Jump to content

Rep:MOD:JDN15

From ChemWiki

NH3

Calculation Method : RB3LYP
Basic Set : 6-31G(d,p)
Final Energy E (RB3LYP) : -56.55776873 a.u.
RMS gradient : 0.00000485 a.u.
Point Group : C3V
N-H Bond Length: 1.3 H-N-H Bond Angle: 109.47

 Item               Value     Threshold  Converged?
 Maximum Force            0.000004     0.000450     YES
 RMS     Force            0.000004     0.000300     YES
 Maximum Displacement     0.000072     0.001800     YES
 RMS     Displacement     0.000035     0.001200     YES
 Predicted change in Energy=-5.986267D-10
 Optimization completed.
    -- Stationary point found.           
NH3

The optimisation file is linked to here

Display Vibrations :



Vibrational modes expected from 3(N)-6 Rule : 3(4) - 6 = 6
Modes that are degenerate : 2&3, 5&6
Bending modes : 1,2,3
Stretching modes : 4,5,6
Highly Symmetric Mode: 4
Umbrella mode : 1
Bands observed in an experimental spectrum of NH3(g): 4

N is expected to be negatively charged as it is a more electronegative atom compared to H

N2

Calculation Method : RB3LYP
Basic Set : 6-31G(d,p)
Final Energy E (RB3LYP) : -109.52412868 a.u.
RMS gradient : 0.00000003 a.u.
Point Group : Dh

 Item               Value     Threshold  Converged?
 Maximum Force            0.000000     0.000450     YES
 RMS     Force            0.000000     0.000300     YES
 Maximum Displacement     0.000000     0.001800     YES
 RMS     Displacement     0.000000     0.001200     YES
 Predicted change in Energy=-1.076410D-15
 Optimization completed.
    -- Stationary point found.  

The optimisation file is linked to here

Display Vibrations :



Vibrational modes expected from 3(N)-5 Rule : 3(2) - 5 = 1
Bands observed in an experimental spectrum of N2(g): 1
Confirmed : No negative frequencies


H2

Calculation Method : RB3LYP
Basic Set : 6-31G(d,p)
Final Energy E (RB3LYP) : -1.17853936 a.u.
RMS gradient : 0.00002276 a.u.
Point Group : Dh

         Item               Value     Threshold  Converged?
 Maximum Force            0.000039     0.000450     YES
 RMS     Force            0.000039     0.000300     YES
 Maximum Displacement     0.000052     0.001800     YES
 RMS     Displacement     0.000073     0.001200     YES
 Predicted change in Energy=-2.043043D-09
 Optimization completed.
    -- Stationary point found.

The optimisation file is linked to here

Display Vibrations :



Vibrational modes expected from 3(N)-5 Rule : 3(2) - 5 = 1
Bands observed in an experimental spectrum of H2(g): 1
Confirmed : No negative frequencies


Energy Values

N2 + 3H2 -> 2NH3
E(NH3)= -56.55776873 a.u.
2*E(NH3)=-113.11553746 a.u.
E(N2)=-109.52412868 a.u.
E(H2)=-1.17853936 a.u.
3*E(H2)=-3.53561808 a.u.
ΔE=2*E(NH3)-[E(N2)+3*E(H2)]= -113.11553746 - [ (-109.52412868) + (-3.53561808) = -0.0557907 a.u. = -146.47849401kJ/mol

As reaction is exothermic, the product will be more stable.

CH4

Calculation Method : RB3LYP
Basic Set : 6-31G(d,p)
Final Energy E (RB3LYP) : -40.52401404 a.u.
RMS gradient :0.00003263 a.u.
Point Group : Td

         Item               Value     Threshold  Converged?
 Maximum Force            0.000063     0.000450     YES
 RMS     Force            0.000034     0.000300     YES
 Maximum Displacement     0.000179     0.001800     YES
 RMS     Displacement     0.000095     0.001200     YES
 Predicted change in Energy=-2.256043D-08
 Optimization completed.
    -- Stationary point found.

The optimisation file is linked to here

Display Vibrations :


Vibrational modes expected from 3(N)-6 Rule : 3(5) - 6 = 9
Number of vibrational modes: 9
Degenerate modes : 1,2,3 & 4,5 & 7,8,9




C is expected to be negatively charged as it is more electronegative than H


MO


This MO is very deep (-10.16707 a.u.), the AOs hardly overlap and are not very involved with chemical bonding.

MOs 2 has stronger overlap and is very extensive. The energy is also at a higher level compared to MO1 (-0.69 compared to -10.17)


These MOs are formed by the valence 2s and 2p orbitals of C and 1s valence electron of H. They are bonding MOs