Jump to content

Rep:Mod:01339518

From ChemWiki

Ammonia, Nitrogen and Hydrogen

NH3

Calculation method B3LYP
Basis Set 6-31G (d,p)
Final Energy -56.55776873 a.u
RMS Gradient 0.00000485 a.u
Point Group C3V
Bond Angle 105.741o
Bond length 1.01798 Å
Charge on Nitrogen -1.125 a.u
Charge on Hydrogens 0.375 a.u

The charge on nitrogen is expected to be negative. Nitrogen has a higher electronegativity than hydrogen, therefore the electron density is higher around the nitrogen atom.

        Item               Value     Threshold  Converged?
 Maximum Force            0.000004     0.000450     YES
 RMS     Force            0.000004     0.000300     YES
 Maximum Displacement     0.000072     0.001800     YES
 RMS     Displacement     0.000035     0.001200     YES
 Predicted change in Energy=-5.986284D-10
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.018          -DE/DX =    0.0                 !
 ! R2    R(1,3)                  1.018          -DE/DX =    0.0                 !
 ! R3    R(1,4)                  1.018          -DE/DX =    0.0                 !
 ! A1    A(2,1,3)              105.7412         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              105.7412         -DE/DX =    0.0                 !
 ! A3    A(3,1,4)              105.7412         -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -111.8571         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad


Figure 2 - NH3 vibrational frequencies
Figure 2 - NH3's predicted IR spectrum

While there are 3 expected bands, 5 and 6 would not be observed in practice, and it is likely 2 and 3 would be at best, difficult to observe. 4 is not observed at all,as there is no change in dipole moment.

Expected modes of vibration 6
Degenerate modes (2,3),(5,6)
Bending modes 1,2,3
Stretching modes 4,5,6
Most symmetric mode 4
Umbrella mode 1
Expected bands 3



File:01339518 NH3.LOG

H2

Calculation method B3LYP
Basis Set 6-31G (d,p)
Final Energy -1.17853936 a.u
RMS Gradient 0.00000017 a.u
Point Group D*H
Bond Angle 180 o
Bond length 0.74279 Å
Frequency of Vibration 4465.68 cm-1
        Item               Value     Threshold  Converged?
 Maximum Force            0.000000     0.000450     YES
 RMS     Force            0.000000     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000001     0.001200     YES
 Predicted change in Energy=-1.164080D-13
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  0.7428         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

File:01339518- H2 OPTIMISATION.LOG

N2

Calculation method B3LYP
Basis Set 6-31G (d,p)
Final Energy -109.52412868 a.u
RMS Gradient 0.00000060 a.u
Point Group D*H
Bond Angle 180 o
Bond length 1.10550
Frequency of Vibration 2457.33 cm-1
         Item               Value     Threshold  Converged?
 Maximum Force            0.000001     0.000450     YES
 RMS     Force            0.000001     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000000     0.001200     YES
 Predicted change in Energy=-3.401047D-13
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.1055         -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

File:01339518-N2 OPTIMISATION.LOG

Overall Energy Calculations for the Haber Process

Energy calculations
Energy Energy / a.u Energy / kJ mol-1
E(NH3) -56.55776873 -148492.43
2.E(NH3) -113.11553746 -296984.87
E(N2) -109.52412868 -287555.62
E(H2) -1.17853936 -3094.26
3.E(H2) -3.53561808 -9282.77
ΔE -0.05579069 -146.49

The energy change of the reaction is predicted to be -146.49 kJ mol-1, which indicates that it is an exothermic reaction. Therefore the product, NH3, lies lower in energy than that of the reactants H2 and N2

Chosen molecule: CH4

Calculation method B3LYP
Basis Set 6-31G (d,p)
Final Energy -40.52401404 a.u
RMS Gradient 0.00003263 a.u
Point Group TD
Bond Angle 109.471 o
Bond length 1.09197 Å
Charge on Carbon -0.930 a.u
Charge on Hydrogens 0.233 a.u

The bond length of C-H in methane is calculated at 0 Kelvin. Comparisons with experimental literature (1.107 ,1.106 Å)[1][2] and computational literature (1.094 Å)[3] are very similar, considering the effect of temperature causes the bond to extend to a small degree.

Expected modes of vibration 9
Mode of Vibration Frequency / cm-1 Degeneracy Observed?
1,2,3 1356.20 3 Yes
4,5 1578.58 2 No
6 3046.46 1 No
7,8,9 3162.33 3 Yes

Modes 4, 5 and 6 are not observed as the vibration does not involve a change in dipole moment, therefore it is IR inactive.

        Item               Value     Threshold  Converged?
 Maximum Force            0.000063     0.000450     YES
 RMS     Force            0.000034     0.000300     YES
 Maximum Displacement     0.000179     0.001800     YES
 RMS     Displacement     0.000095     0.001200     YES
 Predicted change in Energy=-2.256035D-08
 Optimization completed.
    -- Stationary point found.
                           ----------------------------
                           !   Optimized Parameters   !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  1.092          -DE/DX =   -0.0001              !
 ! R2    R(1,3)                  1.092          -DE/DX =   -0.0001              !
 ! R3    R(1,4)                  1.092          -DE/DX =   -0.0001              !
 ! R4    R(1,5)                  1.092          -DE/DX =   -0.0001              !
 ! A1    A(2,1,3)              109.4712         -DE/DX =    0.0                 !
 ! A2    A(2,1,4)              109.4712         -DE/DX =    0.0                 !
 ! A3    A(2,1,5)              109.4712         -DE/DX =    0.0                 !
 ! A4    A(3,1,4)              109.4712         -DE/DX =    0.0                 !
 ! A5    A(3,1,5)              109.4712         -DE/DX =    0.0                 !
 ! A6    A(4,1,5)              109.4712         -DE/DX =    0.0                 !
 ! D1    D(2,1,4,3)           -120.0            -DE/DX =    0.0                 !
 ! D2    D(2,1,5,3)            120.0            -DE/DX =    0.0                 !
 ! D3    D(2,1,5,4)           -120.0            -DE/DX =    0.0                 !
 ! D4    D(3,1,5,4)            120.0            -DE/DX =    0.0                 !
 --------------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

File:01339518-CH4.LOG

Molecular Orbitals of CH4

Figure 2 - CH4 MO Diagram
Molecular Orbital Orbital Energies / a.u
1 -10.16707
2 -0.69041
3 -0.38831
4 -0.38831
5 -0.38831
6 0.11824
7 0.17677
8 0.17677
9 0.17677
10 0.52915
11 0.52915
12 0.52915

The orbital occupations can be seen on figure 2. Note that MO-1 is not on figure 2, as the orbital is so deep in energy that it does not interact with any significance with the H 1s orbitals. It would be parallel to

Bonding and Non Bonding Orbitals

MO-1 is the lowest energy MO of methane, where it is composed of only the 1s orbital of carbon. As the 1s orbital is so deep in energy,it is a core orbital, therefore the interaction of 1s with the H orbitals is minimal. The coefficients of C 1s was 0.99284. It is non bonding. The shape is almost identical of the 1s sphere shape.

MO-2 is formed by the contribution of 2s on carbon and the 1s orbitals of hydrogen. The s character leads to a lower energy than that of the 2p-1s MOs. The orbital coefficients reflect on this, where C 2s and H 1s had values of 0.38672 and 0.13785 respectively.

MO's 3, 4 and 5 are degenerate, they are the HOMOs. They are composed of the 3 2p orbitals from carbon and the three 1s orbitals of the hydrogen atoms. The orbital coefficients of C 2p and H 1s were 0.44276 and 0.17016. They are orientated along the axis of the contributing 2p orbital.

MO's 2,3,4 and 5 are bonding orbitals as they are lower in energy than the orbitals that formed them. (H 1s, C 2s and 2p)

MO-1 MO-2 (sigma) MO-4 (sigma)
Figure 2 - MO - 1 Figure 3 - MO - 2 Figure 4 - MO - 4


Anti Bonding Orbitals

MO-7 is a combination of C 2p and 3p with H 2s. The coefficients are 0.38122,1.34476 and ±1.07455.

MO-10 is a combination of C 3p and H 1s and 2s to a smaller but not insignificant degree. The coefficients are 1.45073, ±0.28550 and ±0.14317.

Note that the calculations made by Gaussian for unoccupied orbitals are unreliable, and they are approximations made by placing electrons into the higher orbitals.

MO-7 (sigma) MO-10 (sigma)
MO - 7 MO - 10

References

  1. The Journal of Chemical Physics33, 1254 (1960); doi: 10.1063/1.1731367
  2. The Journal of Chemical Physics35, 1211 (1961); doi: 10.1063/1.1732025
  3. 1. Handy, N. C., Murray, C. W. & Amos, R. D. Study of methane, acetylene, ethene, and benzene using Kohn-Sham theory. J. Phys. Chem. 97, 4392–4396 (1993)