0.0                 !
 ! A5    A(2,7,8)              109.5973         -DE/DX =    0.0                 !
 ! A6    A(3,7,8)              109.5935         -DE/DX =    0.0                 !
 ! A7    A(4,8,5)              113.563          -DE/DX =    0.0                 !
 ! A8    A(4,8,6)              113.5594         -DE/DX =    0.0                 !
 ! A9    A(4,8,7)              104.9872         -DE/DX =    0.0                 !
 ! A10   A(5,8,6)              113.5575         -DE/DX =    0.0                 !
 ! A11   A(5,8,7)              104.9846         -DE/DX =    0.0                 !
 ! A12   A(6,8,7)              104.9848         -DE/DX =    0.0                 !
 ! D1    D(1,7,8,4)            179.9938         -DE/DX =    0.0                 !
 ! D2    D(1,7,8,5)            -60.0024         -DE/DX =    0.0                 !
 ! D3    D(1,7,8,6)             59.994          -DE/DX =    0.0                 !
 ! D4    D(2,7,8,4)            -60.0065         -DE/DX =    0.0                 !
 ! D5    D(2,7,8,5)             59.9972         -DE/DX =    0.0                 !
 ! D6    D(2,7,8,6)            179.9936         -DE/DX =    0.0                 !
 ! D7    D(3,7,8,4)             59.9928         -DE/DX =    0.0                 !
 ! D8    D(3,7,8,5)            179.9966         -DE/DX =    0.0                 !
 ! D9    D(3,7,8,6)            -60.007          -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Second optimisation

The log file of optimisation:click here

A Gaussview image of a NH3BH3 molecule after second optimisation
Table (15)
NH3BH3 Second optimisation
File Name nh3bh3_2OPTI
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -83.22469035 a.u.
RMS Gradient Norm 0.00005813 a.u.
Imaginary Freq
Dipole Moment 5.5628 Debye
Point Group C1
Job cpu time: 0 days 0 hours 1 minutes 37.0 seconds.

The "real" output:the final set of forces and displacements,which gives an indication of the calculation convergence

Item               Value     Threshold  Converged?
 Maximum Force            0.000137     0.000450     YES
 RMS     Force            0.000038     0.000300     YES
 Maximum Displacement     0.001020     0.001800     YES
 RMS     Displacement     0.000225     0.001200     YES
 Predicted change in Energy=-1.139077D-07
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,7)                  1.0185         -DE/DX =    0.0                 !
 ! R2    R(2,7)                  1.0185         -DE/DX =    0.0                 !
 ! R3    R(3,7)                  1.0185         -DE/DX =    0.0                 !
 ! R4    R(4,8)                  1.2097         -DE/DX =    0.0                 !
 ! R5    R(5,8)                  1.2097         -DE/DX =    0.0                 !
 ! R6    R(6,8)                  1.2097         -DE/DX =    0.0                 !
 ! R7    R(7,8)                  1.6685         -DE/DX =   -0.0001              !
 ! A1    A(1,7,2)              107.8567         -DE/DX =    0.0                 !
 ! A2    A(1,7,3)              107.8615         -DE/DX =    0.0                 !
 ! A3    A(1,7,8)              111.0394         -DE/DX =    0.0                 !
 ! A4    A(2,7,3)              107.861          -DE/DX =    0.0                 !
 ! A5    A(2,7,8)              111.0396         -DE/DX =    0.0                 !
 ! A6    A(3,7,8)              111.0358         -DE/DX =    0.0                 !
 ! A7    A(4,8,5)              113.9015         -DE/DX =    0.0                 !
 ! A8    A(4,8,6)              113.8953         -DE/DX =    0.0                 !
 ! A9    A(4,8,7)              104.567          -DE/DX =    0.0001              !
 ! A10   A(5,8,6)              113.9013         -DE/DX =    0.0                 !
 ! A11   A(5,8,7)              104.5643         -DE/DX =    0.0001              !
 ! A12   A(6,8,7)              104.5652         -DE/DX =    0.0001              !
 ! D1    D(1,7,8,4)           -179.9977         -DE/DX =    0.0                 !
 ! D2    D(1,7,8,5)            -59.9951         -DE/DX =    0.0                 !
 ! D3    D(1,7,8,6)             60.0064         -DE/DX =    0.0                 !
 ! D4    D(2,7,8,4)            -59.9999         -DE/DX =    0.0                 !
 ! D5    D(2,7,8,5)             60.0027         -DE/DX =    0.0                 !
 ! D6    D(2,7,8,6)           -179.9958         -DE/DX =    0.0                 !
 ! D7    D(3,7,8,4)             60.001          -DE/DX =    0.0                 !
 ! D8    D(3,7,8,5)           -179.9965         -DE/DX =    0.0                 !
 ! D9    D(3,7,8,6)            -59.995          -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Frequency analysis

The frequency calculation is carried out under those conditions: job type is frequency, method used is B3LYP, basis set is 6-31G(d,p).

The log file of the frequency analysis:click here

A image of data summary of NH3BH3 molecule frequency calculation
Table (16)
NH3BH3 frequency analysis
File Name nh3bh3_fre
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -83.22469035 a.u.
RMS Gradient Norm 0.00005810 a.u.
Imaginary Freq 0
Dipole Moment 5.5628 Debye
Point Group C1
Job cpu time: 0 days 0 hours 1 minutes 28.0 seconds.

The item table from the "real" output is showing below.

Item               Value     Threshold  Converged?
 Maximum Force            0.000265     0.000450     YES
 RMS     Force            0.000058     0.000300     YES
 Maximum Displacement     0.001477     0.001800     YES
 RMS     Displacement     0.000379     0.001200     YES
 Predicted change in Energy=-2.171276D-07
 Optimization completed.
    -- Stationary point found.
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

low frequencies are showing below:

Low frequencies ---    0.0009    0.0010    0.0015    9.3420   10.9493   30.1266
Low frequencies ---  264.8040  631.3745  637.2810

Association Energy calculation

E(NH3)=-56.55776856a.u.

E(BH3)=-26.61532363a.u.

E(NH3BH3)=-83.22469035

ΔE=E(NH3BH3)-[E(NH3)+E(BH3)]=-83.22469035-[-56.55776856-26.61532363]=-0.05159816a.u. =-135.47kJ/mol

Mini Project-Investigating aromatically

Benzene

Optimisation

Job type: Optimisation Method: B3LYP Basis set: 6-31G(d,p) Additional keywords: nosymm

The log file of optimisation:click here

The D space calculation is provided:[| click here]

A Gaussview image of a benzene molecule after optimisation
Table (17)
Benzene optimisation
File Name benzene
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -232.25821186 a.u.
RMS Gradient Norm 0.00009338 a.u.
Imaginary Freq
Dipole Moment 0.0001 Debye
Point Group C1
Job cpu time: 0 days 0 hours 1 minutes 33.0 seconds.

The "real" output:the final set of forces and displacements,which gives an indication of the calculation convergence

 
Item               Value     Threshold  Converged?
 Maximum Force            0.000204     0.000450     YES
 RMS     Force            0.000084     0.000300     YES
 Maximum Displacement     0.000870     0.001800     YES
 RMS     Displacement     0.000313     0.001200     YES
 Predicted change in Energy=-4.983462D-07
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.3963         -DE/DX =    0.0001              !
 ! R2    R(1,6)                  1.3961         -DE/DX =    0.0002              !
 ! R3    R(1,7)                  1.0861         -DE/DX =    0.0002              !
 ! R4    R(2,3)                  1.3961         -DE/DX =    0.0002              !
 ! R5    R(2,8)                  1.0861         -DE/DX =    0.0002              !
 ! R6    R(3,4)                  1.3963         -DE/DX =    0.0001              !
 ! R7    R(3,9)                  1.0861         -DE/DX =    0.0002              !
 ! R8    R(4,5)                  1.3961         -DE/DX =    0.0002              !
 ! R9    R(4,10)                 1.0861         -DE/DX =    0.0002              !
 ! R10   R(5,6)                  1.3963         -DE/DX =    0.0001              !
 ! R11   R(5,11)                 1.0861         -DE/DX =    0.0002              !
 ! R12   R(6,12)                 1.0861         -DE/DX =    0.0002              !
 ! A1    A(2,1,6)              119.9996         -DE/DX =    0.0                 !
 ! A2    A(2,1,7)              119.9968         -DE/DX =    0.0                 !
 ! A3    A(6,1,7)              120.0036         -DE/DX =    0.0                 !
 ! A4    A(1,2,3)              120.0036         -DE/DX =    0.0                 !
 ! A5    A(1,2,8)              119.9916         -DE/DX =    0.0                 !
 ! A6    A(3,2,8)              120.0048         -DE/DX =    0.0                 !
 ! A7    A(2,3,4)              119.9967         -DE/DX =    0.0                 !
 ! A8    A(2,3,9)              120.0101         -DE/DX =    0.0                 !
 ! A9    A(4,3,9)              119.9932         -DE/DX =    0.0                 !
 ! A10   A(3,4,5)              119.9996         -DE/DX =    0.0                 !
 ! A11   A(3,4,10)             119.9891         -DE/DX =    0.0                 !
 ! A12   A(5,4,10)             120.0113         -DE/DX =    0.0                 !
 ! A13   A(4,5,6)              120.004          -DE/DX =    0.0                 !
 ! A14   A(4,5,11)             120.0048         -DE/DX =    0.0                 !
 ! A15   A(6,5,11)             119.9912         -DE/DX =    0.0                 !
 ! A16   A(1,6,5)              119.9965         -DE/DX =    0.0                 !
 ! A17   A(1,6,12)             120.0072         -DE/DX =    0.0                 !
 ! A18   A(5,6,12)             119.9963         -DE/DX =    0.0                 !
 ! D1    D(6,1,2,3)             -0.0059         -DE/DX =    0.0                 !
 ! D2    D(6,1,2,8)            180.0021         -DE/DX =    0.0                 !
 ! D3    D(7,1,2,3)           -180.0099         -DE/DX =    0.0                 !
 ! D4    D(7,1,2,8)             -0.0019         -DE/DX =    0.0                 !
 ! D5    D(2,1,6,5)             -0.0055         -DE/DX =    0.0                 !
 ! D6    D(2,1,6,12)          -179.9972         -DE/DX =    0.0                 !
 ! D7    D(7,1,6,5)           -180.0016         -DE/DX =    0.0                 !
 ! D8    D(7,1,6,12)             0.0068         -DE/DX =    0.0                 !
 ! D9    D(1,2,3,4)              0.0119         -DE/DX =    0.0                 !
 ! D10   D(1,2,3,9)            180.0087         -DE/DX =    0.0                 !
 ! D11   D(8,2,3,4)            180.0039         -DE/DX =    0.0                 !
 ! D12   D(8,2,3,9)              0.0007         -DE/DX =    0.0                 !
 ! D13   D(2,3,4,5)             -0.0064         -DE/DX =    0.0                 !
 ! D14   D(2,3,4,10)          -180.0058         -DE/DX =    0.0                 !
 ! D15   D(9,3,4,5)            179.9968         -DE/DX =    0.0                 !
 ! D16   D(9,3,4,10)            -0.0026         -DE/DX =    0.0                 !
 ! D17   D(3,4,5,6)             -0.005          -DE/DX =    0.0                 !
 ! D18   D(3,4,5,11)           180.0061         -DE/DX =    0.0                 !
 ! D19   D(10,4,5,6)          -180.0057         -DE/DX =    0.0                 !
 ! D20   D(10,4,5,11)            0.0055         -DE/DX =    0.0                 !
 ! D21   D(4,5,6,1)              0.011          -DE/DX =    0.0                 !
 ! D22   D(4,5,6,12)           180.0027         -DE/DX =    0.0                 !
 ! D23   D(11,5,6,1)           179.9999         -DE/DX =    0.0                 !
 ! D24   D(11,5,6,12)           -0.0085         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Frequency Analysis

Job type: Frequency Method: B3LYP Basis set: 6-31G(d,p)

The log file of optimisation:click here

The D space calculation is provided:[| click here]

A image of data summary of benzene molecule frequency calculation
Table (18)
Benzene frequency analysis
File Name benzene_opt_fre_2
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -232.25821186 a.u.
RMS Gradient Norm 0.00009343 a.u.
Imaginary Freq 0
Dipole Moment 0.0001 Debye
Point Group C1
Job cpu time: 0 days 0 hours 5 minutes 9.0 seconds.

The item table from the "real" output is showing below.

Item               Value     Threshold  Converged?
 Maximum Force            0.000203     0.000450     YES
 RMS     Force            0.000093     0.000300     YES
 Maximum Displacement     0.000834     0.001800     YES
 RMS     Displacement     0.000367     0.001200     YES
 Predicted change in Energy=-4.855235D-07
 Optimization completed.
    -- Stationary point found.
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

low frequencies are showing below:

Low frequencies ---  -14.2246   -2.7148    0.0006    0.0007    0.0010   10.0085
Low frequencies ---  413.7274  414.5533  621.0441

Population

Job type: Energy Method: B3LYP Basis set: 6-31G(d,p) Additional keywords: pop=full, NBO: Full NBO

The log file of the population analysis:click here

The D space calculation is provided:[| click here]

A image of data summary of Benzene molecule population calculation
Table (19)
Benzene population analysis
File Name BENZENE_PO
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -232.25821186 a.u.
RMS Gradient Norm a.u.
Imaginary Freq
Dipole Moment 0.0001 Debye
Point Group C1
Job cpu time: 0 days 0 hours minutes 38.0 seconds.

Pyridinium

Optimisation

Job type: Optimisation Method: B3LYP Basis set: 6-31G(d,p) Charge: +1

The log file of optimisation:click here

The D space calculation is provided:[| click here]

A Gaussview image of a Pyridinium molecule after optimisation
Table (20)
Pyridinium optimisation
File Name pyridinium
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 1
Spin Singlet
E(RB3LYP) -248.66807396 a.u.
RMS Gradient Norm 0.00003896 a.u.
Imaginary Freq
Dipole Moment 1.8727 Debye
Point Group C1
Job cpu time: 0 days 0 hours 3 minutes 42.0 seconds.

The "real" output:the final set of forces and displacements,which gives an indication of the calculation convergence

 
Item               Value     Threshold  Converged?
 Maximum Force            0.000064     0.000450     YES
 RMS     Force            0.000023     0.000300     YES
 Maximum Displacement     0.000702     0.001800     YES
 RMS     Displacement     0.000174     0.001200     YES
 Predicted change in Energy=-6.897705D-08
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.3839         -DE/DX =    0.0                 !
 ! R2    R(1,6)                  1.0832         -DE/DX =    0.0                 !
 ! R3    R(1,12)                 1.3523         -DE/DX =    0.0001              !
 ! R4    R(2,3)                  1.3988         -DE/DX =    0.0                 !
 ! R5    R(2,7)                  1.0835         -DE/DX =    0.0                 !
 ! R6    R(3,4)                  1.3988         -DE/DX =    0.0                 !
 ! R7    R(3,8)                  1.0852         -DE/DX =    0.0                 !
 ! R8    R(4,5)                  1.3838         -DE/DX =    0.0                 !
 ! R9    R(4,9)                  1.0835         -DE/DX =    0.0                 !
 ! R10   R(5,10)                 1.0832         -DE/DX =    0.0                 !
 ! R11   R(5,12)                 1.3524         -DE/DX =    0.0                 !
 ! R12   R(11,12)                1.0169         -DE/DX =    0.0                 !
 ! A1    A(2,1,6)              123.9296         -DE/DX =    0.0                 !
 ! A2    A(2,1,12)             119.2363         -DE/DX =    0.0                 !
 ! A3    A(6,1,12)             116.8341         -DE/DX =    0.0                 !
 ! A4    A(1,2,3)              119.082          -DE/DX =    0.0                 !
 ! A5    A(1,2,7)              119.4193         -DE/DX =    0.0001              !
 ! A6    A(3,2,7)              121.4987         -DE/DX =   -0.0001              !
 ! A7    A(2,3,4)              120.0549         -DE/DX =    0.0                 !
 ! A8    A(2,3,8)              119.974          -DE/DX =    0.0                 !
 ! A9    A(4,3,8)              119.9711         -DE/DX =    0.0                 !
 ! A10   A(3,4,5)              119.0827         -DE/DX =    0.0                 !
 ! A11   A(3,4,9)              121.4958         -DE/DX =   -0.0001              !
 ! A12   A(5,4,9)              119.4214         -DE/DX =    0.0                 !
 ! A13   A(4,5,10)             123.9324         -DE/DX =    0.0                 !
 ! A14   A(4,5,12)             119.2354         -DE/DX =    0.0                 !
 ! A15   A(10,5,12)            116.8322         -DE/DX =    0.0                 !
 ! A16   A(1,12,5)             123.3087         -DE/DX =    0.0                 !
 ! A17   A(1,12,11)            118.3463         -DE/DX =    0.0                 !
 ! A18   A(5,12,11)            118.345          -DE/DX =    0.0                 !
 ! D1    D(6,1,2,3)            180.0005         -DE/DX =    0.0                 !
 ! D2    D(6,1,2,7)              0.0001         -DE/DX =    0.0                 !
 ! D3    D(12,1,2,3)             0.0            -DE/DX =    0.0                 !
 ! D4    D(12,1,2,7)          -180.0004         -DE/DX =    0.0                 !
 ! D5    D(2,1,12,5)             0.0018         -DE/DX =    0.0                 !
 ! D6    D(2,1,12,11)          180.0004         -DE/DX =    0.0                 !
 ! D7    D(6,1,12,5)           180.0013         -DE/DX =    0.0                 !
 ! D8    D(6,1,12,11)           -0.0001         -DE/DX =    0.0                 !
 ! D9    D(1,2,3,4)             -0.0007         -DE/DX =    0.0                 !
 ! D10   D(1,2,3,8)           -179.9999         -DE/DX =    0.0                 !
 ! D11   D(7,2,3,4)           -180.0003         -DE/DX =    0.0                 !
 ! D12   D(7,2,3,8)              0.0005         -DE/DX =    0.0                 !
 ! D13   D(2,3,4,5)             -0.0002         -DE/DX =    0.0                 !
 ! D14   D(2,3,4,9)           -179.9998         -DE/DX =    0.0                 !
 ! D15   D(8,3,4,5)           -180.0011         -DE/DX =    0.0                 !
 ! D16   D(8,3,4,9)             -0.0007         -DE/DX =    0.0                 !
 ! D17   D(3,4,5,10)          -180.0007         -DE/DX =    0.0                 !
 ! D18   D(3,4,5,12)             0.0019         -DE/DX =    0.0                 !
 ! D19   D(9,4,5,10)            -0.0011         -DE/DX =    0.0                 !
 ! D20   D(9,4,5,12)           180.0015         -DE/DX =    0.0                 !
 ! D21   D(4,5,12,1)            -0.0028         -DE/DX =    0.0                 !
 ! D22   D(4,5,12,11)         -180.0013         -DE/DX =    0.0                 !
 ! D23   D(10,5,12,1)         -180.0003         -DE/DX =    0.0                 !
 ! D24   D(10,5,12,11)           0.0011         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Frequency Analysis

Job type: Frequency Method: B3LYP Basis set: 6-31G(d,p) Charge:+1

The log file of the frequency analysis:click here

The D space calculation is provided:[| click here]

A image of data summary of Pyridinium molecule frequency calculation
Table (21)
Pyridinium frequency analysis
File Name PYRIDINIUM_opt_fre
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 1
Spin Singlet
E(RB3LYP) -248.66807396 a.u.
RMS Gradient Norm 0.00003889 a.u.
Imaginary Freq 0
Dipole Moment 1.8727 Debye
Point Group C1
Job cpu time: 0 days 0 hours 5 minutes 5.0 seconds.

The item table from the "real" output is showing below.

Item               Value     Threshold  Converged?
 Maximum Force            0.000155     0.000450     YES
 RMS     Force            0.000039     0.000300     YES
 Maximum Displacement     0.000774     0.001800     YES
 RMS     Displacement     0.000227     0.001200     YES
 Predicted change in Energy=-7.429612D-08
 Optimization completed.
    -- Stationary point found.
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

low frequencies are showing below:

Low frequencies ---   -7.2104   -0.0005   -0.0005   -0.0003   17.3406   18.5424
Low frequencies ---  392.4561  404.0617  620.4717

Population

Job type: Energy Method: B3LYP Basis set: 6-31G(d,p) Additional keywords: pop=full, NBO: Full NBO Charge: +1

The log file of the population analysis:click here

The D space calculation is provided:[| click here]

A image of data summary of Pyridinium molecule population calculation
Table (22)
Pyridinium population analysis
File Name PYRIDINIUM_OPT_PO
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 1
Spin Singlet
E(RB3LYP) -248.66807396 a.u.
RMS Gradient Norm a.u.
Imaginary Freq
Dipole Moment 1.8727 Debye
Point Group C1
Job cpu time: 0 days 0 hours minutes 43.0 seconds.

Boratabenzene

Optimisation

Job type: Optimisation Method: B3LYP Basis set: 6-31G(d,p) Charge: -1

The log file of optimisation:click here

The D space calculation is provided:[| click here]

A Gaussview image of a Boratabenzene molecule after optimisation
Table (23)
Boratabenzene optimisation
File Name Boratabenzene
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge -1
Spin Singlet
E(RB3LYP) -219.02052984 a.u.
RMS Gradient Norm 0.00015822 a.u.
Imaginary Freq
Dipole Moment 11.0032 Debye
Point Group C1
Job cpu time: 0 days 0 hours 3 minutes 30.0 seconds.

The "real" output:the final set of forces and displacements,which gives an indication of the calculation convergence

 
Item               Value     Threshold  Converged?
 Maximum Force            0.000159     0.000450     YES
 RMS     Force            0.000069     0.000300     YES
 Maximum Displacement     0.000911     0.001800     YES
 RMS     Displacement     0.000335     0.001200     YES
 Predicted change in Energy=-6.630273D-07
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.3989         -DE/DX =    0.0                 !
 ! R2    R(1,6)                  1.097          -DE/DX =   -0.0001              !
 ! R3    R(1,12)                 1.5137         -DE/DX =    0.0001              !
 ! R4    R(2,3)                  1.4053         -DE/DX =   -0.0001              !
 ! R5    R(2,7)                  1.0968         -DE/DX =    0.0001              !
 ! R6    R(3,4)                  1.4053         -DE/DX =   -0.0001              !
 ! R7    R(3,8)                  1.0917         -DE/DX =   -0.0001              !
 ! R8    R(4,5)                  1.3989         -DE/DX =    0.0                 !
 ! R9    R(4,9)                  1.0968         -DE/DX =    0.0001              !
 ! R10   R(5,10)                 1.097          -DE/DX =   -0.0001              !
 ! R11   R(5,12)                 1.5138         -DE/DX =    0.0001              !
 ! R12   R(11,12)                1.2185         -DE/DX =    0.0                 !
 ! A1    A(2,1,6)              115.9495         -DE/DX =    0.0001              !
 ! A2    A(2,1,12)             120.0809         -DE/DX =   -0.0001              !
 ! A3    A(6,1,12)             123.9696         -DE/DX =   -0.0001              !
 ! A4    A(1,2,3)              122.1393         -DE/DX =    0.0001              !
 ! A5    A(1,2,7)              120.4236         -DE/DX =   -0.0002              !
 ! A6    A(3,2,7)              117.437          -DE/DX =    0.0                 !
 ! A7    A(2,3,4)              120.4508         -DE/DX =   -0.0001              !
 ! A8    A(2,3,8)              119.7759         -DE/DX =    0.0001              !
 ! A9    A(4,3,8)              119.7732         -DE/DX =    0.0001              !
 ! A10   A(3,4,5)              122.1382         -DE/DX =    0.0001              !
 ! A11   A(3,4,9)              117.4352         -DE/DX =    0.0                 !
 ! A12   A(5,4,9)              120.4267         -DE/DX =   -0.0002              !
 ! A13   A(4,5,10)             115.9535         -DE/DX =    0.0001              !
 ! A14   A(4,5,12)             120.0812         -DE/DX =   -0.0001              !
 ! A15   A(10,5,12)            123.9653         -DE/DX =   -0.0001              !
 ! A16   A(1,12,5)             115.1096         -DE/DX =    0.0                 !
 ! A17   A(1,12,11)            122.4483         -DE/DX =    0.0                 !
 ! A18   A(5,12,11)            122.4422         -DE/DX =    0.0                 !
 ! D1    D(6,1,2,3)            180.0103         -DE/DX =    0.0                 !
 ! D2    D(6,1,2,7)             -0.0041         -DE/DX =    0.0                 !
 ! D3    D(12,1,2,3)             0.0085         -DE/DX =    0.0                 !
 ! D4    D(12,1,2,7)          -180.0059         -DE/DX =    0.0                 !
 ! D5    D(2,1,12,5)             0.001          -DE/DX =    0.0                 !
 ! D6    D(2,1,12,11)         -179.9999         -DE/DX =    0.0                 !
 ! D7    D(6,1,12,5)          -180.0009         -DE/DX =    0.0                 !
 ! D8    D(6,1,12,11)           -0.0019         -DE/DX =    0.0                 !
 ! D9    D(1,2,3,4)             -0.015          -DE/DX =    0.0                 !
 ! D10   D(1,2,3,8)           -180.0107         -DE/DX =    0.0                 !
 ! D11   D(7,2,3,4)           -180.001          -DE/DX =    0.0                 !
 ! D12   D(7,2,3,8)              0.0032         -DE/DX =    0.0                 !
 ! D13   D(2,3,4,5)              0.0115         -DE/DX =    0.0                 !
 ! D14   D(2,3,4,9)            180.0047         -DE/DX =    0.0                 !
 ! D15   D(8,3,4,5)            180.0073         -DE/DX =    0.0                 !
 ! D16   D(8,3,4,9)              0.0005         -DE/DX =    0.0                 !
 ! D17   D(3,4,5,10)          -180.0052         -DE/DX =    0.0                 !
 ! D18   D(3,4,5,12)            -0.0019         -DE/DX =    0.0                 !
 ! D19   D(9,4,5,10)             0.0019         -DE/DX =    0.0                 !
 ! D20   D(9,4,5,12)           180.0052         -DE/DX =    0.0                 !
 ! D21   D(4,5,12,1)            -0.0042         -DE/DX =    0.0                 !
 ! D22   D(4,5,12,11)         -180.0033         -DE/DX =    0.0                 !
 ! D23   D(10,5,12,1)          179.9993         -DE/DX =    0.0                 !
 ! D24   D(10,5,12,11)           0.0003         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Frequency Analysis

Job type: Frequency Method: B3LYP Basis set: 6-31G(d,p) Charge:-1

The log file of the frequency analysis:click here

The D space calculation is provided:[| click here]

A image of data summary of Boratabenzene molecule frequency calculation
Table (24)
Boratabenzene frequency analysis
File Name Boratabenzene_opt_fre
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge -1
Spin Singlet
E(RB3LYP) -219.02052984 a.u.
RMS Gradient Norm 0.00015817 a.u.
Imaginary Freq 0
Dipole Moment 11.0032 Debye
Point Group C1
Job cpu time: 0 days 0 hours 5 minutes 5.0 seconds.

The item table from the "real" output is showing below.

Item               Value     Threshold  Converged?
 Maximum Force            0.000434     0.000450     YES
 RMS     Force            0.000158     0.000300     YES
 Maximum Displacement     0.000888     0.001800     YES
 RMS     Displacement     0.000399     0.001200     YES
 Predicted change in Energy=-7.208081D-07
 Optimization completed.
    -- Stationary point found.
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

low frequencies are showing below:

Low frequencies ---  -13.1144    0.0005    0.0009    0.0013   15.0608   18.1770
Low frequencies ---  371.3452  404.2345  565.2524

Population

Job type: Energy Method: B3LYP Basis set: 6-31G(d,p) Additional keywords: pop=full, NBO: Full NBO Charge: -1

The log file of the population analysis:click here

The D space calculation is provided:[| click here]

A image of data summary of Boratabenzene molecule population calculation
Table (25)
Boratabenzene population analysis
File Name BORATABENZENE_OPT_PO
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge -1
Spin Singlet
E(RB3LYP) -219.02052984 a.u.
RMS Gradient Norm a.u.
Imaginary Freq
Dipole Moment 11.0032 Debye
Point Group C1
Job cpu time: 0 days 0 hours minutes 45.0 seconds.

Borazine

Optimisation

Job type: Optimisation Method: B3LYP Basis set: 6-31G(d,p)

The log file of optimisation:click here

The D space calculation is provided:[| click here]

A Gaussview image of a Borazine molecule after optimisation
Table (26)
Borazine optimisation
File Name Borazine
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -242.68459789 a.u.
RMS Gradient Norm 0.00007128 a.u.
Imaginary Freq
Dipole Moment 0.0003 Debye
Point Group C1
Job cpu time: 0 days 0 hours 4 minutes 33.0 seconds.

The "real" output:the final set of forces and displacements,which gives an indication of the calculation convergence

 
 Item               Value     Threshold  Converged?
 Maximum Force            0.000117     0.000450     YES
 RMS     Force            0.000036     0.000300     YES
 Maximum Displacement     0.000327     0.001800     YES
 RMS     Displacement     0.000104     0.001200     YES
 Predicted change in Energy=-1.206132D-07
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,11)                 1.0097         -DE/DX =    0.0                 !
 ! R2    R(2,12)                 1.1949         -DE/DX =    0.0001              !
 ! R3    R(3,10)                 1.0097         -DE/DX =    0.0                 !
 ! R4    R(4,8)                  1.1949         -DE/DX =    0.0001              !
 ! R5    R(5,9)                  1.0097         -DE/DX =    0.0                 !
 ! R6    R(6,7)                  1.1949         -DE/DX =    0.0001              !
 ! R7    R(7,9)                  1.4307         -DE/DX =    0.0                 !
 ! R8    R(7,11)                 1.4306         -DE/DX =    0.0                 !
 ! R9    R(8,9)                  1.4307         -DE/DX =   -0.0001              !
 ! R10   R(8,10)                 1.4307         -DE/DX =   -0.0001              !
 ! R11   R(10,12)                1.4306         -DE/DX =    0.0                 !
 ! R12   R(11,12)                1.4307         -DE/DX =   -0.0001              !
 ! A1    A(6,7,9)              121.4339         -DE/DX =    0.0                 !
 ! A2    A(6,7,11)             121.4439         -DE/DX =    0.0                 !
 ! A3    A(9,7,11)             117.1222         -DE/DX =    0.0                 !
 ! A4    A(4,8,9)              121.4457         -DE/DX =    0.0                 !
 ! A5    A(4,8,10)             121.4367         -DE/DX =    0.0                 !
 ! A6    A(9,8,10)             117.1176         -DE/DX =    0.0                 !
 ! A7    A(5,9,7)              118.5554         -DE/DX =    0.0                 !
 ! A8    A(5,9,8)              118.5605         -DE/DX =    0.0                 !
 ! A9    A(7,9,8)              122.884          -DE/DX =    0.0                 !
 ! A10   A(3,10,8)             118.5663         -DE/DX =    0.0                 !
 ! A11   A(3,10,12)            118.5598         -DE/DX =    0.0                 !
 ! A12   A(8,10,12)            122.8739         -DE/DX =    0.0                 !
 ! A13   A(1,11,7)             118.5621         -DE/DX =    0.0                 !
 ! A14   A(1,11,12)            118.5672         -DE/DX =    0.0                 !
 ! A15   A(7,11,12)            122.8707         -DE/DX =    0.0                 !
 ! A16   A(2,12,10)            121.437          -DE/DX =    0.0                 !
 ! A17   A(2,12,11)            121.4314         -DE/DX =    0.0                 !
 ! A18   A(10,12,11)           117.1316         -DE/DX =    0.0                 !
 ! D1    D(6,7,9,5)             -0.0006         -DE/DX =    0.0                 !
 ! D2    D(6,7,9,8)            179.9979         -DE/DX =    0.0                 !
 ! D3    D(11,7,9,5)           179.9989         -DE/DX =    0.0                 !
 ! D4    D(11,7,9,8)            -0.0026         -DE/DX =    0.0                 !
 ! D5    D(6,7,11,1)             0.0011         -DE/DX =    0.0                 !
 ! D6    D(6,7,11,12)         -179.9993         -DE/DX =    0.0                 !
 ! D7    D(9,7,11,1)          -179.9984         -DE/DX =    0.0                 !
 ! D8    D(9,7,11,12)            0.0012         -DE/DX =    0.0                 !
 ! D9    D(4,8,9,5)              0.0008         -DE/DX =    0.0                 !
 ! D10   D(4,8,9,7)           -179.9977         -DE/DX =    0.0                 !
 ! D11   D(10,8,9,5)           180.0            -DE/DX =    0.0                 !
 ! D12   D(10,8,9,7)             0.0015         -DE/DX =    0.0                 !
 ! D13   D(4,8,10,3)            -0.0012         -DE/DX =    0.0                 !
 ! D14   D(4,8,10,12)          180.0002         -DE/DX =    0.0                 !
 ! D15   D(9,8,10,3)           179.9995         -DE/DX =    0.0                 !
 ! D16   D(9,8,10,12)            0.0009         -DE/DX =    0.0                 !
 ! D17   D(3,10,12,2)            0.0011         -DE/DX =    0.0                 !
 ! D18   D(3,10,12,11)        -180.0008         -DE/DX =    0.0                 !
 ! D19   D(8,10,12,2)          179.9997         -DE/DX =    0.0                 !
 ! D20   D(8,10,12,11)          -0.0022         -DE/DX =    0.0                 !
 ! D21   D(1,11,12,2)           -0.0012         -DE/DX =    0.0                 !
 ! D22   D(1,11,12,10)         180.0007         -DE/DX =    0.0                 !
 ! D23   D(7,11,12,2)         -180.0008         -DE/DX =    0.0                 !
 ! D24   D(7,11,12,10)           0.0011         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Frequency Analysis

Job type: Frequency Method: B3LYP Basis set: 6-31G(d,p)

The log file of the frequency analysis:click here

The D space calculation is provided:[| click here]

A image of data summary of Borazine molecule frequency calculation
Table (27)
Borazine frequency analysis
File Name Borazine_opt_fre
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -242.68459788 a.u.
RMS Gradient Norm 0.00007138 a.u.
Imaginary Freq 0
Dipole Moment 0.0003 Debye
Point Group C1
Job cpu time: 0 days 0 hours 4 minutes 57.0 seconds.

The item table from the "real" output is showing below.

Item               Value     Threshold  Converged?
 Maximum Force            0.000206     0.000450     YES
 RMS     Force            0.000071     0.000300     YES
 Maximum Displacement     0.000378     0.001800     YES
 RMS     Displacement     0.000137     0.001200     YES
 Predicted change in Energy=-1.388898D-07
 Optimization completed.
    -- Stationary point found.

low frequencies are showing below:

Low frequencies ---  -11.1723   -0.0003   -0.0001    0.0012    8.7743   11.1553
Low frequencies ---  288.5020  290.4072  404.0137

Population

Job type: Energy Method: B3LYP Basis set: 6-31G(d,p) Additional keywords: pop=full, NBO: Full NBO

The log file of the population analysis:click here

The D space calculation is provided:[| click here]

A image of data summary of Borazine molecule frequency calculation
Table (28)
Borazine population analysis
File Name BORAZINE_OPT_PO
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Charge 0
Spin Singlet
E(RB3LYP) -242.68459789 a.u.
RMS Gradient Norm a.u.
Imaginary Freq
Dipole Moment 0.0003 Debye
Point Group C1
Job cpu time: 0 days 0 hours minutes 51.0 seconds.

Compare and contrast

According to the table above, some analysis has been done to discover physical properties of the molecules.These four molecules that we are interested are all aromatic systems. This will lead us to have a better understanding about their structure

Difference in Charge Distribution

One of the important properties about these aromatic ssysterm is the charge distribution which has been interpreted

Table (29) A summary of charge distribution by colour and number for four aromatic systems
Benzene Pyridinium Boratabenzene Borazine
Charge distribution by colour BEN CHARGE NO PYR CHARGE NO BBN CHARGE NO BRZ CHARGE NO
Charge distribution by number BEN CHARGE NO PYR CHARGE NO BBN CHARGE NO BRZ CHARGE NO

For benzene, the six member ring only consists of carbon atom. All the carbon atoms are bonded covalently as there is no difference between two bonded atoms. So the whole system is conjugated and the electrons are completely delocalised over the system. So the charges on carbon atoms are the same,-0.239. Each of the carbon atoms is also singly bonded to a hydrogen atom which is less electronegative than carbon. So the carbon hydrogen bond is not pure covalent and the hydrogen atoms are all slightly positively charged. This explains the reason for the negative value of the charge on the carbon as well as the positive value for the hydrogen.

Pyridine is isoelectronic with benzene. However, one of the carbon atoms is replaced by a nitrogen atom which is more electronegative than carbon. It leads to an electron localisation around the nitrogen atoms on the ring. This gives the nitrogen atom a negative charge,-0.470, and a positive charge, 0.071, on the adjacent carbons. However, this electron localisation does not affect the carbon atoms which are not next to nitrogen.

For borabenzene, the electron localisation effect appears due to the electronegativity difference between boron and carbon atom. In this case, the boron atom has a positive charge while the adjacent carbon atoms have negative charge.

For borazine, the six member ring consists of three boron atoms and three nitrogen atoms. The ring is still aromatic as the lone pair of electrons on the nitrogen is delocalised above and below the ring to form a pi bonding. However, compared with nitrogen atom, the boron is much more electron positive. As a result, the nitrogen is negatively charged while the boron is slightly positive charged, -1.102 and 0.747, respectively.

A figure of resonance forms of borazine

Difference in molecular orbitals

Figure 3:A molecular diagram of a benzene molecule
Table 30. A summary of three molecular orbitals for four aromatic systerms
molecular orbital number Benzene Pyridinium Boratabenzene Borazine
7

Energy Level=-0.84678

Energy Level=-1.21401

Energy Level=-0.60434

Energy Level=-0.88852

21,HOMO

Energy Level=-0.24691

Energy Level=-0.47885

Energy Level=0.01094

Energy Level=-0.27590

17, Total pi bonding

Energy Level=-0.35999

Energy Level=-0.64064

Energy Level=-0.13208

Energy Level=-0.36130

Molecular orbitals and aromaticity

Aromaticity is the property that is usually referred as a property that the conjugated rings with lone pair of electrons or unsaturated bonds have a stronger stabilisation than that would be expected. It can be interpreted in terms of electron delocalisation and resonance. More specific, the delocalised electrons are one type of electrons that can be shared over two bonding atoms, in other words, they do not locate at a single bond. For aromaticity rings, like benzene, the six p orbital being orthogonal to the planar overlap side by side with each other to form the pi bond. The electrons within this pi bond are delocalised as they are shared over 2 atoms. They are moving a circular motion above and below the ring which inducing a ring current. A well-known theory is introduced at this stage which is the huckel’s rule. In huckel’s rule, for an aromatic system, it always have a pi delocalised electron for 4N+2, in which N can be 0,1,2,3,4…

Comparison of molecular orbitals

For molecular orbital 7, this is a sigma bonding orbital of valence s electrons. The LCAO is a symmetrical planner with a shape of star. For benzene, as the ring consists of only carbon, so the electron is delocalised completely in the pi orbitals. So the benzene calculated MO is exactly the same as LCAO. However, it is not the case for the other three aromatic rings due to the partially electron localisation effect. As nitrogen is more electronegative than carbon and boron is more electropositive than carbon, the MO for pyridinium is pentacle due to the electron localisation on nitrogen. The calculated MO shift to carbon in boratabenzene. For borazine, the MO appears as a triangle as the electron density is partially located on the nitrogen atoms. The energy of the MO(all negative) is: pyridinium< borazine< benzene< boratabenzene.The pyridinium has the best orbital overlap, energy level of its MO is low in energy.

For molecular orbital 21, according to the LCAOs, it is the LUMO which has two node planes perpendicular to each other. The electron density is separated in to four part. Each part is out of phase with each other. Due to the nature of the benzene, the part of MO is identical in size. However, the discrepancy in the electronegativity of nitrogen and carbon, the part of MO having nitrogen will have a larger size in the pyridinium. This happens in the opposite way in boratabenzene. Due to the electron location on the nitrogen atoms, borazine MO appears as a hexagonal. The energy of the MO (all negative apart from boratabenzene) is: pyridinium< borazine< benzene< boratabenzene. The boratabenzene has the worstorbital overlap, energy level of its MO is high in energy.

For molecular orbital 17, according to the LCAOs, it is the pi bonding orbital. So there should be two equal size electron clouds below and above the ring. For benzene, it is a hexagonal. However, the electron cloud moves towards nitrogen in pyridinium as well as in borazine and moves away from boron in boratabenzene.The energy of the MO(all negative) is: pyridinium< borazine< benzene< boratabenzene

As the molecule is more symmetric, it will have more degenerate orbitals. Among these four aromatic ring systems, benzene is the most symmetric ring. Borazine is not as symmetric as benzene but it still have more degenerate orbitals than boratabenzene or pyridinium dose. However, the boratabenzene and pyridinium only have one carbon being replaced by an atom of a different element. This reduces their symmetry largely. The electronegativity of the replaced atoms have a significant effect on orbital overlap in terms of increasing or decreasing orbital energy level.

The substitution and molecular orbitals

The subsitition has a fairly significant influenceon the MO. Electronegative substituents or electropositive substituents lead to a poorly overlap between LICAOs. This will increase the bonding orbital energy and decrease the antibondng orbital energy. The energy gap between HOMO and LUMO is reduced and the reactivity of the molecule is increased meanwhile.