Jump to content

Rep:Mod:2cg507

From ChemWiki

Theory

Unless stated standard units are assumed

Creating and Optimising a Molecule

Gaussview was used to construct the desired molecule and Gaussian was then used to run the optimisation. An optimisation involves calculating a solution of the Scrödinger equation for the electron density and the energy, for a fixed position of the nuclei. In the optimisation the nuclei are moved around and a calculation of the electron density is performed for each of the fixed nuclei positions. The optimised structure represents the one with the lowest energy, the would be the minima on the potential energy surface of the molecule. At this point the nuclei and the electrons are in their equilibrium position, there are no forces acting to move their positions. Around this point the gradient of the potential energy curve will be zero and the equilibrium energy has been reached. Small changes to the positions of the nuclei and electrons around this point will have very little effect on the energy of the molecule and we now have our optimised structure.

Pseudo-potentials and basis sets

Using basis sets which include many different wavefunctions to describe the molecule allows a good accurate picture of the structure of a molecule to be predicted. When the molecules to be investigated start to get larger and contain heavier atoms, using high accuracy basis sets to accurately describe the entire molecule becomes computationally inefficient. In these cases we can use pseudo-potentials, which model the atom using only its valence electrons, which are the most significant electrons involved in bonding in these larger atoms and molecules.

BH3

Using Gaussview the BH3 molecule was constructed, it can be seen to the right in the picture and also in a 3D rotatable jmol form. Using Gaussview the bond lengths of each B-H bond of the molecule were then increased from the standard length imposed by the program, to 1.5 angstroms. The molecule is then optimised.

Optimised BH3


Data provided from Gaussian following the optimisation of the molecule:

4 atoms 8 electrons neutral singlet

All B-H Bond lengths - 1.94

All H-B-H Bond angles - 120.0

The Gaussian optimisation of BH3 produces a Gaussian log file which can be viewed in Windows WordPad. This file contains all of the information recorded during the optimisation of the geometry. The method used for the optimisation was the B3LYP method using a basis set of 3-21G.

E(RB3LYP) = -26.462 A.U.

RMS Gradient Norm - 0.000000074 A.U.

Final Dipole Moment - 0.00D (all from z component)

Full point group - C2V

Time taken to perform the calculation - 53.0 seconds

Optimised BH3


Optimised BH3

The method used determines the type of approximations used to calculate the Scrödinger equation and the basis set dictates the accuracy. The optimisation provides the position of the nuclei with the lowest energy for a particular electronic configuration. It can be seen that the optimisation is complete as the RMS gradient norm is close to zero, showing that small changes in geometry only involve a small change in energy around this point. The change in energy with the change in geometry can be seen on the two plots to the right. The optimisation shows that the trigonal planar structure is the lowest energy structure, with almost perfect 120 degree angles between the B-H bonds. This optimisation was performed very quickly as it is only a small non polar molecule.

Optimisation of BH3 file:

https://wiki.ch.ic.ac.uk/wiki/images/3/33/CG507BH3OPTIMISATION.LOG

Molecular Orbitals

Figure 1. Molecular Orbital diagram of BH3

Molecular Orbital Analysis
Table 1. Molecular Orbitals of BH3
Molecular Orbital LCAO Representation MO Representation Symmetry Label Energy (kcal/mol) Occupied?
2 a'1 -0.482 Yes
3 e' -0.346 Yes
4 e' -0.317 Yes
5 a''2 -0.085 No
6 a'1 0.063 No
7 e' 0.098 No
8 e' 0.146 No

The files for the Molecular Orbital analysis can be found hereDOI:10042/to-6587 . It can be seen from the above table that the molecular orbitals constructed via the LCAO method and the molecular orbitals from the Gaussian calculations are very similar, our predicted occupancies, as shown in the Molecular orbital diagram also agree with the Gaussian results. This shows that molecular orbital theory and the LCAO approach provide a very good approximation of the actual molecular orbitals. Using the molecular orbital LCAO approach is shown to be a worthwhile method that gives good results without the high computational demand of the quantum approach.

Natural Bond Orbitals

Atoms in the picture to the right are coloured by charge, bright green represented a high positive charge and bright red shows a highly negative charge. NBO analysis removes the delocalised electron density as shown in the molecular orbitals and formalises 2 electron 2 centre bonds.

NBO Charges:

B - 0.217 H - -0.066

When viewing the log file it can be seen that hydrogens 2 and 4 have a natural charge of -0.0657 while hydrogen 3 has a natural charge of -0.086. Below is the analysis of the natural bond orbitals obtained from the Gaussian log file. It shows the bonding involved in the molecule, here it can be seen that there are three bonds between the Boron and each of the three hydrogens. This data also shows the percentage contribution of each atom to the bond and the orbital character (hybridisation) of the atoms involved in the bond. Here the first bond has a 46.7% Boron contribution which has a 35.3% s and 64.7% p hybridisation. The hydrogen contributes 53.3% to the bond and has 100% s character. All three B-H bonds are similar with a slightly higher hydrogen contribution than boron contribution to the bond, this is reflected by the charge as most of the electron density lies on the Boron atom. The similarity in each of the bonds agrees with the bond lengths and angles between the bonds being equal.


    1. (1.98513) BD ( 1) B   1 - H   2 
               ( 46.67%)   0.6832* B   1 s( 35.28%)p 1.83( 64.72%)
                                           0.0000  0.5940  0.0035  0.0000  0.0000
                                           0.7071  0.0048  0.3836  0.0021
               ( 53.33%)   0.7303* H   2 s(100.00%)
                                           1.0000  0.0000
    2. (1.98620) BD ( 1) B   1 - H   3 
               ( 45.67%)   0.6758* B   1 s( 29.44%)p 2.40( 70.56%)
                                           0.0000  0.5425 -0.0076  0.0000  0.0000
                                           0.0000  0.0000 -0.8399  0.0099
               ( 54.33%)   0.7371* H   3 s(100.00%)
                                           1.0000  0.0009
    3. (1.98513) BD ( 1) B   1 - H   4 
               ( 46.67%)   0.6832* B   1 s( 35.28%)p 1.83( 64.72%)
                                           0.0000  0.5940  0.0035  0.0000  0.0000
                                          -0.7071 -0.0048  0.3836  0.0021
               ( 53.33%)   0.7303* H   4 s(100.00%)
                                           1.0000  0.0000
    4. (1.99953) CR ( 1) B   1           s(100.00%)
                                           1.0000  0.0000  0.0000  0.0000  0.0000
                                           0.0000  0.0000  0.0000  0.0000
    5. (0.00000) LP*( 1) B   1           s( 99.99%)p 0.00(  0.01%)
    6. (0.00000) RY*( 1) B   1           s(  0.00%)p 1.00(100.00%)
    7. (0.00000) RY*( 2) B   1           s(  0.00%)p 1.00(100.00%)
    8. (0.00000) RY*( 3) B   1           s(  0.00%)p 1.00(100.00%)
    9. (0.00000) RY*( 4) B   1           s(  0.01%)p 1.00( 99.99%)
   10. (0.00022) RY*( 1) H   2           s(100.00%)
                                           0.0000  1.0000
   11. (0.00016) RY*( 1) H   3           s(100.00%)
                                          -0.0009  1.0000
   12. (0.00022) RY*( 1) H   4           s(100.00%)
                                           0.0000  1.0000
   13. (0.01453) BD*( 1) B   1 - H   2 
               ( 53.33%)   0.7303* B   1 s( 35.28%)p 1.83( 64.72%)
                                           0.0000  0.5940  0.0035  0.0000  0.0000
                                           0.7071  0.0048  0.3836  0.0021
               ( 46.67%)  -0.6832* H   2 s(100.00%)
                                           1.0000  0.0000
   14. (0.01434) BD*( 1) B   1 - H   3 
               ( 54.33%)   0.7371* B   1 s( 29.44%)p 2.40( 70.56%)
                                           0.0000  0.5425 -0.0076  0.0000  0.0000
                                           0.0000  0.0000 -0.8399  0.0099
               ( 45.67%)  -0.6758* H   3 s(100.00%)
                                           1.0000  0.0009
   15. (0.01453) BD*( 1) B   1 - H   4 
               ( 53.33%)   0.7303* B   1 s( 35.28%)p 1.83( 64.72%)
                                           0.0000  0.5940  0.0035  0.0000  0.0000
                                          -0.7071 -0.0048  0.3836  0.0021
               ( 46.67%)  -0.6832* H   4 s(100.00%)
                                           1.0000  0.0000

Looking at the second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis, which shows the mixing of bonding and non-bonding NBOs. There are no value of E2 greater than 20 kcal/mol so these value are not of interest for BH3.

Below is a natural bond orbitals summary taken from the log file, BD shows a bond, CR is the core and LP is a lone pair.

                                                           Principal Delocalizations
          NBO                        Occupancy    Energy   (geminal,vicinal,remote)
====================================================================================
Molecular unit  1  (H3B)
    1. BD (   1) B   1 - H   2          1.98513    -0.40504  15(g),14(g)
    2. BD (   1) B   1 - H   3          1.98620    -0.37357  13(g),15(g)
    3. BD (   1) B   1 - H   4          1.98513    -0.40504  13(g),14(g)
    4. CR (   1) B   1                  1.99953    -6.74894  10(v),12(v),11(v)
    5. LP*(   1) B   1                  0.00000     0.73770
Vibrational Analysis

The vibrational analysis essentially provides us with the information about whether the structure found is the one with the lowest energy along the potential surface of the molecule. Here the energy of the structure is very close to the energy provided by the optimisation, this confirms that the frequency analysis is being performed on the minima found in the optimisation. The gradient here is very low, which again shows us that we have a structure which is at equilibrium with respect to the forces acting on the nuclei and the electrons in the optimised molecule.

E(RB3LYP) = -26.462 A.U.

RMS Gradient Norm = 0.00000081 A.U.

Final Dipole Moment - 0.00D

Full point group - C2v

Time taken to perform the calculation - 9 Minutes 46.0 seconds running on the laptop

Frequency analysis file: https://wiki.ch.ic.ac.uk/wiki/images/2/2f/CG507_BH3_FREQ.LOG

The low frequencies information provided in the log file is shown below. These are relatively small, with the largest value being about 24cm-1 which is an order of magnitude different to the vibrational frequencies of the molecule shown in table 2. These values are quite good, the better the method the closer these values would be to zero. As the basis set used here has a low accuracy these devaitions are acceptable. Every molecule has 3N-6 degrees of freedom, the low frequencies below are equivalent to the -6 and represent the vibrations of the centre of mass of the molecule.

Low frequencies ---   -0.0001    0.0008    0.0008    9.6159   21.8113   24.9318


Vibration (Hz)
Table 2. Vibrational Analysis of BH3
Vibration Frequency Intensity Symmetry Label Vibration Representation Vibration Description
1 1146 93 a''2 Bending of bonds in the y plane
2 1205 12 e' Symmetrical bend of two B-H bonds towards each other
3 1025 12 e' Large bending in one B-H bond leading to a smaller bend in the other two B-H bonds
4 2593 0 a1' Symetrical stretch of each B-H bond
5 2731 104 e' Asymmetric stretch of two B-H bonds
6 2731.41 104 e' Asymetric stretch on one B-H bond with the symmetric stretch of the otrher two B-H bonds
Optimised BH3 vibration frequency

Although there are six different vibrations of the BH3 molecule only three can be seen on the vibrational spectrum. This is because one of the frequencies has zero intensity and four of the vibrations represent two degenerate vibrations with the same energy.

TlCl3

TlCl3 is restricted to the D3h point group with a very tight (0.0001) tolerance.

Optimised TlBr3


Data provided from Gaussian following the optimisation of the molecule:

4 atoms 186 electrons neutral singlet

All Tl-Cl Bond lengths - 2.65095

All Cl-Tl-Cl Bond angles - 120.0


The Gaussian optimisation of TlCl3 produces a Gaussian log file which can be viewed in Windows WordPad. This file contains all of the information recorded during the optimisation of the geometry. The method used for the optimisation was the DFT B3LYP method using a basis option of LanL2DZ, which uses a basis set of D95V on first row atoms and Los Alamos ECP on heavier elements.

E(RB3LYP) = -91.218 A.U.

Final Dipole Moment - 0.00D

Full point group - D3h

Time taken to perform the calculation - 36.0 seconds

Data file: https://wiki.ch.ic.ac.uk/wiki/images/a/ac/CG507TLBR3OPTIMISATION.LOG

Isomers of Mo(CO)4L2

Mo(CO)4L2 with cis PCl3 ligands

Optimisation
Optimised Cis Mo(CO)4(PCl3)2

Optimisation using B3LYP method with a LANL2MB basis set:

P-Cl bond length - 2.38-2.41

Mo-4CO and Mo-8CO bond length - 2.11

Mo-6CO bond length - 2.06

Mo-2CO bond length - 2.06

4C-5O and 8C-9O bond length - 1.19

2C-3O bond length - 1.19

OC(8)-Mo-P(10)Cl3 - 90.5 degrees

OC(8)-Mo-P(11)Cl3 - 90.6 degrees

OC(8)-Mo-C(2)O - 89.4 degrees

OC(8)-Mo-C(6)O - 89.4 degrees

E(RB3LYP) = -617.525 A.U.

RMS Gradient Norm = 0.00007137

Final Dipole Moment - 8.46D

Full point group - C1

Time taken to perform the calculation - 12 minutes 0.3 seconds

DOI:10042/to-7060


Optimisation using B3LYP method with a LANL2DZ basis set:

P-Cl bond length - 2.24

Mo-4CO and Mo-8CO bond length - 2.06

Mo-6CO bond length - 2.01

Mo-2CO bond length - 2.01

4C-5O and 8C-9O bond length - 1.17311

2C-3O bond length - 1.18

6C-7O bond length - 1.18

OC(8)-Mo-P(10)Cl3 - 91.9 degrees

OC(8)-Mo-P(11)Cl3 - 89.2 degrees

OC(8)-Mo-C(2)O - 89.7 degrees

OC(8)-Mo-C(6)O - 89.0 degrees

E(RB3LYP) = -623.577 A.U.

RMS Gradient Norm = 0.00000674 A.U.

Final Dipole Moment - 1.31D

Full point group - C1

Time taken to perform the calculation - 1 hour 13 minutes 59.8 seconds

DOI:10042/to-7061


Vibrational Analysis

E(RB3LYP) = -623.577 A.U.

This energy is the same as it was after the optomisation, which shows that the frequency analysis was performed on the optimised structure. The freuency vibrations of the molecule are shown below, there are a significant number of vibrations which have a wide range. The low frequencies again are low and are acceptable according to the accuracy of the basis sets used.

Low frequencies ---   10.7714   17.6127   42.0442
                    1                      2                      3
                    A                      A                      A
Frequencies --    10.7554                17.6127                42.0442
Red. masses --    29.7744                32.3028                19.3502
Frc consts  --     0.0020                 0.0059                 0.0202
IR Inten    --     0.0264                 0.0074                 0.0048

                    4                      5                      6
                    A                      A                      A
Frequencies --    44.4255                56.2325                66.6693
Red. masses --    28.2290                22.6511                17.5929
Frc consts  --     0.0328                 0.0422                 0.0461
IR Inten    --     0.1031                 0.8280                 0.2247

                    7                      8                      9
                    A                      A                      A
Frequencies --    78.3284                80.8584                86.2218
Red. masses --    17.1873                19.5470                16.0789
Frc consts  --     0.0621                 0.0753                 0.0704
IR Inten    --     0.2444                 0.4679                 0.0202

                   10                     11                     12
                    A                      A                      A
Frequencies --    92.6366                97.6337                97.9405
Red. masses --    17.0912                27.5319                17.4471
Frc consts  --     0.0864                 0.1546                 0.0986
IR Inten    --     0.4118                 0.0655                 0.2571

                   13                     14                     15
                    A                      A                      A
Frequencies --    99.0293               104.8135               121.4520
Red. masses --    31.4054                30.4113                29.3502
Frc consts  --     0.1815                 0.1968                 0.2551
IR Inten    --     0.0062                 0.0090                 0.5493

                   16                     17                     18
                    A                      A                      A
Frequencies --   139.1449               143.5332               165.4368
Red. masses --    33.0940                34.7023                33.3622
Frc consts  --     0.3775                 0.4212                 0.5380
IR Inten    --     0.7351                 1.3051                 0.0004

                   19                     20                     21
                    A                      A                      A
Frequencies --   169.8592               175.7353               177.4497
Red. masses --    30.9316                30.2004                32.8765
Frc consts  --     0.5258                 0.5495                 0.6099
IR Inten    --     0.0658                 0.7038                 0.0018

                   22                     23                     24
                    A                      A                      A
Frequencies --   234.9367               235.4936               378.0602
Red. masses --    34.3045                34.1341                13.5558
Frc consts  --     1.1156                 1.1153                 1.1416
IR Inten    --    12.8279                28.8439                11.5247

                   25                     26                     27
                    A                      A                      A
Frequencies --   378.8566               396.0039               396.2797
Red. masses --    13.8988                29.8624                21.8964
Frc consts  --     1.1754                 2.7591                 2.0259
IR Inten    --     0.0065                14.0582                 8.1903

                   28                     29                     30
                    A                      A                      A
Frequencies --   404.9629               407.8574               410.3321
Red. masses --    14.6500                22.3883                26.5652
Frc consts  --     1.4155                 2.1943                 2.6353
IR Inten    --     1.9246               273.8653                 8.4184

                   31                     32                     33
                    A                      A                      A
Frequencies --   418.9423               424.7174               431.7512
Red. masses --    25.8037                17.6489                25.1808
Frc consts  --     2.6683                 1.8757                 2.7656
IR Inten    --     1.7115                76.5770               241.3770

                   34                     35                     36
                    A                      A                      A
Frequencies --   436.8063               458.7829               465.4059
Red. masses --    22.5535                19.9540                14.0111
Frc consts  --     2.5354                 2.4745                 1.7881
IR Inten    --   152.7106                45.7034                37.9366

                   37                     38                     39
                    A                      A                      A
Frequencies --   514.1671               529.8076               563.7701
Red. masses --    12.3710                12.3841                14.5702
Frc consts  --     1.9269                 2.0481                 2.7285
IR Inten    --     0.0187                 0.2973                82.0179

                   40                     41                     42
                    A                      A                      A
Frequencies --   580.0622               597.6333              1945.2876
Red. masses --    14.4269                14.5885                13.3561
Frc consts  --     2.8600                 3.0699                29.7782
IR Inten    --    92.7268               105.3136               762.7270

                   43                     44                     45
                    A                      A                      A
Frequencies --  1948.6715              1958.3479              2023.3147
Red. masses --    13.4083                13.3437                13.2993
Frc consts  --    29.9987                30.1513                32.0780
IR Inten    --  1498.5552               632.9485               597.6445

Computational Data - DOI:10042/to-7099

Mo(CO)4L2 with trans PCl3 ligands

Optimisation
Optimised trans Mo(CO)4(PCl3)2


Optimisation using B3LYP method with a LANL2MB basis set:

Mo-P bond length - 2.48

P-Cl bond length - 2.40

All Mo-CO bond lengths - 2.11

All C-O bond lengths - 1.19

OC(6)-Mo-P(10)Cl3 - 90.6 degrees

OC(6)-Mo-P(11)Cl3 - 89.4 degrees

OC(4)-Mo-C(6)O - 90.0 degrees

OC(8)-Mo-C(6)O - 90.0 degrees

OC(6)-Mo-C(2)O - 180.0 degrees

E(RB3LYP) = -617.522 A.U.

RMS Gradient Norm = 0.00002926

Final Dipole Moment - 0.00D

Full point group - C1

Time taken to perform the calculation - 12 minutes 27.8 seconds

DOI:10042/to-7058


Optimisation using B3LYP method with a LANL2DZ basis set:

Mo-P bond length - 2.44

P-Cl bond length - 2.24

All Mo-CO bond lengths - 2.06

All C-O bond lengths - 1.17

OC(6)-Mo-P(10)Cl3 - 90.0 degrees

OC(6)-Mo-P(11)Cl3 - 90.0 degrees

OC(4)-Mo-C(6)O - 89.5 degrees

OC(6)-Mo-C(8)O - 90.5 degrees

OC(6)-Mo-C(2)O - 179.0 degrees

E(RB3LYP) = -623.576 A.U.

RMS Gradient Norm = 0.00002669 A.U.

Final Dipole Moment - 0.31D

Full point group - C1

Time taken to perform the calculation - 47 minutes 37.8 seconds

DOI:10042/to-7059


Vibrational Analysis

E(RB3LYP) = -623.576 A.U.

Low frequencies --- -2.2041 -1.5955 -0.0005 -0.0004 -0.0002 3.1836

Low frequencies ---    5.1569    6.2087   37.2059
Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
activities (A**4/AMU), depolarization ratios for plane and unpolarized
incident light, reduced masses (AMU), force constants (mDyne/A),
and normal coordinates:
                    1                      2                      3
                    A                      A                      A
Frequencies --     4.9748                 6.1192                37.2059
Red. masses --    21.7857                34.6922                27.0464
Frc consts  --     0.0003                 0.0008                 0.0221
IR Inten    --     0.0942                 0.0000                 0.4188
                    4                      5                      6
                    A                      A                      A
Frequencies --    40.2209                72.2572                78.5677
Red. masses --    25.6605                17.9513                18.7887
Frc consts  --     0.0245                 0.0552                 0.0683
IR Inten    --     0.3117                 0.0001                 1.0692
                    7                      8                      9
                    A                      A                      A
Frequencies --    79.0896                80.1138                83.3308
Red. masses --    18.8183                18.6272                15.8696
Frc consts  --     0.0694                 0.0704                 0.0649
IR Inten    --     0.0000                 1.0951                 0.0010
                   10                     11                     12
                    A                      A                      A
Frequencies --    88.2910                96.8673               102.4355
Red. masses --    15.5400                18.0557                27.9601
Frc consts  --     0.0714                 0.0998                 0.1729
IR Inten    --     0.0015                 0.0277                 0.0000
                   13                     14                     15
                    A                      A                      A
Frequencies --   103.0671               109.9741               123.2401
Red. masses --    27.6830                34.5586                31.4486
Frc consts  --     0.1733                 0.2463                 0.2814
IR Inten    --     0.0000                 0.0093                 0.4328
                   16                     17                     18
                    A                      A                      A
Frequencies --   125.3156               161.2164               162.6660
Red. masses --    31.6855                32.6745                32.7364
Frc consts  --     0.2932                 0.5004                 0.5104
IR Inten    --     0.3862                 0.0000                 0.0617
                   19                     20                     21
                    A                      A                      A
Frequencies --   171.7341               190.3831               190.6131
Red. masses --    38.6637                29.9782                30.1132
Frc consts  --     0.6718                 0.6402                 0.6446
IR Inten    --     6.4577                 0.7522                 0.7996
                   22                     23                     24
                    A                      A                      A
Frequencies --   240.2024               251.7645               346.2552
Red. masses --    34.1247                36.9295                12.7408
Frc consts  --     1.1600                 1.3792                 0.9000
IR Inten    --     0.0423                37.6065                 0.0040
                   25                     26                     27
                    A                      A                      A
Frequencies --   388.6203               388.6493               389.3980
Red. masses --    17.7757                20.2990                22.0099
Frc consts  --     1.5817                 1.8065                 1.9663
IR Inten    --     0.0003                 1.5460                 0.417
                   28                     29                     30
                    A                      A                      A
Frequencies --   389.5998               401.3300               406.8777
Red. masses --    17.3110                14.9410                14.7808
Frc consts  --     1.5481                 1.4179                 1.4417
IR Inten    --     1.7147                 3.9015                 0.0403
                   31                     32                     33
                    A                      A                      A
Frequencies --   408.8037               423.2874               425.6021
Red. masses --    32.1788                25.2383                25.1027
Frc consts  --     3.1685                 2.6643                 2.6790
IR Inten    --   727.6780               168.4655               166.0350
                   34                     35                     36
                    A                      A                      A
Frequencies --   436.3571               436.4767               457.8912
Red. masses --    18.3450                18.9320                29.1137
Frc consts  --     2.0580                 2.1250                 3.5964
IR Inten    --     0.0062                 6.0490                 0.0819
                   37                     38                     39
                    A                      A                      A
Frequencies --   483.2778               523.0843               574.1329
Red. masses --    12.3169                12.3784                14.3917
Frc consts  --     1.6949                 1.9955                 2.7950
IR Inten    --     0.0019                 0.0097                87.8634
                   40                     41                     42
                    A                      A                      A
Frequencies --   574.3130               603.5716              1950.4374
Red. masses --    14.4070                14.1952                13.4113
Frc consts  --     2.7998                 3.0468                30.0598
IR Inten    --    89.8693               138.3486              1475.4337
                   43                     44                     45
                    A                      A                      A
Frequencies --  1951.0768              1977.3502              2031.1315
Red. masses --    13.4126                13.3318                13.2971
Frc consts  --    30.0824                30.7118                32.3209
IR Inten    --  1466.7554                 0.6378                 3.7698

Computational Data - DOI:10042/to-7100

The energy of the optimised cis and trans structure is the same, this would suggest that there is an equilibrium between the two isomers as they both have the same energy and conversion to the other isomer would readily occur.

Mini Project

In this mini project involves the study of metal containing diatomic compounds. These diatomics differ to simple diatomics due to the inclusion of d-orbitals. As we are using a large gold containing diatomic a pseudo-potential was used in the Gaussian calculations. The B3LYP method was used and a 6-311G(d,p) basis set was used for the oxygen and the sulphur and a LANL2DZ pseudo-potential was used for the gold. 6-311G(d,p)

Optimisation

AuS-
Optimised AuS-

Data provided from Gaussian following the optimisation of the molecule:

2 atoms -1 Charge singlet

Bond lengths - 2.29

The Gaussian optimisation of BH3 produces a Gaussian log file which can be viewed in Windows WordPad. This file contains all of the information recorded during the optimisation of the geometry.

E(RB3LYP) = -533.742 A.U.

RMS Gradient Norm - 0.00003038 A.U.

Final Dipole Moment - 6.3D

Full point group - C*V

Time taken to perform the calculation - 30.03 seconds

From literature the AuS bond was reported to be 2.331Å using a B3PW91/LANL2DZ optimisation and 2.240Å using a B3PW91/LANL-E method and basis set DOI:10.1021/ja982234c

AuO-
Optimised AuO-

Data provided from Gaussian following the optimisation of the molecule:

2 atoms -1 charge singlet

Bond length - 1.90

The Gaussian optimisation of BH3 produces a Gaussian log file which can be viewed in Windows WordPad. This file contains all of the information recorded during the optimisation of the geometry.

E(RB3LYP) = -210.668 A.U.

RMS Gradient Norm - 0.00000321 A.U.

Final Dipole Moment - 3.96D

Full point group - C*V

Time taken to perform the calculation - 27.6 seconds

From literature the AuO bond length from an Au2O complex was reported as 1.96-1.99Å using a (BO-LSD-MD) method,DOI:10.1021/jp027596s . In another article 1.946Å was reported using a B3PW91/LANL2DZ optimisation and 1.925 using a B3PW91/LANL-E method and basis set DOI:10.1021/ja982234c

Molecular Orbital Analysis

AuS-

Below there is a molecular orbital diagram of AuS- which shows the valence orbitals and the valence electrons. The only atomic orbitals shown are the sigma+ atomic orbitals of each atom. These are shown as they are the only atomic orbitals where the symmetry matches. The combination of the S- and the Au results in lots of non bonding orbitals as core or lone pairs, which are also shown in the natural bond analysis formed as there is no atomic orbital of similar energy on the other fragment orbital of the same symmetry. The bonding and antibonding orbitals formed also have the same symmetry as the atomic orbitals that were combined to form the molecular orbitals. The LUMO should be made up of a p contribution from the sulphur and a s like character from the gold. This type of molecular orbital is shown in the molecular orbital representation shown below from the Gaussian calculation. From my predicted MO diagram I would expect the HOMO and the HOMO-1 to be the non bonding p orbitals (x and y) from the sulphur atom, the Gaussian calculation shows that these are degenerate as they have the same energy. In the representations shown below this is the case, though there is a small d-orbital contribution from the gold atom in this case. The low lying molecular orbitals a centred around the sulphur atom, which must have the atomic orbitals with the lowest energy.

There are 18 occupied molecular orbitals in AuS-, the three orbitals lowest in energy, the HOMO-1, HOMO, LUMO and LUMO+1 are shown below.


Molecular Orbital Analysis
Table 1. Molecular Orbitals of AuS-
Molecular Orbital MO Representation Energy (kcal/mol) Occupied?
1 -88.617 Yes
2 -7.700 Yes
3 -5.667 Yes
17 -0.017 Yes
18 -0.017 Yes
19 0.058 No
20 0.138 No
AuO-

Below there is a molecular orbital diagram of AuO- which shows the valence orbitals and the valence electrons. The HOMO and LUMO is the same as for the sulphur as predicted. Though in this case there is a lower contribution to the molecular orbital from the oxygen than there was from the sulphur. The only atomic orbitals shown are the sigma+ atomic orbitals of each atom. These are shown as they are the only atomic orbitals where the symmetry matches to an atomic orbital on the other fragment orbital. The combination of the O- and the Au results in lots of non bonding orbitals as core or lone pairs, which are also shown in the natural bond analysis. The bonding and antibonding orbitals formed also have the same symmetry as the atomic orbitals that were combined to form the molecular orbitals.

There are 14 occupied molecular orbitals in AuO-, the three orbitals lowest in energy, the HOMO-1, HOMO, LUMO and LUMO+1 are shown below.


Molecular Orbital Analysis
Table 1. Molecular Orbitals of AuO-
Molecular Orbital MO Representation Energy (kcal/mol) Occupied?
1 -18.865 Yes
2 -3.976 Yes
3 -2.124 Yes
13 HOMO-1 -0.007 Yes
14 HOMO -0.007 Yes
15 LUMO 0.091 No
16 LUMO+1 0.150 No

NBO Analysis

AuS-

Atoms coloured by charge, bright red shows a highly negative charge, The highly negatively charged Sulphur atom is bright red and the Gold atom is also negative.

NBO Charges:

Au = -0.309 S = -0.691

Summary of Natural Population Analysis:                 
                                                        
                                      Natural Population
               Natural  -----------------------------------------------
   Atom  No    Charge         Core      Valence    Rydberg      Total
-----------------------------------------------------------------------
     S    1   -0.95866      9.99987     6.94467    0.01412    16.95866
    Au    2   -0.04134     67.99551    11.04328    0.00255    79.04134
=======================================================================
  * Total *   -1.00000     77.99538    17.98795    0.01667    96.00000

The natural bond orbital analysis (below) shows that there is only one bond between the gold and the sulphur atoms. The S atom contributes 53.0% to the bond and the Au contributes the other 47.0% of the bond. The hybridisation of the sulphur bonding orbital includes a s, p and d contribution, though there is a dominant p character.

(Occupancy) Bond orbital/ Coefficients/ Hybrids

---------------------------------------------------------------------------------
    1. (2.00000) BD ( 1) S   1 -Au   2 
               ( 52.96%)   0.7277* S   1 s(  4.95%)p19.16( 94.77%)d 0.06(  0.29%)
                                           0.0000  0.0000  0.2188  0.0399  0.0000
                                           0.0000  0.0000  0.0000  0.0000  0.0000
                                           0.0000  0.0000  0.0000  0.0000  0.0000
                                           0.0000  0.0000  0.9733 -0.0172 -0.0010
                                           0.0000  0.0000  0.0000  0.0000  0.0000
                                           0.0537
               ( 47.04%)   0.6859*Au   2 s( 84.00%)p 0.00(  0.32%)d 0.19( 15.68%)
                                           0.0000  0.9164  0.0137  0.0000  0.0000
                                           0.0000  0.0000  0.0000  0.0000  0.0000
                                           0.0425  0.0371  0.0000  0.0000  0.0000
                                           0.0000  0.0000  0.0000  0.0000  0.0000
                                           0.3960 -0.0027

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis, there are no value of E2 greater than 20 kcal/mol so these value are not of interest.

    Threshold for printing:   0.50 kcal/mol
                                                                             E(2)  E(j)-E(i) F(i,j)
        Donor NBO (i)                     Acceptor NBO (j)                 kcal/mol   a.u.    a.u.
===================================================================================================
within unit  1
  1. BD (   1) S   1 -Au   2        / 21. LP*(   8)Au   2                    1.13    0.46    0.021
  2. CR (   1) S   1                / 21. LP*(   8)Au   2                    0.61   87.74    0.208
  3. CR (   2) S   1                / 21. LP*(   8)Au   2                    4.67    8.83    0.183
 10. CR (   4)Au   2                / 48. BD*(   1) S   1 -Au   2            6.11    2.26    0.105
 11. LP (   1) S   1                / 21. LP*(   8)Au   2                   15.84    0.82    0.102
 12. LP (   2) S   1                / 19. LP*(   6)Au   2                    5.62    0.20    0.030
 13. LP (   3) S   1                / 20. LP*(   7)Au   2                    5.62    0.20    0.030
 16. LP (   3)Au   2                / 23. RY*(   2) S   1                    1.24    0.86    0.029
 17. LP (   4)Au   2                / 24. RY*(   3) S   1                    1.24    0.86    0.029
 18. LP (   5)Au   2                / 22. RY*(   1) S   1                    2.00    0.87    0.037

Natural Bond Orbitals (Summary):

                                                           Principal Delocalizations
          NBO                        Occupancy    Energy   (geminal,vicinal,remote)
====================================================================================
Molecular unit  1  (SAu)
    1. BD (   1) S   1 -Au   2          2.00000    -0.22572  21(g)
    2. CR (   1) S   1                  2.00000   -87.50250  21(v)
    3. CR (   2) S   1                  1.99991    -8.59064  21(v)
    4. CR (   3) S   1                  2.00000    -5.65552  
    5. CR (   4) S   1                  2.00000    -5.65552  
    6. CR (   5) S   1                  1.99996    -5.66615  
    7. CR (   1)Au   2                  1.99984    -3.94491  
    8. CR (   2)Au   2                  1.99999    -2.11158  
    9. CR (   3)Au   2                  1.99999    -2.11158  
   10. CR (   4)Au   2                  1.99568    -2.12699  48(g)
   11. LP (   1) S   1                  1.97339    -0.58565  21(v)
   12. LP (   2) S   1                  1.95790    -0.02483  19(v)
   13. LP (   3) S   1                  1.95790    -0.02483  20(v)
   14. LP (   1)Au   2                  1.99994    -0.12096  
   15. LP (   2)Au   2                  1.99994    -0.12096  
   16. LP (   3)Au   2                  1.99769    -0.14028  23(v)
   17. LP (   4)Au   2                  1.99769    -0.14028  24(v)
   18. LP (   5)Au   2                  1.99655    -0.13589  22(v)
   19. LP*(   6)Au   2                  0.04210     0.17364  
   20. LP*(   7)Au   2                  0.04210     0.17364  
   21. LP*(   8)Au   2                  0.02669     0.23908  
   22. RY*(   1) S   1                  0.00357     0.73102  
   23. RY*(   2) S   1                  0.00231     0.71545  
   24. RY*(   3) S   1                  0.00231     0.71545  
   25. RY*(   4) S   1                  0.00006     1.02938  
   26. RY*(   5) S   1                  0.00006     1.02937  
   27. RY*(   6) S   1                  0.00005     0.98593  
   28. RY*(   7) S   1                  0.00000    15.65001  
   29. RY*(   8) S   1                  0.00000     1.72143  
   30. RY*(   9) S   1                  0.00000    17.42693  
   31. RY*(  10) S   1                  0.00000   181.10384  
   32. RY*(  11) S   1                  0.00001     1.84697  
   33. RY*(  12) S   1                  0.00000    17.37211  
   34. RY*(  13) S   1                  0.00000     0.84300  
   35. RY*(  14) S   1                  0.00001     0.81479  
   36. RY*(  15) S   1                  0.00001     0.81479  
   37. RY*(  16) S   1                  0.00000     1.72143  
   38. RY*(  17) S   1                  0.00000    17.42693  
   39. RY*(   1)Au   2                  0.00003     2.21141  
   40. RY*(   2)Au   2                  0.00002     0.77862  
   41. RY*(   3)Au   2                  0.00000     0.24398  
   42. RY*(   4)Au   2                  0.00000     0.91321  
   43. RY*(   5)Au   2                  0.00000     0.54046  
   44. RY*(   6)Au   2                  0.00000     0.59277  
   45. RY*(   7)Au   2                  0.00000     0.59277  
   46. RY*(   8)Au   2                  0.00000     0.54035  
   47. RY*(   9)Au   2                  0.00000     0.24398  
   48. BD*(   1) S   1 -Au   2          0.00428     0.13404  
      -------------------------------
             Total Lewis   95.87639  ( 99.8712%)
       Valence non-Lewis    0.11518  (  0.1200%)
       Rydberg non-Lewis    0.00843  (  0.0088%)
      -------------------------------
           Total unit  1   96.00000  (100.0000%)
          Charge unit  1   -1.00000
AuO-

Atoms here are coloured by charge, bright red shows a highly negative charge, The highly negatively charged Oxygen atom is bright red and the Gold atom is also negative.

NBO Charges:

Au = -0.333 O = -0.667

Summary of Natural Population Analysis, this shows the charges of each atom provided in the Gaussian log file:

                                      Natural Population
               Natural  -----------------------------------------------
   Atom  No    Charge         Core      Valence    Rydberg      Total
-----------------------------------------------------------------------
     O    1   -0.80427      1.99998     6.79951    0.00478     8.80427
    Au    2   -0.19573     67.99176    11.19622    0.00775    79.19573
=======================================================================
  * Total *   -1.00000     69.99174    17.99573    0.01253    88.00000
                                Natural Population     
--------------------------------------------------------
  Effective Core            60.00000
  Core                       9.99174 ( 99.9174% of  10)
  Valence                   17.99573 ( 99.9763% of  18)
  Natural Minimal Basis     87.98747 ( 99.9858% of  88)
  Natural Rydberg Basis      0.01253 (  0.0142% of  88)
--------------------------------------------------------


Below the contributions of each atom to the bonding orbital can be seen and the hybridisations are also shown. For this molecule it can be seen that there are three bonds between the Au and the O atoms. In each case there is a majority contribution from the oxgen atom towards the bonding orbital, this is reflected by the high electron density located on the oxygen atom. In each case the bonding orbital has almost exclusively p character, which can also be seen in the molecular orbitals around the HOMO in the molecule. This suggests that the bonding in AuO- is more like a triple bond that the single bond character shown in AuS-. This is also reflected in the lengths of the bonds, with the former being significantly shorter than the latter.

---------------------------------------------------------------------------------
    1. (2.00000) BD ( 1) O   1 -Au   2 
               ( 94.56%)   0.9724* O   1 s(  0.00%)p 1.00( 99.99%)d 0.00(  0.01%)
                                           0.0000  0.0000  0.0000  0.0000  0.9999
                                          -0.0041 -0.0009  0.0000  0.0000  0.0000
                                           0.0000  0.0000  0.0000  0.0000  0.0099
                                           0.0000  0.0000  0.0000
               (  5.44%)   0.2333*Au   2 s(  0.00%)p 1.00( 98.49%)d 0.02(  1.51%)
                                           0.0000  0.0000  0.0000  0.0000  0.9924
                                           0.0112  0.0000  0.0000  0.0000  0.0000
                                           0.0000  0.0000  0.0000  0.0000 -0.1022
                                          -0.0683  0.0000  0.0000  0.0000  0.0000
                                           0.0000  0.0000
    2. (2.00000) BD ( 2) O   1 -Au   2 
               ( 94.56%)   0.9724* O   1 s(  0.00%)p 1.00( 99.99%)d 0.00(  0.01%)
                                           0.0000  0.0000  0.0000  0.0000  0.0000
                                           0.0000  0.0000  0.9999 -0.0041 -0.0009
                                           0.0000  0.0000  0.0000  0.0000  0.0000
                                           0.0099  0.0000  0.0000
               (  5.44%)   0.2333*Au   2 s(  0.00%)p 1.00( 98.49%)d 0.02(  1.51%)
                                           0.0000  0.0000  0.0000  0.0000  0.0000
                                           0.0000  0.0000  0.9924  0.0112  0.0000
                                           0.0000  0.0000  0.0000  0.0000  0.0000
                                           0.0000 -0.1022 -0.0683  0.0000  0.0000
                                           0.0000  0.0000
    3. (2.00000) BD ( 3) O   1 -Au   2 
               ( 52.25%)   0.7228* O   1 s(  3.40%)p28.41( 96.55%)d 0.02(  0.06%)
                                           0.0000  0.1824  0.0267 -0.0003  0.0000
                                           0.0000  0.0000  0.0000  0.0000  0.0000
                                           0.9825  0.0151  0.0021  0.0000  0.0000
                                           0.0000  0.0000  0.0236
               ( 47.75%)   0.6910*Au   2 s( 59.55%)p 0.03(  1.78%)d 0.65( 38.67%)
                                           0.0000  0.7713  0.0248  0.0000  0.0000
                                           0.0000  0.0000  0.0000  0.0000  0.0000
                                           0.1327  0.0130  0.0000  0.0000  0.0000
                                           0.0000  0.0000  0.0000  0.0000  0.0000
                                           0.6182 -0.0679


The second order perturbation theory analysis of Fock Matrix in NBO Basis shows that the values again show no important information about the equilibrium structure of the molecule.

    Threshold for printing:   0.50 kcal/mol
                                                                             E(2)  E(j)-E(i) F(i,j)
        Donor NBO (i)                     Acceptor NBO (j)                 kcal/mol   a.u.    a.u.
===================================================================================================
within unit  1
  3. BD (   3) O   1 -Au   2        / 15. LP*(   6)Au   2                    1.60    0.55    0.027
  4. CR (   1) O   1                / 15. LP*(   6)Au   2                    2.81   19.03    0.208
  8. CR (   4)Au   2                / 40. BD*(   3) O   1 -Au   2           11.65    2.26    0.145
  9. LP (   1) O   1                / 15. LP*(   6)Au   2                   19.93    1.02    0.127
  9. LP (   1) O   1                / 31. RY*(   3)Au   2                    0.56    3.67    0.041
 12. LP (   3)Au   2                / 17. RY*(   2) O   1                    0.67    1.43    0.028
 13. LP (   4)Au   2                / 18. RY*(   3) O   1                    0.67    1.43    0.028
 14. LP (   5)Au   2                / 16. RY*(   1) O   1                    1.14    1.61    0.038


Natural Bond Orbitals (Summary):
                                                           Principal Delocalizations
          NBO                        Occupancy    Energy   (geminal,vicinal,remote)
====================================================================================
Molecular unit  1  (OAu)
    1. BD (   1) O   1 -Au   2          2.00000    -0.03393  
    2. BD (   2) O   1 -Au   2          2.00000    -0.03393  
    3. BD (   3) O   1 -Au   2          2.00000    -0.23288  15(g)
    4. CR (   1) O   1                  1.99998   -18.70725  15(v)
    5. CR (   1)Au   2                  1.99991    -3.94872  
    6. CR (   2)Au   2                  1.99999    -2.09556  
    7. CR (   3)Au   2                  1.99999    -2.09556  
    8. CR (   4)Au   2                  1.99186    -2.10940  40(g)
    9. LP (   1) O   1                  1.97051    -0.69904  15(v),31(v)
   10. LP (   1)Au   2                  1.99999    -0.09987  
   11. LP (   2)Au   2                  1.99999    -0.09999  
   12. LP (   3)Au   2                  1.99925    -0.11729  17(v)
   13. LP (   4)Au   2                  1.99925    -0.11729  18(v)
   14. LP (   5)Au   2                  1.99890    -0.09220  16(v)
   15. LP*(   6)Au   2                  0.02960     0.31913  
   16. RY*(   1) O   1                  0.00111     1.51642  
   17. RY*(   2) O   1                  0.00075     1.31147  
   18. RY*(   3) O   1                  0.00075     1.31147  
   19. RY*(   4) O   1                  0.00000     5.03662  
   20. RY*(   5) O   1                  0.00000    49.87680  
   21. RY*(   6) O   1                  0.00000     5.03662  
   22. RY*(   7) O   1                  0.00000     1.41651  
   23. RY*(   8) O   1                  0.00000     4.99422  
   24. RY*(   9) O   1                  0.00001     3.10744  
   25. RY*(  10) O   1                  0.00000     2.85256  
   26. RY*(  11) O   1                  0.00000     2.85256  
   27. RY*(  12) O   1                  0.00001     3.10744  
   28. RY*(  13) O   1                  0.00000     3.00932  
   29. RY*(   1)Au   2                  0.00001     0.62505  
   30. RY*(   2)Au   2                  0.00000     0.26549  
   31. RY*(   3)Au   2                  0.00000     2.97572  
   32. RY*(   4)Au   2                  0.00001     0.39615  
   33. RY*(   5)Au   2                  0.00000     0.56115  
   34. RY*(   6)Au   2                  0.00000     0.68587  
   35. RY*(   7)Au   2                  0.00000     0.68587  
   36. RY*(   8)Au   2                  0.00000     0.56111  
   37. RY*(   9)Au   2                  0.00000     0.26549  
   38. BD*(   1) O   1 -Au   2          0.00000     0.19036  
   39. BD*(   2) O   1 -Au   2          0.00000     0.19036  
   40. BD*(   3) O   1 -Au   2          0.00808     0.14957  
      -------------------------------
             Total Lewis   87.95965  ( 99.9541%)
       Valence non-Lewis    0.03768  (  0.0428%)
       Rydberg non-Lewis    0.00267  (  0.0030%)
      -------------------------------
           Total unit  1   88.00000  (100.0000%)
          Charge unit  1   -1.00000

Vibrational Analysis

AuS-

E(RB3LYP) = -533.742 A.U.

The vibrational analysis taken from the Gaussian log file can be seen below, it contains one molecular vibration of 334.0 cm-1. Only one vibration would be expected here as the molecule is a linear diatomic molecule. There are only five low frequencies here as there are only 3N-5 degrees of freedom for a linear molecule.

Low frequencies --- -6.4919 -6.4919 -0.0014 -0.0013 0.0014 333.9450

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
activities (A**4/AMU), depolarization ratios for plane and unpolarized
incident light, reduced masses (AMU), force constants (mDyne/A),
and normal coordinates:
                    1
                   SG
Frequencies --   333.9450
Red. masses --    36.2078
Frc consts  --     2.3790
IR Inten    --     8.9621
 Atom  AN      X      Y      Z
    1  16     0.00   0.00   0.99
    2  79     0.00   0.00  -0.16
AuO-

E(RB3LYP) = -210.668 A.U.

Low frequencies --- -73.0324 -73.0324 -0.0003 -0.0003 0.0002 623.7090

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
activities (A**4/AMU), depolarization ratios for plane and unpolarized
incident light, reduced masses (AMU), force constants (mDyne/A),
and normal coordinates:
                    1
                   SG
Frequencies --   623.7090
Red. masses --    17.1805
Frc consts  --     3.9378
IR Inten    --    28.9418
 Atom  AN      X      Y      Z
    1   8     0.00   0.00   1.00
    2  79     0.00   0.00  -0.08



Files from the mini project:

AuS Optimisation - DOI:10042/to-7086

AuO Optimisation - DOI:10042/to-7085

AuS Frequency Analysis - DOI:10042/to-7083

AuO Frequency Analysis - DOI:10042/to-7084

AuO MO and NBO Analysis - DOI:10042/to-7088

AuS MO and NBO Analysis - DOI:10042/to-7087