Jump to content

Rep:Mod:888

From ChemWiki

Bonding and Molecular Orbitals in Main Group Compounds

Optimisation, Frequency Analysis and Population Analysis of Simple Molecules

Optimisation of BH3

Calculation Setup and Summary

Summary of BH3 Optimisation using 3-21G Basis Set.
Job Type Optimisation
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 3-21G
Keywords # opt b3lyp/3-21g geom=connectivity
Final Energy (a.u.) -26.46226338
Gradient (a.u.) 0.00020672
Dipole Moment (debye) 0.00
Point Group D3H
Calculation Time (sec) 18.0

Results

Log File of BH3 Optimisation using 3-21G Basis Set

B-H Bond Distance in BH3 1.193 Å
H-B-H Bond Angle in BH3 120.0°

Item Table of BH3 Optimisation with basis set 3-21G:

       Item               Value     Threshold  Converged?
 Maximum Force            0.000413     0.000450     YES
 RMS     Force            0.000271     0.000300     YES
 Maximum Displacement     0.001610     0.001800     YES
 RMS     Displacement     0.001054     0.001200     YES
 Predicted change in Energy=-1.071764D-06
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1935         -DE/DX =    0.0004              !
 ! R2    R(1,3)                  1.1935         -DE/DX =    0.0004              !
 ! R3    R(1,4)                  1.1935         -DE/DX =    0.0004              !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Discussion

BH3 was first optimised using 3-21G basis set. Forces and displacements were successfully converged as shown in the item table. All B-H bond lengths and H-B-H angles are equivalent as expected.

Optimisation of BH3 using a better basis set

Calculation Setup and Summary

Summary of BH3 Optimisation using 6-31G(d.p) Basis Set.
Job Type Optimisation
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d.p)
Keywords # opt b3lyp/6-31g(d.p) geom=connectivity
Final Energy (a.u.) -26.61532363
Gradient (a.u.) 0.00000235
Dipole Moment (debye) 0.00
Point Group D3H
Calculation Time (sec) 10.0

Results

Log File of BH3 Optimisation using 6-31G(d.p) Basis Set

B-H Bond Distance in BH3 1.193 Å
H-B-H Bond Angle in BH3 120.0°

Item Table of BH3 Optimisation with basis Set: 6-31G(d.p):

 Item               Value     Threshold  Converged?
 Maximum Force            0.000005     0.000450     YES
 RMS     Force            0.000003     0.000300     YES
 Maximum Displacement     0.000019     0.001800     YES
 RMS     Displacement     0.000012     0.001200     YES
 Predicted change in Energy=-1.304899D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1923         -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.1923         -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.1923         -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Discussion

After optimising BH3 using 3-21G basis set, it was further optimised using a higher level basis set, 6-31G(d,p). All forces and displacements were converged. A lower level basis set was used first to avoid long calculation time and the higher level basis set provides a more accurate structure of the molecule. By using 6-31G(d,p) basis set, the energy of the molecule has decreased by 401.9 kJ/mol-1 which is a large difference. Bond angle and lengths have stayed the same. Although the bond lengths varied in the last two decimal places between the two basis sets, these were not reported as bond lengths are only accurate to 0.01 Å.

Difference in Energies
Basis Set Energy
3-21G -26.46226338 a.u.
6-31G(d,p) -26.61532363 a.u.
Δ Energy 0.15306025 a.u.
Δ Energy 401.9 kJ/mol-1

Optimisation of TIBr3 using HPC

Calculation Setup and Summary

Summary of TIBr3 Optimisation.
Job Type Optimisation
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set LANL2DZ
Keywords # opt b3lyp/lanl2dz geom=connectivity
Final Energy (a.u.) -91.21812851
Gradient (a.u.) 0.00000090
Dipole Moment (debye) 0.00
Point Group D3H
Calculation Time (sec) 37.6

Results

DOI:10042/21621

Tl-Br Bond Distance in TIBr3 2.651 Å
Br-Tl-Br Bond Angle in TIBr3 120.0°

Item Table of TIBr3 Optimisation:

Item               Value     Threshold  Converged?
 Maximum Force            0.000002     0.000450     YES
 RMS     Force            0.000001     0.000300     YES
 Maximum Displacement     0.000022     0.001800     YES
 RMS     Displacement     0.000014     0.001200     YES
 Predicted change in Energy=-6.084061D-11
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  2.651          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  2.651          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  2.651          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Discussion

For the heavier molecule, TLBr3, calculations were more complicated than those of BH3 so they were not submitted to Gassview but to HPC to avoid long calculation time. Prior to submitting the calculations, symmetry was restricted to D3H with a high tollerance of 0.0001 in order to obtain more accurate vibrations and MOs later. Lan2DZ basis set was used and this uses D95V (medium level) on first row atoms and Los Alamos ECP (pseudo potentials) on heavier elements. Forces and displacements were successfully converged. All TL-Br bond lengths and Br-TL-Br angles are equivalent. The literature value of Tl-Br bond length is similar to the value obtained through gaussian, further supporting its accuracy.

Optimised Tl-Br bond distance Literature Tl-Br bond distance
2.651Å 2.51 Å [1]

Optimisation of BBr3 using HPC

Calculation Setup and Summary

Summary of BBr3 Optimisation.
Job Type Optimisation
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set GEN
Keywords # opt b3lyp/gen geom=connectivity gfinput pseudo=read
Final Energy (a.u.) -64.43645296
Gradient (a.u.) 0.00020672
Dipole Moment (debye) 0.00
Point Group D3H
Calculation Time (sec) 36.1

Results

DOI:10042/21626

B-Br Bond Distance in BBr3 1.933 Å
Br-B-Br Bond Angle in BBr3 120.0°

Item Table of BBr3 Optimisation

  Item               Value     Threshold  Converged?
 Maximum Force            0.000008     0.000450     YES
 RMS     Force            0.000005     0.000300     YES
 Maximum Displacement     0.000036     0.001800     YES
 RMS     Displacement     0.000023     0.001200     YES
 Predicted change in Energy=-4.026903D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.934          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.934          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.934          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              120.0            -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              120.0            -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              120.0            -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)            180.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Discussion

Calculations were submitted to HPC and basis set GEN was used. All forces and displacements have converged and all B-Br bond lengths and Br-B-Br angles were equivalent.

BH3, BBr3 and TiBr3 Comparison

As the molecule becomes larger, the bond length increases while the bond angle stays the same.

Bond Distance and Bond Angle Comparison
Molecule Bond Distance (Å) Bond Angle (°)
BH3 1.193 120.0
BBr3 1.933 120.0
TlBr3 2.651 120.0

Bond Angle: BH3, BBr3 and TlBr3 all adopt trigonal planar structure. Here, bond angle is not affected by the ligand or the central atom. All bonds within each structure are equivalent therefore bond angle does not change.

Bond Distance: The larger the molecule, the greater the number of electrons and the longer the bond lengths. This is observed when larger ligands were used (BH3 to BBr3 where H was replaced by Br) and also when a larger central atom was used (BBr3 to TlBr3 where B was replaced by TI). In both cases, an increase in bond length was observed.

Bonding in Gaussview: A bond is the attractive interaction between atoms. Its strength could be affected by several factors, such as distance, attractive forces between positively and negatively charged ions or the repulsion of the positively charged nucleus. A bond is not shown on Gaussview when this attractive interaction is too low. However, this does not imply that there is no interaction between the atoms although they may be very weak.

Frequency Analysis of BH3

Calculation Setup and Summary

Summary of BH3 Frequency Analysis.
Job Type Frequency
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Keywords # freq b3lyp/6-31G(d.p)geom=connectivity
Final Energy (a.u.) -26.61532363
Gradient 0.00000237
Dipole Moment (debye) 0.00
Point Group D3H
Calculation Time (sec) 9.0

Results

Log File of BH3 Frequency Analysis

 Low frequencies ---   -0.9033   -0.7343   -0.0054    6.7375   12.2491   12.2824
 Low frequencies --- 1163.0003 1213.1853 1213.1880

Discussion

Missing Peaks: There are two pairs of vibrations that have nearly identical frequencies, symmetrical stretching (No.2) and rocking (No.3) at 1213 cm-1 and also asymmetrical stretching (No.5) and symmetrical stretching (No.6) at 2715cm-1. Each pair of the vibrations have merged to give one single peak in the IR spectrum and can only be seen when the spectrum is expanded. The last missing peak is due to the extremely low intensity (0) of symmetric stretching (No.4).

No. Form of Vibration Frequency

(cm-1)

Intensity Symmetry D3H

Point Group

Image Animation
1 Wagging. B atom vibrates in the opposite direction to the 3 H atoms. They move in and out of the plane of the molecule. 1163 93 a2
2 Symmetrical Stretching. 2 H atoms scissors about B atom and the B atom and the last H atom move back and forth. 1213 14 e'
3 Rocking. 2 H atoms swings back and forth in the same direction while the other H atom swings in the opposite direction. All H atoms move on the same plane. 1213 14 e'
4 Symmetric Stretching. All H atoms stretch along their bonds while B atom does not move. 2582 0 a1'
5 Asymmetrical Stretching. 1 H atom does not move while 2 H atoms stretch asymmetrically. 2715 126 e'
6 2 H atoms stretch symmetrically while the remaining H atom stretches in the opposite direction. 2715 126 e'

Frequency Analysis of TIBr3

Calculation Setup and Summary

Summary of TIBr3 Frequency Analysis.
Job Type Frequency
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set LANL2DZ
Keywords # freq b3lyp/lanl2dz geom=connectivity
Final Energy (a.u.) -91.21812851
Gradient (a.u.) 0.00000088
Dipole Moment (debye) 0.00
Point Group D3H
Calculation Time (sec) 32.0

Results

DOI:10042/21642

align=center
Low frequencies ---   -3.4213   -0.0026   -0.0004    0.0015    3.9367    3.9367
Low frequencies ---   46.4289   46.4292   52.1449
No. Form of Vibration Frequency

(cm-1)

Intensity Symmetry D3H

Point Group

Image Animation
1 Symmetrical Stretching. 2 Br atoms scissors about Tl atom and the Tl atom and the last Br atom move back and forth. 46 4 e'
2 Rocking. 2 Br atoms swings back and forth in the same direction while the other Br atom swings in the opposite direction. All Br atoms move on the same plane. 46 4 e'
3 Wagging. Tl atom vibrates in the opposite direction to the 3 Br atoms. They move in and out of the plane of the molecule. 52 6 a2
4 Symmetric Stretching. All Br atoms stretch along their bonds while Tl atom does not move. 165 0 a1'
5 Asymmetrical Stretching. 1 Br atom does not move while 2 Br atoms stretch asymmetrically. 211 25 e'
6 2 Br atoms stretch symmetrically while the remaining Br atom stretches in the opposite direction. 211 25 e'

BH3 and TIBr3 Frequency Comparison

Vibrational Frequencies
Form of Vibration BH3 (cm-1) TIBr3 (cm-1)
Scissoring 1213 46
Rocking 1213 46
Wagging 1163 52
All symmetric stretching 2582 165
Asymmetrical Stretching 2715 211
2 symmetric, 1 asymmetric stretch 2715 211

BH3 has higher vibrational energy as the magnitude of its frequencies are much larger than those of TIBr3. This is because more energy is needed to move the heavier TIBr3 molecule and if the same amount of energy was supplied to both molecules, BH3 would move faster. Vibrational modes are not in the same order for the two molecules. This could be due to the change in mass as frequencies are sensitive to the mass of the molecule. The IR spectra look similar, with one intense peak on the right and two smaller peaks on the left.

The same method and basis set were used for both the optimisation and frequency analysis calculations to allow meaningful comparison of the results. Results can be compared if they have the same calculation setup as this would give rise to the same accuracy. However, if different methods were used, the error of the results would be different and any comparison would not be fair.

Frequency analysis is a means to check that the structure of the molecule has been successfully optimised. The first derivative should be close to zero and for the second derivative to be a minimum, it has to have a positive value.

Molecular Orbitals of BH3

Summary of BH3 MO analysis.
Job Type Energy
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Keywords # b3lyp/6-31G(d.p) pop=(nbo.full) geom=connectivity
Final Energy (a.u.) -26.61532363
Dipole Moment (debye) 0.00
Point Group D3H
Calculation Time (sec) 31.1

Results and Discussion

Additional Keyword, pop=full, was added with type under NBO set to "Full NBO". The real and LCAO MOs look very similar, validating the accuracy of the computer generated MOs.

DOI:10042/21647

Log File of BH3 Molecular Orbital Analysis


Symmetry Labels Calculated MO Predicted MO
a1'
a1'
e'
e'
a2'

Optimisation of NH3

Calculation Setup and Summary

Summary of NH3 Optimisation.
Job Type Optimisation
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d.p)
Keywords # opt b3lyp/6-31g(d.p) nosymm geom=connectivity
Final Energy (a.u.) -56.55776856
Gradient (a.u.) 0.00000885
Dipole Moment (debye) 1.85
Point Group C1
Calculation Time (sec) 13.0

Results

Log File of NH3 Optimisation

Item Table of NH3 Optimisation

 Item               Value     Threshold  Converged?
 Maximum Force            0.000024     0.000450     YES
 RMS     Force            0.000012     0.000300     YES
 Maximum Displacement     0.000079     0.001800     YES
 RMS     Displacement     0.000053     0.001200     YES
 Predicted change in Energy=-1.629730D-09
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.018          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.018          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.018          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              105.7413         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              105.7486         -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              105.7479         -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -111.8631         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Frequency Analysis of NH3

Calculation Setup and Summary

Summary of NH3 Frequency Analysis.
Job Type Frequency
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Keywords # freq b3lyp/6-31G(d.p) nosymm geom=connectivity
Final Energy (a.u.) -56.55776856
Gradient 0.00000888
Dipole Moment (debye) 1.85
Point Group C1
Calculation Time (sec) 10.0

Results

Log file of NH3 Frequency Analysis

Low frequencies ---  -30.7764    0.0013    0.0015    0.0019   20.3142   28.2484
Low frequencies --- 1089.5557 1694.1237 1694.1868

Molecular Orbitals of NH3

Calculation Setup and Summary

Summary of NH3 MO analysis.
Job Type Energy
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Keywords # b3lyp/6-31G(d.p) pop=(nbo.full) geom=connectivity
Final Energy (a.u.) -56.55776856
Dipole Moment (debye) 1.85
Point Group C1
Calculation Time (sec) 3.0

Results and Discussion

Log File of NH3 Molecular Orbital Analysis

NBO colour range was set from -1.000 to 1.000 and NBO charges for the nitrogen and hydrogen atoms are:

Using the additional keyword "nosymm" in the calculation takes the symmetry away from the molecule, therefore the point group appears to be C1|. Taking symmetry away from the molecule allows quicker calculation.

Optimisation of NH3BH3

Calculation and Setup

Summary of NH3BH3 Optimisation.
Job Type Optimisation
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d.p)
Keywords # opt b3lyp/6-31g(d.p) geom=connectivity
Final Energy (a.u.) -83.22468918
Gradient (a.u.) 0.00006806
Dipole Moment (debye) 5.57
Point Group C1
Calculation Time (sec) 52.0

Results

Log file of NH3BH3 Optimisation

Item Table of NH3BH3 Optimisation:

   Item               Value     Threshold  Converged?
 Maximum Force            0.000137     0.000450     YES
 RMS     Force            0.000063     0.000300     YES
 Maximum Displacement     0.000606     0.001800     YES
 RMS     Displacement     0.000336     0.001200     YES
 Predicted change in Energy=-1.994009D-07
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,7)                  1.0186         -DE/DX =   -0.0001              !
 ! R2    R(2,7)                  1.0186         -DE/DX =   -0.0001              !
 ! R3    R(3,7)                  1.0186         -DE/DX =   -0.0001              !
 ! R4    R(4,8)                  1.2101         -DE/DX =   -0.0001              !
 ! R5    R(5,8)                  1.2101         -DE/DX =   -0.0001              !
 ! R6    R(6,8)                  1.2101         -DE/DX =   -0.0001              !
 ! R7    R(7,8)                  1.668          -DE/DX =   -0.0001              !
 ! A1    A(1,7,2)              107.87           -DE/DX =    0.0                 !
 ! A2    A(1,7,3)              107.8652         -DE/DX =    0.0                 !
 ! A3    A(1,7,8)              111.0329         -DE/DX =    0.0                 !
 ! A4    A(2,7,3)              107.8697         -DE/DX =    0.0                 !
 ! A5    A(2,7,8)              111.0286         -DE/DX =    0.0                 !
 ! A6    A(3,7,8)              111.0291         -DE/DX =    0.0                 !
 ! A7    A(4,8,5)              113.8693         -DE/DX =    0.0                 !
 ! A8    A(4,8,6)              113.8721         -DE/DX =    0.0                 !
 ! A9    A(4,8,7)              104.6003         -DE/DX =    0.0                 !
 ! A10   A(5,8,6)              113.8747         -DE/DX =    0.0                 !
 ! A11   A(5,8,7)              104.6003         -DE/DX =    0.0                 !
 ! A12   A(6,8,7)              104.5984         -DE/DX =    0.0                 !
 ! D1    D(1,7,8,4)           -179.9867         -DE/DX =    0.0                 !
 ! D2    D(1,7,8,5)            -59.9892         -DE/DX =    0.0                 !
 ! D3    D(1,7,8,6)             60.0135         -DE/DX =    0.0                 !
 ! D4    D(2,7,8,4)            -59.9839         -DE/DX =    0.0                 !
 ! D5    D(2,7,8,5)             60.0136         -DE/DX =    0.0                 !
 ! D6    D(2,7,8,6)           -179.9837         -DE/DX =    0.0                 !
 ! D7    D(3,7,8,4)             60.0161         -DE/DX =    0.0                 !
 ! D8    D(3,7,8,5)           -179.9864         -DE/DX =    0.0                 !
 ! D9    D(3,7,8,6)            -59.9837         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Frequency Analysis of NH3BH3

Calculation Setup and Summary

Summary of NH3BH3 Frequency Analysis.
Job Type Frequency
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d.p)
Keywords # freq b3lyp/6-31G(d.p) geom=connectivity
Final Energy (a.u.) -83.22468916
Gradient (a.u.) 0.00006806
Dipole Moment (debye) 5.57
Point Group C1
Calculation Time (sec) 39.0

Results

Log file of NH3BH3 Frequency Analysis

Low frequencies ---   -0.0009   -0.0009   -0.0007   17.1076   22.5380   38.6973
Low frequencies ---  265.8489  632.3775  639.0687

Energy Analysis

A difference in energy is observed between NH3BH3 and the sum of NH3 and BH3. The difference is -135.5 kJ/mol-1 as reported below.

Energy of Molecules
NH3 -56.55776856 a.u.
BH3 -26.61532363 a.u.
NH3BH3 -83.22468918 a.u.
NH3BH3 - [NH3 + BH3] -0.05159699 a.u.
NH3BH3 - [NH3 + BH3] -135.467897 kJ/mol-1

Optimisation and Analysis of Aromatic Molecules

Optimisation of Benzene

Calculation Setup and Summary

Summary of Benzene Optimisation using 6-31G(d.p) Basis Set.
Job Type Optimisation
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d.p)
Keywords # opt b3lyp/6-31g(d.p) geom=connectivity
Final Energy (a.u.) -232.25820551
Gradient (a.u.) 0.00009549
Dipole Moment (debye) 0.00
Point Group C1
Calculation Time 2 minutes 2.7 seconds

Results

DOI:10042/21812

Item Table of Benzene Optimisation with basis Set: 6-31G(d.p):

Item               Value     Threshold  Converged?
 Maximum Force            0.000212     0.000450     YES
 RMS     Force            0.000085     0.000300     YES
 Maximum Displacement     0.000991     0.001800     YES
 RMS     Displacement     0.000315     0.001200     YES
 Predicted change in Energy=-5.157454D-07
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.3963         -DE/DX =    0.0001              !
 ! R2    R(1,6)                  1.3961         -DE/DX =    0.0002              !
 ! R3    R(1,7)                  1.0861         -DE/DX =    0.0002              !
 ! R4    R(2,3)                  1.3961         -DE/DX =    0.0002              !
 ! R5    R(2,8)                  1.0861         -DE/DX =    0.0002              !
 ! R6    R(3,4)                  1.3963         -DE/DX =    0.0001              !
 ! R7    R(3,9)                  1.086          -DE/DX =    0.0002              !
 ! R8    R(4,5)                  1.3961         -DE/DX =    0.0002              !
 ! R9    R(4,10)                 1.086          -DE/DX =    0.0002              !
 ! R10   R(5,6)                  1.3963         -DE/DX =    0.0001              !
 ! R11   R(5,11)                 1.0861         -DE/DX =    0.0002              !
 ! R12   R(6,12)                 1.0861         -DE/DX =    0.0002              !
 ! A1    A(2,1,6)              119.9972         -DE/DX =    0.0                 !
 ! A2    A(2,1,7)              119.9949         -DE/DX =    0.0                 !
 ! A3    A(6,1,7)              120.0079         -DE/DX =    0.0                 !
 ! A4    A(1,2,3)              120.0079         -DE/DX =    0.0                 !
 ! A5    A(1,2,8)              119.9881         -DE/DX =    0.0                 !
 ! A6    A(3,2,8)              120.004          -DE/DX =    0.0                 !
 ! A7    A(2,3,4)              119.9948         -DE/DX =    0.0                 !
 ! A8    A(2,3,9)              120.0086         -DE/DX =    0.0                 !
 ! A9    A(4,3,9)              119.9966         -DE/DX =    0.0                 !
 ! A10   A(3,4,5)              119.9972         -DE/DX =    0.0                 !
 ! A11   A(3,4,10)             119.9934         -DE/DX =    0.0                 !
 ! A12   A(5,4,10)             120.0094         -DE/DX =    0.0                 !
 ! A13   A(4,5,6)              120.0083         -DE/DX =    0.0                 !
 ! A14   A(4,5,11)             120.0014         -DE/DX =    0.0                 !
 ! A15   A(6,5,11)             119.9904         -DE/DX =    0.0                 !
 ! A16   A(1,6,5)              119.9946         -DE/DX =    0.0                 !
 ! A17   A(1,6,12)             120.0106         -DE/DX =    0.0                 !
 ! A18   A(5,6,12)             119.9948         -DE/DX =    0.0                 !
 ! D1    D(6,1,2,3)             -0.0059         -DE/DX =    0.0                 !
 ! D2    D(6,1,2,8)            180.0023         -DE/DX =    0.0                 !
 ! D3    D(7,1,2,3)           -180.01           -DE/DX =    0.0                 !
 ! D4    D(7,1,2,8)             -0.0019         -DE/DX =    0.0                 !
 ! D5    D(2,1,6,5)             -0.0055         -DE/DX =    0.0                 !
 ! D6    D(2,1,6,12)          -179.9972         -DE/DX =    0.0                 !
 ! D7    D(7,1,6,5)           -180.0013         -DE/DX =    0.0                 !
 ! D8    D(7,1,6,12)             0.007          -DE/DX =    0.0                 !
 ! D9    D(1,2,3,4)              0.0117         -DE/DX =    0.0                 !
 ! D10   D(1,2,3,9)           -179.9914         -DE/DX =    0.0                 !
 ! D11   D(8,2,3,4)            180.0036         -DE/DX =    0.0                 !
 ! D12   D(8,2,3,9)              0.0005         -DE/DX =    0.0                 !
 ! D13   D(2,3,4,5)             -0.0062         -DE/DX =    0.0                 !
 ! D14   D(2,3,4,10)          -180.0059         -DE/DX =    0.0                 !
 ! D15   D(9,3,4,5)            179.9969         -DE/DX =    0.0                 !
 ! D16   D(9,3,4,10)            -0.0028         -DE/DX =    0.0                 !
 ! D17   D(3,4,5,6)             -0.0051         -DE/DX =    0.0                 !
 ! D18   D(3,4,5,11)           180.0058         -DE/DX =    0.0                 !
 ! D19   D(10,4,5,6)          -180.0055         -DE/DX =    0.0                 !
 ! D20   D(10,4,5,11)            0.0054         -DE/DX =    0.0                 !
 ! D21   D(4,5,6,1)              0.011          -DE/DX =    0.0                 !
 ! D22   D(4,5,6,12)           180.0027         -DE/DX =    0.0                 !
 ! D23   D(11,5,6,1)          -179.9999         -DE/DX =    0.0                 !
 ! D24   D(11,5,6,12)           -0.0082         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Frequency Analysis of Benzene

Calculation Setup and Summary

Summary of Benzene Frequency Analysis.
Job Type Frequency
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d.p)
Keywords # freq b3lyp/6-31G(d.p) geom=connectivity
Final Energy (a.u.) -232.25820551
Gradient (a.u.) 0.00009549
Dipole Moment (debye) 0.00
Point Group C1
Calculation Time 5 minutes 30.4 seconds

Results

DOI:10042/21814

Low frequencies ---  -17.2788  -14.5868   -9.6527   -0.0010   -0.0009    0.0004
 Low frequencies ---  413.7971  414.4697  620.8545

Molecular Orbitals of Benzene

Calculation Setup and Summary

Summary of Benzene MO analysis.
Job Type Energy
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Keywords # rb3lyp/6-31G(d.p) pop=(nbo.full) geom=connectivity
Final Energy (a.u.) -232.25820551
Dipole Moment (debye) 0.00
Point Group C1
Calculation Time 1 minute 5.2 seconds

DOI:10042/21868

Optimisation of Boratabenzene

Calculation Setup and Summary

Summary of Boratabenzene Optimisation using 6-31G(d.p) Basis Set.
Job Type Optimisation
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d.p)
Keywords # opt b3lyp/6-31g(d.p) geom=connectivity
Final Energy (a.u.) -219.02052962
Gradient (a.u.) 0.00016240
Dipole Moment (debye) 2.84
Point Group C1
Calculation Time 4 minutes 4.0 seconds

Results

DOI:10042/21846

Item Table of Boratabenzene Optimisation with basis Set: 6-31G(d.p):

Item               Value     Threshold  Converged?
 Maximum Force            0.000244     0.000450     YES
 RMS     Force            0.000077     0.000300     YES
 Maximum Displacement     0.001093     0.001800     YES
 RMS     Displacement     0.000402     0.001200     YES
 Predicted change in Energy=-8.683304D-07
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.4053         -DE/DX =   -0.0001              !
 ! R2    R(1,5)                  1.3988         -DE/DX =    0.0                 !
 ! R3    R(1,6)                  1.0968         -DE/DX =    0.0                 !
 ! R4    R(2,3)                  1.4053         -DE/DX =   -0.0001              !
 ! R5    R(2,7)                  1.0917         -DE/DX =   -0.0001              !
 ! R6    R(3,4)                  1.3989         -DE/DX =    0.0                 !
 ! R7    R(3,8)                  1.0968         -DE/DX =    0.0                 !
 ! R8    R(4,9)                  1.0971         -DE/DX =   -0.0001              !
 ! R9    R(4,12)                 1.5139         -DE/DX =    0.0001              !
 ! R10   R(5,11)                 1.0971         -DE/DX =   -0.0001              !
 ! R11   R(5,12)                 1.5139         -DE/DX =    0.0001              !
 ! R12   R(10,12)                1.2178         -DE/DX =    0.0002              !
 ! A1    A(2,1,5)              122.1404         -DE/DX =    0.0001              !
 ! A2    A(2,1,6)              117.4328         -DE/DX =    0.0                 !
 ! A3    A(5,1,6)              120.4268         -DE/DX =   -0.0002              !
 ! A4    A(1,2,3)              120.4471         -DE/DX =   -0.0001              !
 ! A5    A(1,2,7)              119.7758         -DE/DX =    0.0001              !
 ! A6    A(3,2,7)              119.777          -DE/DX =    0.0001              !
 ! A7    A(2,3,4)              122.1409         -DE/DX =    0.0001              !
 ! A8    A(2,3,8)              117.4337         -DE/DX =    0.0                 !
 ! A9    A(4,3,8)              120.4254         -DE/DX =   -0.0002              !
 ! A10   A(3,4,9)              115.9348         -DE/DX =    0.0002              !
 ! A11   A(3,4,12)             120.0926         -DE/DX =   -0.0001              !
 ! A12   A(9,4,12)             123.9726         -DE/DX =   -0.0001              !
 ! A13   A(1,5,11)             115.9367         -DE/DX =    0.0002              !
 ! A14   A(1,5,12)             120.0927         -DE/DX =   -0.0001              !
 ! A15   A(11,5,12)            123.9706         -DE/DX =   -0.0001              !
 ! A16   A(4,12,5)             115.0862         -DE/DX =    0.0                 !
 ! A17   A(4,12,10)            122.4584         -DE/DX =    0.0                 !
 ! A18   A(5,12,10)            122.4555         -DE/DX =    0.0                 !
 ! D1    D(5,1,2,3)             -0.0021         -DE/DX =    0.0                 !
 ! D2    D(5,1,2,7)           -180.001          -DE/DX =    0.0                 !
 ! D3    D(6,1,2,3)           -180.0013         -DE/DX =    0.0                 !
 ! D4    D(6,1,2,7)             -0.0002         -DE/DX =    0.0                 !
 ! D5    D(2,1,5,11)           180.0009         -DE/DX =    0.0                 !
 ! D6    D(2,1,5,12)             0.0003         -DE/DX =    0.0                 !
 ! D7    D(6,1,5,11)             0.0001         -DE/DX =    0.0                 !
 ! D8    D(6,1,5,12)          -180.0005         -DE/DX =    0.0                 !
 ! D9    D(1,2,3,4)              0.0028         -DE/DX =    0.0                 !
 ! D10   D(1,2,3,8)            180.0006         -DE/DX =    0.0                 !
 ! D11   D(7,2,3,4)            180.0017         -DE/DX =    0.0                 !
 ! D12   D(7,2,3,8)             -0.0006         -DE/DX =    0.0                 !
 ! D13   D(2,3,4,9)           -180.002          -DE/DX =    0.0                 !
 ! D14   D(2,3,4,12)            -0.0017         -DE/DX =    0.0                 !
 ! D15   D(8,3,4,9)              0.0003         -DE/DX =    0.0                 !
 ! D16   D(8,3,4,12)           180.0007         -DE/DX =    0.0                 !
 ! D17   D(3,4,12,5)            -0.0001         -DE/DX =    0.0                 !
 ! D18   D(3,4,12,10)         -179.9997         -DE/DX =    0.0                 !
 ! D19   D(9,4,12,5)           180.0002         -DE/DX =    0.0                 !
 ! D20   D(9,4,12,10)            0.0006         -DE/DX =    0.0                 !
 ! D21   D(1,5,12,4)             0.0008         -DE/DX =    0.0                 !
 ! D22   D(1,5,12,10)          180.0004         -DE/DX =    0.0                 !
 ! D23   D(11,5,12,4)         -179.9999         -DE/DX =    0.0                 !
 ! D24   D(11,5,12,10)          -0.0003         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Frequency Analysis of Boratabenzene

Calculation Setup and Summary

Summary of Boratabenzene Frequency Analysis.
Job Type Frequency
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d.p)
Keywords # freq b3lyp/6-31G(d.p) geom=connectivity
Final Energy (a.u.) -219.02052962
Gradient (a.u.) 0.00016237
Dipole Moment (debye) 2.85
Point Group C1
Calculation Time 5 minutes 35.1 seconds

Results

DOI:10042/21852

Low frequencies ---  -14.5333   -0.0008   -0.0006   -0.0005   15.8823   18.0033
Low frequencies ---  371.2529  404.2372  565.1706


Molecular Orbitals of Boratabenzene

Calculation Setup and Summary

Summary of Boratabenzene MO analysis.
Job Type Energy
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Keywords # rb3lyp/6-31G(d.p) pop=(nbo.full) geom=connectivity
Final Energy (a.u.) -219.02052962
Dipole Moment (debye) 2.84
Point Group C1
Calculation Time 1 minute 8.9 seconds

DOI:10042/21867

Optimisation of Pyridinium

Calculation Setup and Summary

Summary of Pyridinium Optimisation using 6-31G(d.p) Basis Set.
Job Type Optimisation
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d.p)
Keywords # opt b3lyp/6-31g(d.p) geom=connectivity
Final Energy (a.u.) -248.66807397
Gradient (a.u.) 0.00003236
Dipole Moment (debye) 1.87
Point Group C1
Calculation Time 3 minutes 57.6 seconds

Results

DOI:10042/21848

Item Table of Pyridinium Optimisation with basis Set: 6-31G(d.p):

Item               Value     Threshold  Converged?
 Maximum Force            0.000059     0.000450     YES
 RMS     Force            0.000020     0.000300     YES
 Maximum Displacement     0.000685     0.001800     YES
 RMS     Displacement     0.000162     0.001200     YES
 Predicted change in Energy=-5.641922D-08
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.3988         -DE/DX =    0.0                 !
 ! R2    R(1,5)                  1.3839         -DE/DX =    0.0                 !
 ! R3    R(1,6)                  1.0835         -DE/DX =    0.0                 !
 ! R4    R(2,3)                  1.3988         -DE/DX =    0.0                 !
 ! R5    R(2,7)                  1.0852         -DE/DX =    0.0                 !
 ! R6    R(3,4)                  1.3839         -DE/DX =    0.0                 !
 ! R7    R(3,8)                  1.0835         -DE/DX =    0.0                 !
 ! R8    R(4,9)                  1.0832         -DE/DX =    0.0                 !
 ! R9    R(4,12)                 1.3524         -DE/DX =    0.0                 !
 ! R10   R(5,11)                 1.0832         -DE/DX =    0.0                 !
 ! R11   R(5,12)                 1.3524         -DE/DX =    0.0                 !
 ! R12   R(10,12)                1.0169         -DE/DX =    0.0                 !
 ! A1    A(2,1,5)              119.0826         -DE/DX =    0.0                 !
 ! A2    A(2,1,6)              121.4953         -DE/DX =   -0.0001              !
 ! A3    A(5,1,6)              119.4221         -DE/DX =    0.0                 !
 ! A4    A(1,2,3)              120.0564         -DE/DX =    0.0                 !
 ! A5    A(1,2,7)              119.9711         -DE/DX =    0.0                 !
 ! A6    A(3,2,7)              119.9725         -DE/DX =    0.0                 !
 ! A7    A(2,3,4)              119.0823         -DE/DX =    0.0                 !
 ! A8    A(2,3,8)              121.4967         -DE/DX =   -0.0001              !
 ! A9    A(4,3,8)              119.4211         -DE/DX =    0.0                 !
 ! A10   A(3,4,9)              123.9315         -DE/DX =    0.0                 !
 ! A11   A(3,4,12)             119.2352         -DE/DX =    0.0                 !
 ! A12   A(9,4,12)             116.8333         -DE/DX =    0.0                 !
 ! A13   A(1,5,11)             123.9329         -DE/DX =    0.0                 !
 ! A14   A(1,5,12)             119.2347         -DE/DX =    0.0                 !
 ! A15   A(11,5,12)            116.8323         -DE/DX =    0.0                 !
 ! A16   A(4,12,5)             123.3088         -DE/DX =    0.0                 !
 ! A17   A(4,12,10)            118.3459         -DE/DX =    0.0                 !
 ! A18   A(5,12,10)            118.3453         -DE/DX =    0.0                 !
 ! D1    D(5,1,2,3)             -0.0001         -DE/DX =    0.0                 !
 ! D2    D(5,1,2,7)            180.0004         -DE/DX =    0.0                 !
 ! D3    D(6,1,2,3)           -180.0002         -DE/DX =    0.0                 !
 ! D4    D(6,1,2,7)              0.0003         -DE/DX =    0.0                 !
 ! D5    D(2,1,5,11)           180.0            -DE/DX =    0.0                 !
 ! D6    D(2,1,5,12)            -0.0004         -DE/DX =    0.0                 !
 ! D7    D(6,1,5,11)             0.0001         -DE/DX =    0.0                 !
 ! D8    D(6,1,5,12)          -180.0003         -DE/DX =    0.0                 !
 ! D9    D(1,2,3,4)              0.0004         -DE/DX =    0.0                 !
 ! D10   D(1,2,3,8)            180.0002         -DE/DX =    0.0                 !
 ! D11   D(7,2,3,4)           -180.0001         -DE/DX =    0.0                 !
 ! D12   D(7,2,3,8)             -0.0003         -DE/DX =    0.0                 !
 ! D13   D(2,3,4,9)           -180.0            -DE/DX =    0.0                 !
 ! D14   D(2,3,4,12)            -0.0002         -DE/DX =    0.0                 !
 ! D15   D(8,3,4,9)              0.0002         -DE/DX =    0.0                 !
 ! D16   D(8,3,4,12)          -180.0            -DE/DX =    0.0                 !
 ! D17   D(3,4,12,5)            -0.0003         -DE/DX =    0.0                 !
 ! D18   D(3,4,12,10)          180.0            -DE/DX =    0.0                 !
 ! D19   D(9,4,12,5)          -180.0005         -DE/DX =    0.0                 !
 ! D20   D(9,4,12,10)           -0.0002         -DE/DX =    0.0                 !
 ! D21   D(1,5,12,4)             0.0006         -DE/DX =    0.0                 !
 ! D22   D(1,5,12,10)          180.0003         -DE/DX =    0.0                 !
 ! D23   D(11,5,12,4)          180.0002         -DE/DX =    0.0                 !
 ! D24   D(11,5,12,10)          -0.0001         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Frequency Analysis of Pyridinium

Calculation Setup and Summary

Summary of Pyridinium Frequency Analysis.
Job Type Frequency
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d.p)
Keywords # freq b3lyp/6-31G(d.p) geom=connectivity
Final Energy (a.u.) -248.66807397
Gradient (a.u.) 0.00003234
Dipole Moment (debye) 1.87
Point Group C1
Calculation Time 5 minutes 40.1 seconds

Results

DOI:10042/21853

Low frequencies ---   -7.1947   -0.0004   -0.0003    0.0006   17.4261   18.7048
Low frequencies ---  392.4494  404.0786  620.4749

Molecular Orbitals of Pyridinium

Calculation Setup and Summary

Summary of Pyridinium MO analysis.
Job Type Energy
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Keywords # b3lyp/6-31G(d.p) pop=(nbo.full) geom=connectivity
Final Energy (a.u.) -248.66807397
Dipole Moment (debye) 1.87
Point Group C1
Calculation Time 1 minute 12.2 seconds

DOI:10042/21870

Optimisation of Borazine

Calculation Setup and Summary

Summary of Borazine Optimisation using 6-31G(d.p) Basis Set.
Job Type Optimisation
File Type .log
Calculation Type FOPT
Calculation Method RB3LYP
Basis Set 6-31G(d.p)
Keywords # opt b3lyp/6-31g(d.p) geom=connectivity
Final Energy (a.u.) -242.68458731
Gradient (a.u.) 0.00009860
Dipole Moment (debye) 0.00
Point Group C1
Calculation Time 5 minutes 7.4 seconds

Results

DOI:10042/21854

Item Table of Borazine Optimisation with basis Set: 6-31G(d.p):

 align="centre"
 Item               Value     Threshold  Converged?
 Maximum Force            0.000123     0.000450     YES
 RMS     Force            0.000047     0.000300     YES
 Maximum Displacement     0.000597     0.001800     YES
 RMS     Displacement     0.000125     0.001200     YES
 Predicted change in Energy=-2.274814D-07
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,8)                  1.0098         -DE/DX =    0.0                 !
 ! R2    R(2,12)                 1.1949         -DE/DX =    0.0001              !
 ! R3    R(3,9)                  1.0098         -DE/DX =    0.0                 !
 ! R4    R(4,11)                 1.1949         -DE/DX =    0.0001              !
 ! R5    R(5,7)                  1.0098         -DE/DX =    0.0                 !
 ! R6    R(6,10)                 1.1949         -DE/DX =    0.0001              !
 ! R7    R(7,10)                 1.4307         -DE/DX =   -0.0001              !
 ! R8    R(7,11)                 1.4307         -DE/DX =   -0.0001              !
 ! R9    R(8,10)                 1.4307         -DE/DX =   -0.0001              !
 ! R10   R(8,12)                 1.4307         -DE/DX =   -0.0001              !
 ! R11   R(9,11)                 1.4307         -DE/DX =   -0.0001              !
 ! R12   R(9,12)                 1.4307         -DE/DX =   -0.0001              !
 ! A1    A(5,7,10)             118.563          -DE/DX =    0.0                 !
 ! A2    A(5,7,11)             118.5556         -DE/DX =    0.0                 !
 ! A3    A(10,7,11)            122.8814         -DE/DX =   -0.0001              !
 ! A4    A(1,8,10)             118.5503         -DE/DX =    0.0                 !
 ! A5    A(1,8,12)             118.5526         -DE/DX =    0.0                 !
 ! A6    A(10,8,12)            122.8971         -DE/DX =   -0.0001              !
 ! A7    A(3,9,11)             118.5576         -DE/DX =    0.0                 !
 ! A8    A(3,9,12)             118.5593         -DE/DX =    0.0                 !
 ! A9    A(11,9,12)            122.8832         -DE/DX =    0.0                 !
 ! A10   A(6,10,7)             121.4456         -DE/DX =    0.0                 !
 ! A11   A(6,10,8)             121.4465         -DE/DX =   -0.0001              !
 ! A12   A(7,10,8)             117.1079         -DE/DX =    0.0001              !
 ! A13   A(4,11,7)             121.4428         -DE/DX =    0.0                 !
 ! A14   A(4,11,9)             121.434          -DE/DX =    0.0                 !
 ! A15   A(7,11,9)             117.1232         -DE/DX =    0.0                 !
 ! A16   A(2,12,8)             121.4432         -DE/DX =    0.0                 !
 ! A17   A(2,12,9)             121.4496         -DE/DX =    0.0                 !
 ! A18   A(8,12,9)             117.1072         -DE/DX =    0.0                 !
 ! D1    D(5,7,10,6)            -0.0002         -DE/DX =    0.0                 !
 ! D2    D(5,7,10,8)           179.9997         -DE/DX =    0.0                 !
 ! D3    D(11,7,10,6)         -179.9992         -DE/DX =    0.0                 !
 ! D4    D(11,7,10,8)            0.0008         -DE/DX =    0.0                 !
 ! D5    D(5,7,11,4)             0.0007         -DE/DX =    0.0                 !
 ! D6    D(5,7,11,9)          -179.9994         -DE/DX =    0.0                 !
 ! D7    D(10,7,11,4)          179.9996         -DE/DX =    0.0                 !
 ! D8    D(10,7,11,9)           -0.0005         -DE/DX =    0.0                 !
 ! D9    D(1,8,10,6)            -0.0002         -DE/DX =    0.0                 !
 ! D10   D(1,8,10,7)           179.9999         -DE/DX =    0.0                 !
 ! D11   D(12,8,10,6)          179.9995         -DE/DX =    0.0                 !
 ! D12   D(12,8,10,7)           -0.0005         -DE/DX =    0.0                 !
 ! D13   D(1,8,12,2)            -0.0007         -DE/DX =    0.0                 !
 ! D14   D(1,8,12,9)           179.9996         -DE/DX =    0.0                 !
 ! D15   D(10,8,12,2)          179.9996         -DE/DX =    0.0                 !
 ! D16   D(10,8,12,9)           -0.0001         -DE/DX =    0.0                 !
 ! D17   D(3,9,11,4)             0.0002         -DE/DX =    0.0                 !
 ! D18   D(3,9,11,7)          -179.9997         -DE/DX =    0.0                 !
 ! D19   D(12,9,11,4)          179.9998         -DE/DX =    0.0                 !
 ! D20   D(12,9,11,7)           -0.0001         -DE/DX =    0.0                 !
 ! D21   D(3,9,12,2)             0.0003         -DE/DX =    0.0                 !
 ! D22   D(3,9,12,8)          -180.0            -DE/DX =    0.0                 !
 ! D23   D(11,9,12,2)         -179.9993         -DE/DX =    0.0                 !
 ! D24   D(11,9,12,8)            0.0004         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------

Frequency Analysis of Borazine

Calculation Setup and Summary

Summary of Borazine Frequency Analysis.
Job Type Frequency
File Type .log
Calculation Type FREQ
Calculation Method RB3LYP
Basis Set 6-31G(d.p)
Keywords # freq b3lyp/6-31G(d.p) geom=connectivity
Final Energy (a.u.) -242.68458742
Gradient (a.u.) 0.00009865
Dipole Moment (debye) 0.00
Point Group C1
Calculation Time 5 minutes 32.4 seconds

Results

DOI:10042/21856

Low frequencies ---  -16.7791  -10.4871   -4.9436   -0.0005   -0.0004    0.0007
Low frequencies ---  288.8561  289.6929  404.2203

Molecular Orbitals of Borazine

Calculation Setup and Summary

Summary of Borazine MO analysis.
Job Type Energy
File Type .log
Calculation Type SP
Calculation Method RB3LYP
Basis Set 6-31G(d,p)
Keywords # b3lyp/6-31G(d.p) pop=(nbo.full) geom=connectivity
Final Energy (a.u.) -242.68458731
Dipole Moment (debye) 0.00
Point Group C1
Calculation Time (sec) 1 minute 7.0 seconds

DOI:10042/21869

Analysis

The LCAOs of benzene are shown below. The higher the symmetry of the molecule and the lower the number of nodal planes, the easier it is for the electrons to delocalise in the structure and so the lower the energy of the system.

Charge Distribution

Molecule Distribution by Charge (Number) Distribution by Charge (Colour)
Benzene
Boratabenzene
Pyridinium
Borazine

Benzene: Charge is distributed evenly in benzene as shown by both the colour and the numerical value of the distribution of charge. All C atoms have the same charge, -0.239, unlike boratabenzene and pyridinium as they both contain a heteroatom.

Boratabenzene: Compared to benzene, boratabenzene has a C-H unit replaced by a B-H unit, with B atom being more electropositive than C atom. This change is reflected in the distribution of charge with B atom being positively charge, +0.201. All the other C atoms, charges -0.588 (ortho), -0.340 (para) and -0.250 (meta) are more negatively charged compared to the C atoms in benzene. This is because electronegative C atoms pull electron density away from the B atom and is also caused by the delocalisation of the anionic charge.

The C atoms that are ortho and para to B atom have a larger negative charge, with ortho C being more negative than para C due to ortho C being closer to B than para C. The meta C have a smaller negative charge compared to the ortho and para C atoms due to resonance and delocalisation of the anionic charge. However the meta C atoms are still more negative than the C atoms in benzene.

The change in charge distribution is also reflected by the increased brightness of the red colour of the C atoms next to the B atom; brighter the red colour, more negatively charged the atom. It is worth mentioning that the H atom attached to the B atom is negatively charged, -0.095, unlike all the other H atoms in boratabenzene and benzene. This is due to the replacement of C atom by the electropositive B atom.

Pyridinium: Pyridinium on the other hand, has the same structure as benzene but with a C-H unit replaced by an N-H unit. N atom being more electronegative than C atom, pulls electron density away from the C thus N has a large negative charge, -0.476. This causes the C adjacent to the N to be more positively charged, +0.071, and they are the only positively charged C atoms in the three structures of benzene, boratabenzene and pyridinium. However due to cationic resonance, the C atoms at the meta position, -0.241, actually have a larger negative charge than the C atom at the para position, -0.122.

Borazine: Borazine is an aromatic compound with alternate N and B atoms replacing the 6 C atoms in benzene. The B atoms have large positive charge, +0.747, and N atoms have large negative charge, -1.102. Both atoms are more positive and more negatively charged than the B and N atoms in boratabenzene and pyridinium respectively. This is shown by the bright green and bright red colours of the B and N atoms. The molecule is physically stable but it is more likely to be attacked by nucleophiles or electrophiles. This is due to the high charges on each of the atoms on the aromatic molecule thus it is more reactive than benzene.

MO Comparison

MO Benzene Boratabenzene Pyridinium Borazine
7 Sigma
Energy Level -0.84677 -0.60434 -1.21401 -0.88850
17 Pi
Energy Level -0.35998 -0.13207 -0.64603 -0.36127
21 HOMO
Energy Level -0.24691 +0.01095 -0.47885 -0.27588

MO 7 sigma: MO 7 is an all sigma bonding orbital. Even distribution can be seen in benzene where it adopts a symmetrical star shape, showing that all C atoms have the same share of the electron density. This uniform distribution is broken when a heteroatom is introduced into the aromatic system. In boratabenzene, the electron density has shifted away from the B atom which causes the B atom to be exposed. The other side of the ring (opposite to the B atom) has a similar shape compared to benzene. However it is more rounded as more electron density has been pushed to this side. The opposite is observed in pyridinium where electron density is shifted towards the N atom. The three C-H units that are opposite to the N atom are exposed along with the H atoms that are bonded to the adjacent C atoms. Unlike benzene, borazine adopts a triangular shape covering the N-H units and exposing the B-H units. This shows that electron density around N atoms is greater than that of the B atoms, which corresponds to the observation from the charge distribution.

MO 17 pi: MO 17 is an all pi bonding orbital. It adopts different signs above and below the plane of the molecule. For benzene the hexagonal shape is symmetrical which is expected as all C atoms have the same degree of electron density. Similar to MO 7 sigma, electron density around the B atom is less than that of the C atoms in boratabenzene. This results in a more rounded shape for the side that is opposite to the B atom compared to benzene. Again, the opposite is observed for pyridinium where electron density is shifted towards the N atom so less electron density is seen for the C-H units that are on the opposite side of the N atom. Borazine adopts a more rounded triangle shape where electron density for N atom is greater than that of the B atom.

MO 21 HOMO: The MOs are divided into four parts with two nodal planes. The shapes of the MOs in benzene are all similar. In contrast to that of the boratabenzene, one side of the molecule has two smaller rounded shape lobes with opposite signs. On the other side, the shape of the oppositely charged lobes is slightly triangular and larger. It also has a positive energy level so it is anti-bonding. This decreases the stability of the molecule since it is filled and so it exists as ligands in complexes or dimers. The lobes of pyridinium and borazine are more similar to benzene compared to boratabenzene, with all the lobes being more similar in size. The difference between these MOs is less than that of the difference between the 7 sigma MOs and also the 17 pi MOs because it has higher energy thus weaker interactions between sigma and pi orbitals.

References

1. J. Glaser, G. Johansson. Acta Chemica Scandinavica, 1982, 36a, Pp. 125-135.