Hydrogen.log
Appearance
Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 3164. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. ---------------------------------------------------------------
Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 11-Feb-2019 ****************************************** %chk=C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk Default route: MaxDisk=10GB ---------------------------------------------------------------------- # opt freq ccsd/6-31g(d,p) geom=connectivity integral=grid=ultrafine p op=full ---------------------------------------------------------------------- 1/18=20,19=15,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=9,16=1,25=1,30=1,71=1,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 8/6=4,9=120000,10=2/1,4; 9/5=7,15=1/13; 11/28=-8,29=200,42=3/11; 10/5=6/2; 6/7=3/1; 7/12=7/1,2,3,16; 1/18=20,19=15/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=9,16=1,25=1,30=1,71=1,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 8/6=4,9=120000,10=2/1,4; 9/5=7,15=1/13; 11/28=-8,29=200,42=3/11; 10/5=6/2; 7/12=7/1,2,3,16; 1/18=20,19=15/3(-9); 2/9=110/2; 6/7=3/1; 99//99; ----- H2Opt ----- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 H 0. 0. 0.3 H 0. 0. -0.3
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 0.6 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.300000 2 1 0 0.000000 0.000000 -0.300000 --------------------------------------------------------------------- Stoichiometry H2 Framework group D*H[C*(H.H)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.300000 2 1 0 0.000000 0.000000 -0.300000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 2785.8616682 2785.8616682 Standard basis: 6-31G(d,p) (6D, 7F) There are 3 symmetry adapted cartesian basis functions of AG symmetry. There are 0 symmetry adapted cartesian basis functions of B1G symmetry. There are 1 symmetry adapted cartesian basis functions of B2G symmetry. There are 1 symmetry adapted cartesian basis functions of B3G symmetry. There are 0 symmetry adapted cartesian basis functions of AU symmetry. There are 3 symmetry adapted cartesian basis functions of B1U symmetry. There are 1 symmetry adapted cartesian basis functions of B2U symmetry. There are 1 symmetry adapted cartesian basis functions of B3U symmetry. There are 3 symmetry adapted basis functions of AG symmetry. There are 0 symmetry adapted basis functions of B1G symmetry. There are 1 symmetry adapted basis functions of B2G symmetry. There are 1 symmetry adapted basis functions of B3G symmetry. There are 0 symmetry adapted basis functions of AU symmetry. There are 3 symmetry adapted basis functions of B1U symmetry. There are 1 symmetry adapted basis functions of B2U symmetry. There are 1 symmetry adapted basis functions of B3U symmetry. 10 basis functions, 14 primitive gaussians, 10 cartesian basis functions 1 alpha electrons 1 beta electrons nuclear repulsion energy 0.8819620143 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 10 RedAO= T EigKep= 5.64D-02 NBF= 3 0 1 1 0 3 1 1 NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 1 1 0 3 1 1 ExpMin= 1.61D-01 ExpMax= 1.87D+01 ExpMxC= 1.87D+01 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SGG) Virtual (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) The electronic state of the initial guess is 1-SGG. Keep R1 ints in memory in symmetry-blocked form, NReq=824359. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -1.11393477871 A.U. after 5 cycles NFock= 5 Conv=0.17D-09 -V/T= 1.8631 Range of M.O.s used for correlation: 1 10 NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0 NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9 Semi-Direct transformation. ModeAB= 4 MOrb= 1 LenV= 805198401 LASXX= 69 LTotXX= 69 LenRXX= 172 LTotAB= 103 MaxLAS= 360 LenRXY= 0 NonZer= 241 LenScr= 785920 LnRSAI= 360 LnScr1= 785920 LExtra= 149747 Total= 1722119 MaxDsk= 1342177280 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 1. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00 alpha-beta T2 = 0.7131948521D-02 E2= -0.2608508579D-01 beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00 ANorm= 0.1003559639D+01 E2 = -0.2608508579D-01 EUMP2 = -0.11400198645080D+01 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=803446. Iterations= 50 Convergence= 0.100D-07 Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. MP4(R+Q)= 0.18603749D-03 E3= -0.52448216D-02 EUMP3= -0.11452646861D+01 E4(DQ)= -0.11248550D-02 UMP4(DQ)= -0.11463895411D+01 E4(SDQ)= -0.11740965D-02 UMP4(SDQ)= -0.11464387826D+01 DE(Corr)= -0.31142438E-01 E(Corr)= -1.1450772164 NORM(A)= 0.10058470D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.32668901E-01 E(CORR)= -1.1466036800 Delta=-1.53D-03 NORM(A)= 0.10061595D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.32861066E-01 E(CORR)= -1.1467958449 Delta=-1.92D-04 NORM(A)= 0.10061853D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.32873849E-01 E(CORR)= -1.1468086280 Delta=-1.28D-05 NORM(A)= 0.10061846D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.32873176E-01 E(CORR)= -1.1468079543 Delta= 6.74D-07 NORM(A)= 0.10061849D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.32873330E-01 E(CORR)= -1.1468081089 Delta=-1.55D-07 NORM(A)= 0.10061848D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.32873297E-01 E(CORR)= -1.1468080758 Delta= 3.32D-08 NORM(A)= 0.10061848D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.32873298E-01 E(CORR)= -1.1468080763 Delta=-5.17D-10 NORM(A)= 0.10061848D+01 Largest amplitude= 5.69D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.32549970D-01 E(Z)= -0.11464847487D+01 NORM(A)= 0.10061848D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.32549961D-01 E(Z)= -0.11464847393D+01 NORM(A)= 0.10061847D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.32549918D-01 E(Z)= -0.11464846965D+01 NORM(A)= 0.10061842D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.32549627D-01 E(Z)= -0.11464844057D+01 NORM(A)= 0.10061835D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.32549290D-01 E(Z)= -0.11464840690D+01 NORM(A)= 0.10060303D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.32467878D-01 E(Z)= -0.11464026564D+01 NORM(A)= 0.10060303D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.32467877D-01 E(Z)= -0.11464026560D+01 NORM(A)= 0.10060303D+01 Discarding MO integrals. IDoAtm=11 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in symmetry-blocked form, NReq=805399. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=6.21D-03 Max=1.74D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.01D-05 Max=2.82D-05 NDo= 1 LinEq1: Iter= 2 NonCon= 0 RMS=7.02D-20 Max=2.07D-19 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist.
**********************************************************************
Population analysis using the SCF density.
**********************************************************************
Orbital symmetries: Occupied (SGG) Virtual (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) The electronic state is 1-SGG. Alpha occ. eigenvalues -- -0.64197 Alpha virt. eigenvalues -- 0.27435 0.71183 1.45768 1.97187 1.97187 Alpha virt. eigenvalues -- 2.96575 3.09753 3.09753 5.68848 Molecular Orbital Coefficients: 1 2 3 4 5 (SGG)--O (SGU)--V (SGG)--V (SGU)--V (PIU)--V Eigenvalues -- -0.64197 0.27435 0.71183 1.45768 1.97187 1 1 H 1S 0.33970 0.09664 0.70038 -0.70529 0.00000 2 2S 0.24073 2.15432 -0.67601 1.49237 0.00000 3 3PX 0.00000 0.00000 0.00000 0.00000 0.00000 4 3PY 0.00000 0.00000 0.00000 0.00000 0.57869 5 3PZ -0.01804 -0.00506 -0.00416 -0.42959 0.00000 6 2 H 1S 0.33970 -0.09664 0.70038 0.70529 0.00000 7 2S 0.24073 -2.15432 -0.67601 -1.49237 0.00000 8 3PX 0.00000 0.00000 0.00000 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00000 0.57869 10 3PZ 0.01804 -0.00506 0.00416 -0.42959 0.00000 6 7 8 9 10 (PIU)--V (SGG)--V (PIG)--V (PIG)--V (SGU)--V Eigenvalues -- 1.97187 2.96575 3.09753 3.09753 5.68848 1 1 H 1S 0.00000 0.40710 0.00000 0.00000 2.84932 2 2S 0.00000 -0.19708 0.00000 0.00000 -0.11133 3 3PX 0.57869 0.00000 0.99316 0.00000 0.00000 4 3PY 0.00000 0.00000 0.00000 0.99316 0.00000 5 3PZ 0.00000 0.72398 0.00000 0.00000 -2.05343 6 2 H 1S 0.00000 0.40710 0.00000 0.00000 -2.84932 7 2S 0.00000 -0.19708 0.00000 0.00000 0.11133 8 3PX 0.57869 0.00000 -0.99316 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 -0.99316 0.00000 10 3PZ 0.00000 -0.72398 0.00000 0.00000 -2.05343 Density Matrix: 1 2 3 4 5 1 1 H 1S 0.23079 2 2S 0.16355 0.11590 3 3PX 0.00000 0.00000 0.00000 4 3PY 0.00000 0.00000 0.00000 0.00000 5 3PZ -0.01225 -0.00868 0.00000 0.00000 0.00065 6 2 H 1S 0.23079 0.16355 0.00000 0.00000 -0.01225 7 2S 0.16355 0.11590 0.00000 0.00000 -0.00868 8 3PX 0.00000 0.00000 0.00000 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00000 0.00000 10 3PZ 0.01225 0.00868 0.00000 0.00000 -0.00065 6 7 8 9 10 6 2 H 1S 0.23079 7 2S 0.16355 0.11590 8 3PX 0.00000 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00000 10 3PZ 0.01225 0.00868 0.00000 0.00000 0.00065 Full Mulliken population analysis: 1 2 3 4 5 1 1 H 1S 0.23079 2 2S 0.10766 0.11590 3 3PX 0.00000 0.00000 0.00000 4 3PY 0.00000 0.00000 0.00000 0.00000 5 3PZ 0.00000 0.00000 0.00000 0.00000 0.00065 6 2 H 1S 0.13546 0.09092 0.00000 0.00000 0.00650 7 2S 0.09092 0.10449 0.00000 0.00000 0.00120 8 3PX 0.00000 0.00000 0.00000 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00000 0.00000 10 3PZ 0.00650 0.00120 0.00000 0.00000 0.00013 6 7 8 9 10 6 2 H 1S 0.23079 7 2S 0.10766 0.11590 8 3PX 0.00000 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00000 10 3PZ 0.00000 0.00000 0.00000 0.00000 0.00065 Gross orbital populations: 1 1 1 H 1S 0.57134 2 2S 0.42018 3 3PX 0.00000 4 3PY 0.00000 5 3PZ 0.00849 6 2 H 1S 0.57134 7 2S 0.42018 8 3PX 0.00000 9 3PY 0.00000 10 3PZ 0.00849 Condensed to atoms (all electrons): 1 2 1 H 0.562668 0.437332 2 H 0.437332 0.562668 Mulliken charges: 1 1 H 0.000000 2 H 0.000000 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 Electronic spatial extent (au): <R**2>= 4.4820 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -1.8488 YY= -1.8488 ZZ= -1.4662 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.1275 YY= -0.1275 ZZ= 0.2550 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1.6051 YYYY= -1.6051 ZZZZ= -2.1171 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.5350 XXZZ= -0.6276 YYZZ= -0.6276 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 8.819620143167D-01 E-N=-3.998494146104D+00 KE= 1.290638343225D+00 Symmetry AG KE= 1.290638343225D+00 Symmetry B1G KE= 0.000000000000D+00 Symmetry B2G KE= 3.627875552423D-34 Symmetry B3G KE= 3.627875552423D-34 Symmetry AU KE= 0.000000000000D+00 Symmetry B1U KE= 5.245687086437D-32 Symmetry B2U KE= 7.139705097430D-35 Symmetry B3U KE= 7.139705097430D-35 Orbital energies and kinetic energies (alpha): 1 2 1 (SGG)--O -0.641969 0.645319 2 (SGU)--V 0.274350 0.428020 3 (SGG)--V 0.711832 1.332971 4 (SGU)--V 1.457678 2.373467 5 (PIU)--V 1.971875 2.493142 6 (PIU)--V 1.971875 2.493142 7 (SGG)--V 2.965747 3.532991 8 (PIG)--V 3.097529 3.506562 9 (PIG)--V 3.097529 3.506562 10 (SGU)--V 5.688485 7.085916 Total kinetic energy from orbitals= 1.290638343225D+00 Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000000000 0.000000000 0.164956475 2 1 0.000000000 0.000000000 -0.164956475 ------------------------------------------------------------------- Cartesian Forces: Max 0.164956475 RMS 0.095237665
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.164956475 RMS 0.164956475 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R1 0.66291 ITU= 0 Eigenvalues --- 0.66291 RFO step: Lambda=-3.87786058D-02 EMin= 6.62913423D-01 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.14142136 RMS(Int)= 0.03508387 Iteration 2 RMS(Cart)= 0.02480804 RMS(Int)= 0.00000000 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 7.20D-18 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.13384 0.16496 0.00000 0.23508 0.23508 1.36892 Item Value Threshold Converged? Maximum Force 0.164956 0.000450 NO RMS Force 0.164956 0.000300 NO Maximum Displacement 0.117542 0.001800 NO RMS Displacement 0.166229 0.001200 NO Predicted change in Energy=-2.046084D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.362201 2 1 0 0.000000 0.000000 -0.362201 --------------------------------------------------------------------- Stoichiometry H2 Framework group D*H[C*(H.H)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.362201 2 1 0 0.000000 0.000000 -0.362201 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 1911.1903218 1911.1903218 Standard basis: 6-31G(d,p) (6D, 7F) There are 3 symmetry adapted cartesian basis functions of AG symmetry. There are 0 symmetry adapted cartesian basis functions of B1G symmetry. There are 1 symmetry adapted cartesian basis functions of B2G symmetry. There are 1 symmetry adapted cartesian basis functions of B3G symmetry. There are 0 symmetry adapted cartesian basis functions of AU symmetry. There are 3 symmetry adapted cartesian basis functions of B1U symmetry. There are 1 symmetry adapted cartesian basis functions of B2U symmetry. There are 1 symmetry adapted cartesian basis functions of B3U symmetry. There are 3 symmetry adapted basis functions of AG symmetry. There are 0 symmetry adapted basis functions of B1G symmetry. There are 1 symmetry adapted basis functions of B2G symmetry. There are 1 symmetry adapted basis functions of B3G symmetry. There are 0 symmetry adapted basis functions of AU symmetry. There are 3 symmetry adapted basis functions of B1U symmetry. There are 1 symmetry adapted basis functions of B2U symmetry. There are 1 symmetry adapted basis functions of B3U symmetry. 10 basis functions, 14 primitive gaussians, 10 cartesian basis functions 1 alpha electrons 1 beta electrons nuclear repulsion energy 0.7305031207 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 10 RedAO= T EigKep= 1.30D-01 NBF= 3 0 1 1 0 3 1 1 NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 1 1 0 3 1 1 Initial guess from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) Virtual (SGG) (SGG) (PIG) (PIG) (SGU) (SGU) (SGU) (PIU) (PIU) ExpMin= 1.61D-01 ExpMax= 1.87D+01 ExpMxC= 1.87D+01 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=824359. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -1.13128389397 A.U. after 6 cycles NFock= 6 Conv=0.76D-11 -V/T= 1.9887 Range of M.O.s used for correlation: 1 10 NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0 NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9 Semi-Direct transformation. ModeAB= 4 MOrb= 1 LenV= 805198401 LASXX= 69 LTotXX= 69 LenRXX= 172 LTotAB= 103 MaxLAS= 360 LenRXY= 0 NonZer= 241 LenScr= 785920 LnRSAI= 360 LnScr1= 785920 LExtra= 152890 Total= 1725262 MaxDsk= 1342177280 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 1. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00 alpha-beta T2 = 0.8058812715D-02 E2= -0.2631145437D-01 beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00 ANorm= 0.1004021321D+01 E2 = -0.2631145437D-01 EUMP2 = -0.11575953483419D+01 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=803446. Iterations= 50 Convergence= 0.100D-07 Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. MP4(R+Q)= 0.21203908D-03 E3= -0.54782376D-02 EUMP3= -0.11630735859D+01 E4(DQ)= -0.12886223D-02 UMP4(DQ)= -0.11643622083D+01 E4(SDQ)= -0.13844610D-02 UMP4(SDQ)= -0.11644580469D+01 DE(Corr)= -0.31574917E-01 E(Corr)= -1.1628588111 NORM(A)= 0.10068732D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33374462E-01 E(CORR)= -1.1646583561 Delta=-1.80D-03 NORM(A)= 0.10074784D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33710168E-01 E(CORR)= -1.1649940615 Delta=-3.36D-04 NORM(A)= 0.10075308D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33733408E-01 E(CORR)= -1.1650173019 Delta=-2.32D-05 NORM(A)= 0.10075304D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33732661E-01 E(CORR)= -1.1650165549 Delta= 7.47D-07 NORM(A)= 0.10075308D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33732853E-01 E(CORR)= -1.1650167468 Delta=-1.92D-07 NORM(A)= 0.10075307D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33732819E-01 E(CORR)= -1.1650167131 Delta= 3.38D-08 NORM(A)= 0.10075307D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33732820E-01 E(CORR)= -1.1650167138 Delta=-7.14D-10 NORM(A)= 0.10075307D+01 Largest amplitude= 6.73D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33335096D-01 E(Z)= -0.11646189900D+01 NORM(A)= 0.10075307D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33335088D-01 E(Z)= -0.11646189823D+01 NORM(A)= 0.10075305D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33335018D-01 E(Z)= -0.11646189124D+01 NORM(A)= 0.10075304D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33334943D-01 E(Z)= -0.11646188371D+01 NORM(A)= 0.10075282D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33333896D-01 E(Z)= -0.11646177897D+01 NORM(A)= 0.10073005D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33225073D-01 E(Z)= -0.11645089666D+01 NORM(A)= 0.10073005D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33225073D-01 E(Z)= -0.11645089668D+01 NORM(A)= 0.10073005D+01 Discarding MO integrals. IDoAtm=11 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in symmetry-blocked form, NReq=805399. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=9.09D-03 Max=2.52D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.89D-05 Max=5.22D-05 NDo= 1 LinEq1: Iter= 2 NonCon= 0 RMS=1.39D-19 Max=3.67D-19 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000000000 0.000000000 0.010761477 2 1 0.000000000 0.000000000 -0.010761477 ------------------------------------------------------------------- Cartesian Forces: Max 0.010761477 RMS 0.006213142
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.010761477 RMS 0.010761477 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -1.82D-02 DEPred=-2.05D-02 R= 8.90D-01 TightC=F SS= 1.41D+00 RLast= 2.35D-01 DXNew= 5.0454D-01 7.0525D-01 Trust test= 8.90D-01 RLast= 2.35D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R1 0.65591 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.65591 RFO step: Lambda= 0.00000000D+00 EMin= 6.55914845D-01 Quartic linear search produced a step of 0.11924. Iteration 1 RMS(Cart)= 0.01982057 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 8.58D-19 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.36892 0.01076 0.02803 0.00000 0.02803 1.39695 Item Value Threshold Converged? Maximum Force 0.010761 0.000450 NO RMS Force 0.010761 0.000300 NO Maximum Displacement 0.014015 0.001800 NO RMS Displacement 0.019821 0.001200 NO Predicted change in Energy=-4.397035D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.369617 2 1 0 0.000000 0.000000 -0.369617 --------------------------------------------------------------------- Stoichiometry H2 Framework group D*H[C*(H.H)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.369617 2 1 0 0.000000 0.000000 -0.369617 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 1835.2617813 1835.2617813 Standard basis: 6-31G(d,p) (6D, 7F) There are 3 symmetry adapted cartesian basis functions of AG symmetry. There are 0 symmetry adapted cartesian basis functions of B1G symmetry. There are 1 symmetry adapted cartesian basis functions of B2G symmetry. There are 1 symmetry adapted cartesian basis functions of B3G symmetry. There are 0 symmetry adapted cartesian basis functions of AU symmetry. There are 3 symmetry adapted cartesian basis functions of B1U symmetry. There are 1 symmetry adapted cartesian basis functions of B2U symmetry. There are 1 symmetry adapted cartesian basis functions of B3U symmetry. There are 3 symmetry adapted basis functions of AG symmetry. There are 0 symmetry adapted basis functions of B1G symmetry. There are 1 symmetry adapted basis functions of B2G symmetry. There are 1 symmetry adapted basis functions of B3G symmetry. There are 0 symmetry adapted basis functions of AU symmetry. There are 3 symmetry adapted basis functions of B1U symmetry. There are 1 symmetry adapted basis functions of B2U symmetry. There are 1 symmetry adapted basis functions of B3U symmetry. 10 basis functions, 14 primitive gaussians, 10 cartesian basis functions 1 alpha electrons 1 beta electrons nuclear repulsion energy 0.7158451999 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 10 RedAO= T EigKep= 1.36D-01 NBF= 3 0 1 1 0 3 1 1 NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 1 1 0 3 1 1 Initial guess from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) Virtual (SGG) (SGG) (PIG) (PIG) (SGU) (SGU) (SGU) (PIU) (PIU) Keep R1 ints in memory in symmetry-blocked form, NReq=824359. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -1.13130157145 A.U. after 4 cycles NFock= 4 Conv=0.23D-08 -V/T= 2.0019 Range of M.O.s used for correlation: 1 10 NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0 NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9 Semi-Direct transformation. ModeAB= 4 MOrb= 1 LenV= 805198401 LASXX= 69 LTotXX= 69 LenRXX= 172 LTotAB= 103 MaxLAS= 360 LenRXY= 0 NonZer= 241 LenScr= 785920 LnRSAI= 360 LnScr1= 785920 LExtra= 153092 Total= 1725464 MaxDsk= 1342177280 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 1. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00 alpha-beta T2 = 0.8185670270D-02 E2= -0.2633875733D-01 beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00 ANorm= 0.1004084494D+01 E2 = -0.2633875733D-01 EUMP2 = -0.11576403287854D+01 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=803446. Iterations= 50 Convergence= 0.100D-07 Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. MP4(R+Q)= 0.21560038D-03 E3= -0.55121841D-02 EUMP3= -0.11631525129D+01 E4(DQ)= -0.13134485D-02 UMP4(DQ)= -0.11644659613D+01 E4(SDQ)= -0.14158324D-02 UMP4(SDQ)= -0.11645683453D+01 DE(Corr)= -0.31632436E-01 E(Corr)= -1.1629340077 NORM(A)= 0.10070214D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33472767E-01 E(CORR)= -1.1647743386 Delta=-1.84D-03 NORM(A)= 0.10076760D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33831166E-01 E(CORR)= -1.1651327377 Delta=-3.58D-04 NORM(A)= 0.10077328D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33855968E-01 E(CORR)= -1.1651575399 Delta=-2.48D-05 NORM(A)= 0.10077324D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33855227E-01 E(CORR)= -1.1651567986 Delta= 7.41D-07 NORM(A)= 0.10077329D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33855421E-01 E(CORR)= -1.1651569929 Delta=-1.94D-07 NORM(A)= 0.10077328D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33855388E-01 E(CORR)= -1.1651569594 Delta= 3.35D-08 NORM(A)= 0.10077328D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33855389E-01 E(CORR)= -1.1651569602 Delta=-7.35D-10 NORM(A)= 0.10077328D+01 Largest amplitude= 6.99D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33446435D-01 E(Z)= -0.11647480064D+01 NORM(A)= 0.10077328D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33446426D-01 E(Z)= -0.11647479978D+01 NORM(A)= 0.10077326D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33446356D-01 E(Z)= -0.11647479271D+01 NORM(A)= 0.10077324D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33446272D-01 E(Z)= -0.11647478431D+01 NORM(A)= 0.10077319D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33446033D-01 E(Z)= -0.11647476046D+01 NORM(A)= 0.10074902D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33332051D-01 E(Z)= -0.11646336222D+01 NORM(A)= 0.10074901D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33332048D-01 E(Z)= -0.11646336198D+01 NORM(A)= 0.10074901D+01 Discarding MO integrals. IDoAtm=11 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in symmetry-blocked form, NReq=805399. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=9.43D-03 Max=2.61D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.92D-05 Max=5.29D-05 NDo= 1 LinEq1: Iter= 2 NonCon= 0 RMS=1.98D-19 Max=5.48D-19 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000000000 0.000000000 -0.000570712 2 1 0.000000000 0.000000000 0.000570712 ------------------------------------------------------------------- Cartesian Forces: Max 0.000570712 RMS 0.000329501
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.000570712 RMS 0.000570712 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 2 3 DE= -1.40D-04 DEPred=-4.40D-05 R= 3.19D+00 TightC=F SS= 1.41D+00 RLast= 2.80D-02 DXNew= 8.4853D-01 8.4092D-02 Trust test= 3.19D+00 RLast= 2.80D-02 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R1 0.40428 ITU= 1 1 Use linear search instead of GDIIS. Eigenvalues --- 0.40428 RFO step: Lambda= 0.00000000D+00 EMin= 4.04280356D-01 Quartic linear search produced a step of -0.05278. Iteration 1 RMS(Cart)= 0.00104614 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 4.53D-20 for atom 2. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.39695 -0.00057 -0.00148 0.00000 -0.00148 1.39547 Item Value Threshold Converged? Maximum Force 0.000571 0.000450 NO RMS Force 0.000571 0.000300 NO Maximum Displacement 0.000740 0.001800 YES RMS Displacement 0.001046 0.001200 YES Predicted change in Energy=-4.019006D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.369226 2 1 0 0.000000 0.000000 -0.369226 --------------------------------------------------------------------- Stoichiometry H2 Framework group D*H[C*(H.H)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.369226 2 1 0 0.000000 0.000000 -0.369226 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 1839.1553040 1839.1553040 Standard basis: 6-31G(d,p) (6D, 7F) There are 3 symmetry adapted cartesian basis functions of AG symmetry. There are 0 symmetry adapted cartesian basis functions of B1G symmetry. There are 1 symmetry adapted cartesian basis functions of B2G symmetry. There are 1 symmetry adapted cartesian basis functions of B3G symmetry. There are 0 symmetry adapted cartesian basis functions of AU symmetry. There are 3 symmetry adapted cartesian basis functions of B1U symmetry. There are 1 symmetry adapted cartesian basis functions of B2U symmetry. There are 1 symmetry adapted cartesian basis functions of B3U symmetry. There are 3 symmetry adapted basis functions of AG symmetry. There are 0 symmetry adapted basis functions of B1G symmetry. There are 1 symmetry adapted basis functions of B2G symmetry. There are 1 symmetry adapted basis functions of B3G symmetry. There are 0 symmetry adapted basis functions of AU symmetry. There are 3 symmetry adapted basis functions of B1U symmetry. There are 1 symmetry adapted basis functions of B2U symmetry. There are 1 symmetry adapted basis functions of B3U symmetry. 10 basis functions, 14 primitive gaussians, 10 cartesian basis functions 1 alpha electrons 1 beta electrons nuclear repulsion energy 0.7166041333 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 10 RedAO= T EigKep= 1.36D-01 NBF= 3 0 1 1 0 3 1 1 NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 1 1 0 3 1 1 Initial guess from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) Virtual (SGG) (SGG) (PIG) (PIG) (SGU) (SGU) (SGU) (PIU) (PIU) Keep R1 ints in memory in symmetry-blocked form, NReq=824359. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -1.13130861316 A.U. after 4 cycles NFock= 4 Conv=0.62D-11 -V/T= 2.0012 Range of M.O.s used for correlation: 1 10 NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0 NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9 Semi-Direct transformation. ModeAB= 4 MOrb= 1 LenV= 805198401 LASXX= 69 LTotXX= 69 LenRXX= 172 LTotAB= 103 MaxLAS= 360 LenRXY= 0 NonZer= 241 LenScr= 785920 LnRSAI= 360 LnScr1= 785920 LExtra= 153092 Total= 1725464 MaxDsk= 1342177280 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 1. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00 alpha-beta T2 = 0.8178872959D-02 E2= -0.2633729098D-01 beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00 ANorm= 0.1004081109D+01 E2 = -0.2633729098D-01 EUMP2 = -0.11576459041456D+01 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=803446. Iterations= 50 Convergence= 0.100D-07 Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. MP4(R+Q)= 0.21540936D-03 E3= -0.55103505D-02 EUMP3= -0.11631562547D+01 E4(DQ)= -0.13121052D-02 UMP4(DQ)= -0.11644683599D+01 E4(SDQ)= -0.14141385D-02 UMP4(SDQ)= -0.11645703932D+01 DE(Corr)= -0.31629336E-01 E(Corr)= -1.1629379495 NORM(A)= 0.10070134D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33467464E-01 E(CORR)= -1.1647760773 Delta=-1.84D-03 NORM(A)= 0.10076654D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33824632E-01 E(CORR)= -1.1651332447 Delta=-3.57D-04 NORM(A)= 0.10077219D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33849350E-01 E(CORR)= -1.1651579628 Delta=-2.47D-05 NORM(A)= 0.10077215D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33848608E-01 E(CORR)= -1.1651572211 Delta= 7.42D-07 NORM(A)= 0.10077219D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33848802E-01 E(CORR)= -1.1651574153 Delta=-1.94D-07 NORM(A)= 0.10077219D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33848769E-01 E(CORR)= -1.1651573818 Delta= 3.35D-08 NORM(A)= 0.10077219D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33848769E-01 E(CORR)= -1.1651573826 Delta=-7.34D-10 NORM(A)= 0.10077219D+01 Largest amplitude= 6.97D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440424D-01 E(Z)= -0.11647490369D+01 NORM(A)= 0.10077218D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440415D-01 E(Z)= -0.11647490284D+01 NORM(A)= 0.10077218D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440391D-01 E(Z)= -0.11647490045D+01 NORM(A)= 0.10077214D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440226D-01 E(Z)= -0.11647488393D+01 NORM(A)= 0.10077208D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33439912D-01 E(Z)= -0.11647485256D+01 NORM(A)= 0.10074798D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33326247D-01 E(Z)= -0.11646348606D+01 NORM(A)= 0.10074799D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33326275D-01 E(Z)= -0.11646348884D+01 NORM(A)= 0.10074799D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33326274D-01 E(Z)= -0.11646348871D+01 NORM(A)= 0.10074799D+01 Discarding MO integrals. IDoAtm=11 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in symmetry-blocked form, NReq=805399. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=9.41D-03 Max=2.60D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.91D-05 Max=5.29D-05 NDo= 1 LinEq1: Iter= 2 NonCon= 0 RMS=3.90D-19 Max=1.07D-18 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000000000 0.000000000 0.000000178 2 1 0.000000000 0.000000000 -0.000000178 ------------------------------------------------------------------- Cartesian Forces: Max 0.000000178 RMS 0.000000103
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.000000178 RMS 0.000000178 Search for a local minimum. Step number 4 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 3 4 DE= -4.22D-07 DEPred=-4.02D-07 R= 1.05D+00 Trust test= 1.05D+00 RLast= 1.48D-03 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R1 0.38588 ITU= 0 1 Eigenvalues --- 0.38588 En-DIIS/RFO-DIIS IScMMF= 0 using points: 4 3 RFO step: Lambda=-5.08482145D-14. DidBck=F Rises=F RFO-DIIS coefs: 0.99969 0.00031 Iteration 1 RMS(Cart)= 0.00000033 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.41D-23 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.39547 0.00000 0.00000 0.00000 0.00000 1.39547 Item Value Threshold Converged? Maximum Force 0.000000 0.000450 YES RMS Force 0.000000 0.000300 YES Maximum Displacement 0.000000 0.001800 YES RMS Displacement 0.000000 0.001200 YES Predicted change in Energy=-4.092849D-14 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 0.7385 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.369226 2 1 0 0.000000 0.000000 -0.369226 --------------------------------------------------------------------- Stoichiometry H2 Framework group D*H[C*(H.H)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.369226 2 1 0 0.000000 0.000000 -0.369226 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 1839.1553040 1839.1553040
**********************************************************************
Population analysis using the SCF density.
**********************************************************************
Orbital symmetries: Occupied (SGG) Virtual (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) The electronic state is 1-SGG. Alpha occ. eigenvalues -- -0.59540 Alpha virt. eigenvalues -- 0.23994 0.77053 1.31191 1.95914 1.95914 Alpha virt. eigenvalues -- 2.70930 2.93294 2.93294 4.54275 Molecular Orbital Coefficients: 1 2 3 4 5 (SGG)--O (SGU)--V (SGG)--V (SGU)--V (PIU)--V Eigenvalues -- -0.59540 0.23994 0.77053 1.31191 1.95914 1 1 H 1S 0.31861 0.12002 0.74532 -0.88012 0.00000 2 2S 0.27484 1.72458 -0.67737 1.39407 0.00000 3 3PX 0.00000 0.00000 0.00000 0.00000 0.61024 4 3PY 0.00000 0.00000 0.00000 0.00000 0.00000 5 3PZ -0.01825 -0.00245 -0.03525 -0.28385 0.00000 6 2 H 1S 0.31861 -0.12002 0.74532 0.88012 0.00000 7 2S 0.27484 -1.72458 -0.67737 -1.39407 0.00000 8 3PX 0.00000 0.00000 0.00000 0.00000 0.61024 9 3PY 0.00000 0.00000 0.00000 0.00000 0.00000 10 3PZ 0.01825 -0.00245 0.03525 -0.28385 0.00000 6 7 8 9 10 (PIU)--V (SGG)--V (PIG)--V (PIG)--V (SGU)--V Eigenvalues -- 1.95914 2.70930 2.93294 2.93294 4.54275 1 1 H 1S 0.00000 0.38649 0.00000 0.00000 -1.46267 2 2S 0.00000 -0.18679 0.00000 0.00000 -0.15940 3 3PX 0.00000 0.00000 0.00000 0.87214 0.00000 4 3PY 0.61024 0.00000 0.87214 0.00000 0.00000 5 3PZ 0.00000 0.64838 0.00000 0.00000 1.58358 6 2 H 1S 0.00000 0.38649 0.00000 0.00000 1.46267 7 2S 0.00000 -0.18679 0.00000 0.00000 0.15940 8 3PX 0.00000 0.00000 0.00000 -0.87214 0.00000 9 3PY 0.61024 0.00000 -0.87214 0.00000 0.00000 10 3PZ 0.00000 -0.64838 0.00000 0.00000 1.58358 Density Matrix: 1 2 3 4 5 1 1 H 1S 0.20302 2 2S 0.17513 0.15107 3 3PX 0.00000 0.00000 0.00000 4 3PY 0.00000 0.00000 0.00000 0.00000 5 3PZ -0.01163 -0.01003 0.00000 0.00000 0.00067 6 2 H 1S 0.20302 0.17513 0.00000 0.00000 -0.01163 7 2S 0.17513 0.15107 0.00000 0.00000 -0.01003 8 3PX 0.00000 0.00000 0.00000 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00000 0.00000 10 3PZ 0.01163 0.01003 0.00000 0.00000 -0.00067 6 7 8 9 10 6 2 H 1S 0.20302 7 2S 0.17513 0.15107 8 3PX 0.00000 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00000 10 3PZ 0.01163 0.01003 0.00000 0.00000 0.00067 Full Mulliken population analysis: 1 2 3 4 5 1 1 H 1S 0.20302 2 2S 0.11529 0.15107 3 3PX 0.00000 0.00000 0.00000 4 3PY 0.00000 0.00000 0.00000 0.00000 5 3PZ 0.00000 0.00000 0.00000 0.00000 0.00067 6 2 H 1S 0.09272 0.08925 0.00000 0.00000 0.00548 7 2S 0.08925 0.12912 0.00000 0.00000 0.00156 8 3PX 0.00000 0.00000 0.00000 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00000 0.00000 10 3PZ 0.00548 0.00156 0.00000 0.00000 0.00026 6 7 8 9 10 6 2 H 1S 0.20302 7 2S 0.11529 0.15107 8 3PX 0.00000 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00000 10 3PZ 0.00000 0.00000 0.00000 0.00000 0.00067 Gross orbital populations: 1 1 1 H 1S 0.50576 2 2S 0.48628 3 3PX 0.00000 4 3PY 0.00000 5 3PZ 0.00797 6 2 H 1S 0.50576 7 2S 0.48628 8 3PX 0.00000 9 3PY 0.00000 10 3PZ 0.00797 Condensed to atoms (all electrons): 1 2 1 H 0.585330 0.414670 2 H 0.414670 0.585330 Mulliken charges: 1 1 H 0.000000 2 H 0.000000 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 Electronic spatial extent (au): <R**2>= 5.1659 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -2.0584 YY= -2.0584 ZZ= -1.5218 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.1789 YY= -0.1789 ZZ= 0.3577 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1.9221 YYYY= -1.9221 ZZZZ= -2.8011 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.6407 XXZZ= -0.8024 YYZZ= -0.8024 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 7.166041332553D-01 E-N=-3.634961279941D+00 KE= 1.129934888862D+00 Symmetry AG KE= 1.129934888862D+00 Symmetry B1G KE= 0.000000000000D+00 Symmetry B2G KE= 2.333384556558D-34 Symmetry B3G KE= 2.333384556558D-34 Symmetry AU KE= 0.000000000000D+00 Symmetry B1U KE= 8.497895942569D-32 Symmetry B2U KE= 6.359962177641D-35 Symmetry B3U KE= 6.359962177641D-35 Orbital energies and kinetic energies (alpha): 1 2 1 (SGG)--O -0.595400 0.564967 2 (SGU)--V 0.239936 0.446085 3 (SGG)--V 0.770528 1.413169 4 (SGU)--V 1.311913 2.284778 5 (PIU)--V 1.959140 2.449332 6 (PIU)--V 1.959140 2.449332 7 (SGG)--V 2.709296 3.284125 8 (PIG)--V 2.932944 3.364126 9 (PIG)--V 2.932944 3.364126 10 (SGU)--V 4.542751 5.471122 Total kinetic energy from orbitals= 1.129934888862D+00 1|1| IMPERIAL COLLEGE-SKLB-L1WOLF-044|FOpt|RCCSD-FC|6-31G(d,p)|H2|MYS1 8|11-Feb-2019|0||# opt freq ccsd/6-31g(d,p) geom=connectivity integral =grid=ultrafine pop=full||H2Opt||0,1|H,0.,0.,0.3692256185|H,0.,0.,-0.3 692256185||Version=EM64W-G09RevD.01|State=1-SGG|HF=-1.1313086|MP2=-1.1 576459|MP3=-1.1631563|MP4D=-1.1646838|MP4DQ=-1.1644684|MP4SDQ=-1.16457 04|CCSD=-1.1651574|RMSD=6.247e-012|RMSF=1.026e-007|Dipole=0.,0.,0.|PG= D*H [C*(H1.H1)]||@
I think that all right-thinking people in this country are sick and tired of being told that ordinary, decent people are fed up in this country with being sick and tired. I'm certainly not! But I'm sick and tired of being told that I am! -- Monty Python Job cpu time: 0 days 0 hours 0 minutes 48.0 seconds. File lengths (MBytes): RWF= 18 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Mon Feb 11 11:04:42 2019. Link1: Proceeding to internal job step number 2. ---------------------------------------------------------------------- #N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RCCSD(FC)/6-31G(d,p) F req ---------------------------------------------------------------------- 1/10=4,29=7,30=1,38=11,40=1/1,6,3; 2/12=2,40=1/2; 3/5=1,6=6,7=101,11=1,14=-4,16=1,25=1,30=1,70=2,71=1,75=-5,116=1/1,2,3; 4/5=101,69=2/1; 5/5=2,98=1/2; 8/6=4,9=120000,10=2/1,4; 9/5=7,15=1/13; 11/28=-8,29=200,42=3/11; 10/5=6/2; 6/7=3,22=-1/1; 7/12=7/1,2,3,16; 1/38=10/6(3); 7/8=1,25=1,44=-1/16; 1/10=4,30=1,38=10/3; 99//99; 3/5=1,6=6,7=101,11=1,14=-2,16=1,25=1,30=1,70=5,71=1,75=-5,116=1/1,2,3; 4/5=5,16=3,69=2/1; 5/5=2,38=5,98=1/2; 8/6=4,9=120000,10=2/1,4; 9/5=7,15=1/13; 11/28=-8,29=200,42=3/11; 10/5=6/2; 6/7=3,22=-1/1; 7/7=1,12=7/1,2,3,16; 1/38=10/6(-9); 7/8=1,25=1,44=-1/16; 1/10=4,30=1,38=10/3; 99//99; Structure from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk" ----- H2Opt ----- Charge = 0 Multiplicity = 1 Redundant internal coordinates found in file. H,0,0.,0.,0.3692256185 H,0,0.,0.,-0.3692256185 Recover connectivity data from disk. Numerical evaluation of force-constants. Nuclear step= 0.001000 Angstroms, electric field step= 0.000333 atomic units, NStep=1.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 0.7385 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 2 maximum allowed number of steps= 2. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.369226 2 1 0 0.000000 0.000000 -0.369226 --------------------------------------------------------------------- Stoichiometry H2 Framework group D*H[C*(H.H)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.369226 2 1 0 0.000000 0.000000 -0.369226 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 1839.1553040 1839.1553040 Standard basis: 6-31G(d,p) (6D, 7F) There are 3 symmetry adapted cartesian basis functions of AG symmetry. There are 0 symmetry adapted cartesian basis functions of B1G symmetry. There are 1 symmetry adapted cartesian basis functions of B2G symmetry. There are 1 symmetry adapted cartesian basis functions of B3G symmetry. There are 0 symmetry adapted cartesian basis functions of AU symmetry. There are 3 symmetry adapted cartesian basis functions of B1U symmetry. There are 1 symmetry adapted cartesian basis functions of B2U symmetry. There are 1 symmetry adapted cartesian basis functions of B3U symmetry. There are 3 symmetry adapted basis functions of AG symmetry. There are 0 symmetry adapted basis functions of B1G symmetry. There are 1 symmetry adapted basis functions of B2G symmetry. There are 1 symmetry adapted basis functions of B3G symmetry. There are 0 symmetry adapted basis functions of AU symmetry. There are 3 symmetry adapted basis functions of B1U symmetry. There are 1 symmetry adapted basis functions of B2U symmetry. There are 1 symmetry adapted basis functions of B3U symmetry. 10 basis functions, 14 primitive gaussians, 10 cartesian basis functions 1 alpha electrons 1 beta electrons nuclear repulsion energy 0.7166041333 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 10 RedAO= T EigKep= 1.36D-01 NBF= 3 0 1 1 0 3 1 1 NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 1 1 0 3 1 1 Initial guess from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) Virtual (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) Keep R1 ints in memory in symmetry-blocked form, NReq=824359. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Skip diagonalization as Alpha Fock matrix is already diagonal. SCF Done: E(RHF) = -1.13130861316 A.U. after 1 cycles NFock= 1 Conv=0.00D+00 -V/T= 2.0012 Range of M.O.s used for correlation: 1 10 NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0 NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9 Semi-Direct transformation. ModeAB= 4 MOrb= 1 LenV= 805198401 LASXX= 69 LTotXX= 69 LenRXX= 172 LTotAB= 103 MaxLAS= 360 LenRXY= 0 NonZer= 241 LenScr= 785920 LnRSAI= 360 LnScr1= 785920 LExtra= 147642 Total= 1720014 MaxDsk= 1342177280 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 1. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00 alpha-beta T2 = 0.8178872959D-02 E2= -0.2633729098D-01 beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00 ANorm= 0.1004081109D+01 E2 = -0.2633729098D-01 EUMP2 = -0.11576459041456D+01 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=803446. Iterations= 50 Convergence= 0.100D-07 Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. MP4(R+Q)= 0.21540936D-03 E3= -0.55103505D-02 EUMP3= -0.11631562547D+01 E4(DQ)= -0.13121052D-02 UMP4(DQ)= -0.11644683599D+01 E4(SDQ)= -0.14141385D-02 UMP4(SDQ)= -0.11645703932D+01 DE(Corr)= -0.31629336E-01 E(Corr)= -1.1629379495 NORM(A)= 0.10070134D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33467464E-01 E(CORR)= -1.1647760773 Delta=-1.84D-03 NORM(A)= 0.10076654D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33824632E-01 E(CORR)= -1.1651332447 Delta=-3.57D-04 NORM(A)= 0.10077219D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33849350E-01 E(CORR)= -1.1651579628 Delta=-2.47D-05 NORM(A)= 0.10077215D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33848608E-01 E(CORR)= -1.1651572211 Delta= 7.42D-07 NORM(A)= 0.10077219D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33848802E-01 E(CORR)= -1.1651574153 Delta=-1.94D-07 NORM(A)= 0.10077219D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33848769E-01 E(CORR)= -1.1651573818 Delta= 3.35D-08 NORM(A)= 0.10077219D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33848769E-01 E(CORR)= -1.1651573826 Delta=-7.34D-10 NORM(A)= 0.10077219D+01 Largest amplitude= 6.97D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440424D-01 E(Z)= -0.11647490369D+01 NORM(A)= 0.10077218D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440416D-01 E(Z)= -0.11647490288D+01 NORM(A)= 0.10077217D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440354D-01 E(Z)= -0.11647489670D+01 NORM(A)= 0.10077215D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440255D-01 E(Z)= -0.11647488687D+01 NORM(A)= 0.10077212D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440095D-01 E(Z)= -0.11647487085D+01 NORM(A)= 0.10074799D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33326275D-01 E(Z)= -0.11646348880D+01 NORM(A)= 0.10074799D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33326274D-01 E(Z)= -0.11646348869D+01 NORM(A)= 0.10074799D+01 Discarding MO integrals. IDoAtm=11 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in symmetry-blocked form, NReq=805399. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=9.41D-03 Max=2.60D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.91D-05 Max=5.29D-05 NDo= 1 LinEq1: Iter= 2 NonCon= 0 RMS=4.47D-19 Max=1.30D-18 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist.
**********************************************************************
Population analysis using the QCI/CC density.
**********************************************************************
Orbital symmetries: Occupied (SGG) Virtual (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) The electronic state is 1-SGG. Alpha occ. eigenvalues -- -0.59540 Alpha virt. eigenvalues -- 0.23994 0.77053 1.31191 1.95914 1.95914 Alpha virt. eigenvalues -- 2.70930 2.93294 2.93294 4.54275 Molecular Orbital Coefficients: 1 2 3 4 5 (SGG)--O (SGU)--V (SGG)--V (SGU)--V (PIU)--V Eigenvalues -- -0.59540 0.23994 0.77053 1.31191 1.95914 1 1 H 1S 0.31861 0.12002 0.74532 -0.88012 0.00000 2 2S 0.27484 1.72458 -0.67737 1.39407 0.00000 3 3PX 0.00000 0.00000 0.00000 0.00000 0.61024 4 3PY 0.00000 0.00000 0.00000 0.00000 0.00000 5 3PZ -0.01825 -0.00245 -0.03525 -0.28385 0.00000 6 2 H 1S 0.31861 -0.12002 0.74532 0.88012 0.00000 7 2S 0.27484 -1.72458 -0.67737 -1.39407 0.00000 8 3PX 0.00000 0.00000 0.00000 0.00000 0.61024 9 3PY 0.00000 0.00000 0.00000 0.00000 0.00000 10 3PZ 0.01825 -0.00245 0.03525 -0.28385 0.00000 6 7 8 9 10 (PIU)--V (SGG)--V (PIG)--V (PIG)--V (SGU)--V Eigenvalues -- 1.95914 2.70930 2.93294 2.93294 4.54275 1 1 H 1S 0.00000 0.38649 0.00000 0.00000 -1.46267 2 2S 0.00000 -0.18679 0.00000 0.00000 -0.15940 3 3PX 0.00000 0.00000 0.00000 0.87214 0.00000 4 3PY 0.61024 0.00000 0.87214 0.00000 0.00000 5 3PZ 0.00000 0.64838 0.00000 0.00000 1.58358 6 2 H 1S 0.00000 0.38649 0.00000 0.00000 1.46267 7 2S 0.00000 -0.18679 0.00000 0.00000 0.15940 8 3PX 0.00000 0.00000 0.00000 -0.87214 0.00000 9 3PY 0.61024 0.00000 -0.87214 0.00000 0.00000 10 3PZ 0.00000 -0.64838 0.00000 0.00000 1.58358 Density Matrix: 1 2 3 4 5 1 1 H 1S 0.22204 2 2S 0.17812 0.15288 3 3PX 0.00000 0.00000 0.00068 4 3PY 0.00000 0.00000 0.00000 0.00068 5 3PZ -0.01067 -0.00719 0.00000 0.00000 0.00098 6 2 H 1S 0.20097 0.16201 0.00000 0.00000 -0.01178 7 2S 0.16201 0.13676 0.00000 0.00000 -0.00871 8 3PX 0.00000 0.00000 0.00050 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00050 0.00000 10 3PZ 0.01178 0.00871 0.00000 0.00000 -0.00071 6 7 8 9 10 6 2 H 1S 0.22204 7 2S 0.17812 0.15288 8 3PX 0.00000 0.00000 0.00068 9 3PY 0.00000 0.00000 0.00000 0.00068 10 3PZ 0.01067 0.00719 0.00000 0.00000 0.00098 Full Mulliken population analysis: 1 2 3 4 5 1 1 H 1S 0.22204 2 2S 0.11726 0.15288 3 3PX 0.00000 0.00000 0.00068 4 3PY 0.00000 0.00000 0.00000 0.00068 5 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098 6 2 H 1S 0.09178 0.08256 0.00000 0.00000 0.00555 7 2S 0.08256 0.11689 0.00000 0.00000 0.00135 8 3PX 0.00000 0.00000 0.00017 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00017 0.00000 10 3PZ 0.00555 0.00135 0.00000 0.00000 0.00028 6 7 8 9 10 6 2 H 1S 0.22204 7 2S 0.11726 0.15288 8 3PX 0.00000 0.00000 0.00068 9 3PY 0.00000 0.00000 0.00000 0.00068 10 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098 Gross orbital populations: 1 1 1 H 1S 0.51919 2 2S 0.47094 3 3PX 0.00085 4 3PY 0.00085 5 3PZ 0.00816 6 2 H 1S 0.51919 7 2S 0.47094 8 3PX 0.00085 9 3PY 0.00085 10 3PZ 0.00816 Condensed to atoms (all electrons): 1 2 1 H 0.611780 0.388220 2 H 0.388220 0.611780 Mulliken charges: 1 1 H 0.000000 2 H 0.000000 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 Electronic spatial extent (au): <R**2>= 5.1049 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -2.0170 YY= -2.0170 ZZ= -1.5227 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.1647 YY= -0.1647 ZZ= 0.3295 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1.8629 YYYY= -1.8629 ZZZZ= -2.7782 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.6210 XXZZ= -0.7874 YYZZ= -0.7874 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 7.166041332553D-01 E-N=-3.661971793491D+00 KE= 1.182296054886D+00 Symmetry AG KE= 1.143214290139D+00 Symmetry B1G KE= 0.000000000000D+00 Symmetry B2G KE= 3.996450757026D-04 Symmetry B3G KE= 3.996450757026D-04 Symmetry AU KE= 0.000000000000D+00 Symmetry B1U KE= 3.050536190333D-02 Symmetry B2U KE= 3.888556345988D-03 Symmetry B3U KE= 3.888556345988D-03 Orbital energies and kinetic energies (alpha): 1 2 1 (SGG)--O -0.595400 0.564967 2 (SGU)--V 0.239936 0.446085 3 (SGG)--V 0.770528 1.413169 4 (SGU)--V 1.311913 2.284778 5 (PIU)--V 1.959140 2.449332 6 (PIU)--V 1.959140 2.449332 7 (SGG)--V 2.709296 3.284125 8 (PIG)--V 2.932944 3.364126 9 (PIG)--V 2.932944 3.364126 10 (SGU)--V 4.542751 5.471122 Total kinetic energy from orbitals= 1.129934888862D+00 Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000000000 0.000000000 0.000000179 2 1 0.000000000 0.000000000 -0.000000179 ------------------------------------------------------------------- Cartesian Forces: Max 0.000000179 RMS 0.000000103 NDeriv= 6 NFrqRd= 0 NDerD0= 0 MskFDP= 0 MskDFD= 0 MskDF0= 0 At 1st pt F.D. properties file 721 does not exist. At 1st pt F.D. properties file 722 does not exist. D2Numr ... symmetry will be used. Standard basis: 6-31G(d,p) (6D, 7F) 10 basis functions, 14 primitive gaussians, 10 cartesian basis functions 1 alpha electrons 1 beta electrons nuclear repulsion energy 0.7166034762 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned off. One-electron integrals computed using PRISM. NBasis= 10 RedAO= T EigKep= 9.58D-02 NBF= 10 NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 10 Initial guess from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk" B after Tr= 0.000945 0.000000 0.000000 Rot= 1.000000 0.000000 -0.000677 0.000000 Ang= -0.08 deg. Keep R1 ints in memory in canonical form, NReq=823603. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -1.13130860745 A.U. after 2 cycles NFock= 2 Conv=0.33D-08 -V/T= 2.0012 Range of M.O.s used for correlation: 1 10 NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0 NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9 Semi-Direct transformation. ModeAB= 2 MOrb= 1 LenV= 805199366 LASXX= 405 LTotXX= 405 LenRXX= 405 LTotAB= 541 MaxLAS= 550 LenRXY= 550 NonZer= 810 LenScr= 785920 LnRSAI= 0 LnScr1= 0 LExtra= 4980162 Total= 5767037 MaxDsk= 1342177280 SrtSym= F ITran= 4 JobTyp=0 Pass 1: I= 1 to 1. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00 alpha-beta T2 = 0.8178878838D-02 E2= -0.2633729226D-01 beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00 ANorm= 0.1004081112D+01 E2 = -0.2633729226D-01 EUMP2 = -0.11576458997068D+01 Keep R2 and R3 ints in memory in canonical form, NReq=804284. Iterations= 50 Convergence= 0.100D-07 Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. MP4(R+Q)= 0.21540952D-03 E3= -0.55103521D-02 EUMP3= -0.11631562518D+01 E4(DQ)= -0.13121063D-02 UMP4(DQ)= -0.11644683582D+01 E4(SDQ)= -0.14141400D-02 UMP4(SDQ)= -0.11645703918D+01 DE(Corr)= -0.31629339E-01 E(Corr)= -1.1629379465 NORM(A)= 0.10070134D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33467469E-01 E(CORR)= -1.1647760762 Delta=-1.84D-03 NORM(A)= 0.10076654D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33824637E-01 E(CORR)= -1.1651332446 Delta=-3.57D-04 NORM(A)= 0.10077219D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33849355E-01 E(CORR)= -1.1651579628 Delta=-2.47D-05 NORM(A)= 0.10077215D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33848614E-01 E(CORR)= -1.1651572211 Delta= 7.42D-07 NORM(A)= 0.10077220D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33848808E-01 E(CORR)= -1.1651574153 Delta=-1.94D-07 NORM(A)= 0.10077219D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33848774E-01 E(CORR)= -1.1651573819 Delta= 3.35D-08 NORM(A)= 0.10077219D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33848775E-01 E(CORR)= -1.1651573826 Delta=-7.34D-10 NORM(A)= 0.10077219D+01 Largest amplitude= 6.97D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440429D-01 E(Z)= -0.11647490364D+01 NORM(A)= 0.10077219D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440421D-01 E(Z)= -0.11647490287D+01 NORM(A)= 0.10077218D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440397D-01 E(Z)= -0.11647490043D+01 NORM(A)= 0.10077217D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440332D-01 E(Z)= -0.11647489397D+01 NORM(A)= 0.10077222D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440594D-01 E(Z)= -0.11647492012D+01 NORM(A)= 0.10074799D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33326272D-01 E(Z)= -0.11646348797D+01 NORM(A)= 0.10074799D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33326278D-01 E(Z)= -0.11646348856D+01 NORM(A)= 0.10074799D+01 Discarding MO integrals. IDoAtm=11 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=804613. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=9.41D-03 Max=2.60D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.91D-05 Max=5.29D-05 NDo= 1 LinEq1: Iter= 2 NonCon= 0 RMS=1.10D-19 Max=2.61D-19 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist.
**********************************************************************
Population analysis using the QCI/CC density.
**********************************************************************
Alpha occ. eigenvalues -- -0.59540 Alpha virt. eigenvalues -- 0.23994 0.77053 1.31191 1.95914 1.95914 Alpha virt. eigenvalues -- 2.70929 2.93294 2.93294 4.54275 Molecular Orbital Coefficients: 1 2 3 4 5 O V V V V Eigenvalues -- -0.59540 0.23994 0.77053 1.31191 1.95914 1 1 H 1S 0.31861 0.12002 0.74532 -0.88012 0.00000 2 2S 0.27484 1.72457 -0.67737 1.39407 0.00000 3 3PX -0.00002 0.00000 -0.00005 -0.00038 0.52233 4 3PY 0.00000 0.00000 0.00000 0.00000 -0.31555 5 3PZ -0.01825 -0.00245 -0.03525 -0.28385 -0.00071 6 2 H 1S 0.31861 -0.12002 0.74532 0.88012 0.00000 7 2S 0.27484 -1.72457 -0.67737 -1.39407 0.00000 8 3PX 0.00002 0.00000 0.00005 -0.00038 0.52233 9 3PY 0.00000 0.00000 0.00000 0.00000 -0.31555 10 3PZ 0.01825 -0.00245 0.03525 -0.28385 -0.00071 6 7 8 9 10 V V V V V Eigenvalues -- 1.95914 2.70929 2.93294 2.93294 4.54275 1 1 H 1S 0.00000 0.38649 0.00000 0.00000 -1.46267 2 2S 0.00000 -0.18679 0.00000 0.00000 -0.15940 3 3PX 0.31555 0.00088 0.85698 0.16192 0.00214 4 3PY 0.52233 0.00000 -0.16192 0.85698 0.00000 5 3PZ -0.00043 0.64837 -0.00116 -0.00022 1.58357 6 2 H 1S 0.00000 0.38649 0.00000 0.00000 1.46267 7 2S 0.00000 -0.18679 0.00000 0.00000 0.15940 8 3PX 0.31555 -0.00088 -0.85698 -0.16192 0.00214 9 3PY 0.52233 0.00000 0.16192 -0.85698 0.00000 10 3PZ -0.00043 -0.64837 0.00116 0.00022 1.58357 Density Matrix: 1 2 3 4 5 1 1 H 1S 0.22204 2 2S 0.17812 0.15288 3 3PX -0.00001 -0.00001 0.00068 4 3PY 0.00000 0.00000 0.00000 0.00068 5 3PZ -0.01067 -0.00719 0.00000 0.00000 0.00098 6 2 H 1S 0.20097 0.16201 -0.00002 0.00000 -0.01178 7 2S 0.16201 0.13676 -0.00001 0.00000 -0.00871 8 3PX 0.00002 0.00001 0.00050 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00050 0.00000 10 3PZ 0.01178 0.00871 0.00000 0.00000 -0.00071 6 7 8 9 10 6 2 H 1S 0.22204 7 2S 0.17812 0.15288 8 3PX 0.00001 0.00001 0.00068 9 3PY 0.00000 0.00000 0.00000 0.00068 10 3PZ 0.01067 0.00719 0.00000 0.00000 0.00098 Full Mulliken population analysis: 1 2 3 4 5 1 1 H 1S 0.22204 2 2S 0.11726 0.15288 3 3PX 0.00000 0.00000 0.00068 4 3PY 0.00000 0.00000 0.00000 0.00068 5 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098 6 2 H 1S 0.09178 0.08256 0.00000 0.00000 0.00555 7 2S 0.08256 0.11689 0.00000 0.00000 0.00135 8 3PX 0.00000 0.00000 0.00017 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00017 0.00000 10 3PZ 0.00555 0.00135 0.00000 0.00000 0.00028 6 7 8 9 10 6 2 H 1S 0.22204 7 2S 0.11726 0.15288 8 3PX 0.00000 0.00000 0.00068 9 3PY 0.00000 0.00000 0.00000 0.00068 10 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098 Gross orbital populations: 1 1 1 H 1S 0.51919 2 2S 0.47094 3 3PX 0.00085 4 3PY 0.00085 5 3PZ 0.00816 6 2 H 1S 0.51919 7 2S 0.47094 8 3PX 0.00085 9 3PY 0.00085 10 3PZ 0.00816 Condensed to atoms (all electrons): 1 2 1 H 0.611780 0.388220 2 H 0.388220 0.611780 Mulliken charges: 1 1 H 0.000000 2 H 0.000000 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 Electronic spatial extent (au): <R**2>= 5.1049 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -2.0170 YY= -2.0170 ZZ= -1.5227 XY= 0.0000 XZ= 0.0007 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.1647 YY= -0.1647 ZZ= 0.3295 XY= 0.0000 XZ= 0.0007 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.0030 YYY= 0.0000 ZZZ= 0.0000 XYY= -0.0010 XXY= 0.0000 XXZ= 0.0000 XZZ= -0.0008 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1.8629 YYYY= -1.8629 ZZZZ= -2.7782 XXXY= 0.0000 XXXZ= -0.0007 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= -0.0006 ZZZY= 0.0000 XXYY= -0.6210 XXZZ= -0.7874 YYZZ= -0.7874 XXYZ= 0.0000 YYXZ= -0.0002 ZZXY= 0.0000 N-N= 7.166034761952D-01 E-N=-3.661970264930D+00 KE= 1.182295429019D+00 Orbital energies and kinetic energies (alpha): 1 2 1 O -0.595399 0.564967 2 V 0.239936 0.446085 3 V 0.770528 1.413170 4 V 1.311912 2.284777 5 V 1.959140 2.449331 6 V 1.959140 2.449331 7 V 2.709295 3.284124 8 V 2.932943 3.364125 9 V 2.932943 3.364125 10 V 4.542748 5.471117 Total kinetic energy from orbitals= 1.129934210136D+00 Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000000000 0.000000000 -0.000000317 2 1 0.000000000 0.000000000 0.000000317 ------------------------------------------------------------------- Cartesian Forces: Max 0.000000317 RMS 0.000000183 NDeriv= 6 NFrqRd= 0 NDerD0= 0 MskFDP= 0 MskDFD= 0 MskDF0= 0 Re-enter D2Numr: IAtom= 1 IXYZ=1 IStep= 1. Skip step-back as it is equivalent to step-up. Standard basis: 6-31G(d,p) (6D, 7F) 10 basis functions, 14 primitive gaussians, 10 cartesian basis functions 1 alpha electrons 1 beta electrons nuclear repulsion energy 0.7166034762 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned off. One-electron integrals computed using PRISM. NBasis= 10 RedAO= T EigKep= 9.58D-02 NBF= 10 NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 10 Initial guess from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk" B after Tr= 0.000000 0.000945 0.000000 Rot= 1.000000 0.000677 0.000000 0.000000 Ang= 0.08 deg. Keep R1 ints in memory in canonical form, NReq=823603. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -1.13130860745 A.U. after 2 cycles NFock= 2 Conv=0.33D-08 -V/T= 2.0012 Range of M.O.s used for correlation: 1 10 NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0 NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9 Semi-Direct transformation. ModeAB= 2 MOrb= 1 LenV= 805199366 LASXX= 405 LTotXX= 405 LenRXX= 405 LTotAB= 541 MaxLAS= 550 LenRXY= 550 NonZer= 810 LenScr= 785920 LnRSAI= 0 LnScr1= 0 LExtra= 4980290 Total= 5767165 MaxDsk= 1342177280 SrtSym= F ITran= 4 JobTyp=0 Pass 1: I= 1 to 1. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00 alpha-beta T2 = 0.8178878838D-02 E2= -0.2633729226D-01 beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00 ANorm= 0.1004081112D+01 E2 = -0.2633729226D-01 EUMP2 = -0.11576458997068D+01 Keep R2 and R3 ints in memory in canonical form, NReq=804284. Iterations= 50 Convergence= 0.100D-07 Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. MP4(R+Q)= 0.21540952D-03 E3= -0.55103521D-02 EUMP3= -0.11631562518D+01 E4(DQ)= -0.13121063D-02 UMP4(DQ)= -0.11644683582D+01 E4(SDQ)= -0.14141400D-02 UMP4(SDQ)= -0.11645703918D+01 DE(Corr)= -0.31629339E-01 E(Corr)= -1.1629379465 NORM(A)= 0.10070134D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33467469E-01 E(CORR)= -1.1647760762 Delta=-1.84D-03 NORM(A)= 0.10076654D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33824637E-01 E(CORR)= -1.1651332446 Delta=-3.57D-04 NORM(A)= 0.10077219D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33849355E-01 E(CORR)= -1.1651579628 Delta=-2.47D-05 NORM(A)= 0.10077215D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33848614E-01 E(CORR)= -1.1651572211 Delta= 7.42D-07 NORM(A)= 0.10077220D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33848808E-01 E(CORR)= -1.1651574153 Delta=-1.94D-07 NORM(A)= 0.10077219D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33848774E-01 E(CORR)= -1.1651573819 Delta= 3.35D-08 NORM(A)= 0.10077219D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33848775E-01 E(CORR)= -1.1651573826 Delta=-7.34D-10 NORM(A)= 0.10077219D+01 Largest amplitude= 6.97D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440429D-01 E(Z)= -0.11647490364D+01 NORM(A)= 0.10077219D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440421D-01 E(Z)= -0.11647490287D+01 NORM(A)= 0.10077214D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440231D-01 E(Z)= -0.11647488383D+01 NORM(A)= 0.10077216D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440286D-01 E(Z)= -0.11647488930D+01 NORM(A)= 0.10077216D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33440317D-01 E(Z)= -0.11647489249D+01 NORM(A)= 0.10074798D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33326255D-01 E(Z)= -0.11646348626D+01 NORM(A)= 0.10074799D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33326278D-01 E(Z)= -0.11646348850D+01 NORM(A)= 0.10074799D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33326280D-01 E(Z)= -0.11646348876D+01 NORM(A)= 0.10074799D+01 Discarding MO integrals. IDoAtm=11 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=804613. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=9.41D-03 Max=2.60D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.91D-05 Max=5.29D-05 NDo= 1 LinEq1: Iter= 2 NonCon= 0 RMS=9.61D-19 Max=2.86D-18 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist.
**********************************************************************
Population analysis using the QCI/CC density.
**********************************************************************
Alpha occ. eigenvalues -- -0.59540 Alpha virt. eigenvalues -- 0.23994 0.77053 1.31191 1.95914 1.95914 Alpha virt. eigenvalues -- 2.70929 2.93294 2.93294 4.54275 Molecular Orbital Coefficients: 1 2 3 4 5 O V V V V Eigenvalues -- -0.59540 0.23994 0.77053 1.31191 1.95914 1 1 H 1S 0.31861 0.12002 0.74532 -0.88012 0.00000 2 2S 0.27484 1.72457 -0.67737 1.39407 0.00000 3 3PX 0.00000 0.00000 0.00000 0.00000 0.02761 4 3PY -0.00002 0.00000 -0.00005 -0.00038 0.60962 5 3PZ -0.01825 -0.00245 -0.03525 -0.28385 -0.00083 6 2 H 1S 0.31861 -0.12002 0.74532 0.88012 0.00000 7 2S 0.27484 -1.72457 -0.67737 -1.39407 0.00000 8 3PX 0.00000 0.00000 0.00000 0.00000 0.02761 9 3PY 0.00002 0.00000 0.00005 -0.00038 0.60962 10 3PZ 0.01825 -0.00245 0.03525 -0.28385 -0.00083 6 7 8 9 10 V V V V V Eigenvalues -- 1.95914 2.70929 2.93294 2.93294 4.54275 1 1 H 1S 0.00000 0.38649 0.00000 0.00000 -1.46267 2 2S 0.00000 -0.18679 0.00000 0.00000 -0.15940 3 3PX 0.60962 0.00000 0.19241 0.85065 0.00000 4 3PY -0.02761 0.00088 0.85065 -0.19241 0.00214 5 3PZ 0.00004 0.64837 -0.00115 0.00026 1.58357 6 2 H 1S 0.00000 0.38649 0.00000 0.00000 1.46267 7 2S 0.00000 -0.18679 0.00000 0.00000 0.15940 8 3PX 0.60962 0.00000 -0.19241 -0.85065 0.00000 9 3PY -0.02761 -0.00088 -0.85065 0.19241 0.00214 10 3PZ 0.00004 -0.64837 0.00115 -0.00026 1.58357 Density Matrix: 1 2 3 4 5 1 1 H 1S 0.22204 2 2S 0.17812 0.15288 3 3PX 0.00000 0.00000 0.00068 4 3PY -0.00001 -0.00001 0.00000 0.00068 5 3PZ -0.01067 -0.00719 0.00000 0.00000 0.00098 6 2 H 1S 0.20097 0.16201 0.00000 -0.00002 -0.01178 7 2S 0.16201 0.13676 0.00000 -0.00001 -0.00871 8 3PX 0.00000 0.00000 0.00050 0.00000 0.00000 9 3PY 0.00002 0.00001 0.00000 0.00050 0.00000 10 3PZ 0.01178 0.00871 0.00000 0.00000 -0.00071 6 7 8 9 10 6 2 H 1S 0.22204 7 2S 0.17812 0.15288 8 3PX 0.00000 0.00000 0.00068 9 3PY 0.00001 0.00001 0.00000 0.00068 10 3PZ 0.01067 0.00719 0.00000 0.00000 0.00098 Full Mulliken population analysis: 1 2 3 4 5 1 1 H 1S 0.22204 2 2S 0.11726 0.15288 3 3PX 0.00000 0.00000 0.00068 4 3PY 0.00000 0.00000 0.00000 0.00068 5 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098 6 2 H 1S 0.09178 0.08256 0.00000 0.00000 0.00555 7 2S 0.08256 0.11689 0.00000 0.00000 0.00135 8 3PX 0.00000 0.00000 0.00017 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00017 0.00000 10 3PZ 0.00555 0.00135 0.00000 0.00000 0.00028 6 7 8 9 10 6 2 H 1S 0.22204 7 2S 0.11726 0.15288 8 3PX 0.00000 0.00000 0.00068 9 3PY 0.00000 0.00000 0.00000 0.00068 10 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098 Gross orbital populations: 1 1 1 H 1S 0.51919 2 2S 0.47094 3 3PX 0.00085 4 3PY 0.00085 5 3PZ 0.00816 6 2 H 1S 0.51919 7 2S 0.47094 8 3PX 0.00085 9 3PY 0.00085 10 3PZ 0.00816 Condensed to atoms (all electrons): 1 2 1 H 0.611780 0.388220 2 H 0.388220 0.611780 Mulliken charges: 1 1 H 0.000000 2 H 0.000000 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 Electronic spatial extent (au): <R**2>= 5.1049 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -2.0170 YY= -2.0170 ZZ= -1.5227 XY= 0.0000 XZ= 0.0000 YZ= 0.0007 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.1647 YY= -0.1647 ZZ= 0.3295 XY= 0.0000 XZ= 0.0000 YZ= 0.0007 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= -0.0030 ZZZ= 0.0000 XYY= 0.0000 XXY= -0.0010 XXZ= 0.0000 XZZ= 0.0000 YZZ= -0.0008 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1.8629 YYYY= -1.8629 ZZZZ= -2.7782 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= -0.0007 ZZZX= 0.0000 ZZZY= -0.0006 XXYY= -0.6210 XXZZ= -0.7874 YYZZ= -0.7874 XXYZ= -0.0002 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 7.166034761952D-01 E-N=-3.661970255909D+00 KE= 1.182295423412D+00 Orbital energies and kinetic energies (alpha): 1 2 1 O -0.595399 0.564967 2 V 0.239936 0.446085 3 V 0.770528 1.413170 4 V 1.311912 2.284777 5 V 1.959140 2.449331 6 V 1.959140 2.449331 7 V 2.709295 3.284124 8 V 2.932943 3.364125 9 V 2.932943 3.364125 10 V 4.542748 5.471117 Total kinetic energy from orbitals= 1.129934210136D+00 Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000000000 0.000000000 -0.000000320 2 1 0.000000000 0.000000000 0.000000320 ------------------------------------------------------------------- Cartesian Forces: Max 0.000000320 RMS 0.000000185 NDeriv= 6 NFrqRd= 0 NDerD0= 0 MskFDP= 0 MskDFD= 0 MskDF0= 0 Re-enter D2Numr: IAtom= 1 IXYZ=2 IStep= 1. Skip step-back as it is equivalent to step-up. Standard basis: 6-31G(d,p) (6D, 7F) 10 basis functions, 14 primitive gaussians, 10 cartesian basis functions 1 alpha electrons 1 beta electrons nuclear repulsion energy 0.7156350306 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned off. One-electron integrals computed using PRISM. NBasis= 10 RedAO= T EigKep= 9.61D-02 NBF= 10 NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 10 Initial guess from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk" B after Tr= 0.000000 0.000000 0.000945 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Keep R1 ints in memory in canonical form, NReq=823603. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -1.13129946633 A.U. after 4 cycles NFock= 4 Conv=0.10D-10 -V/T= 2.0021 Range of M.O.s used for correlation: 1 10 NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0 NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9 Semi-Direct transformation. ModeAB= 2 MOrb= 1 LenV= 805199366 LASXX= 405 LTotXX= 405 LenRXX= 405 LTotAB= 541 MaxLAS= 550 LenRXY= 550 NonZer= 810 LenScr= 785920 LnRSAI= 0 LnScr1= 0 LExtra= 4980290 Total= 5767165 MaxDsk= 1342177280 SrtSym= F ITran= 4 JobTyp=0 Pass 1: I= 1 to 1. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00 alpha-beta T2 = 0.8187557218D-02 E2= -0.2633916451D-01 beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00 ANorm= 0.1004085433D+01 E2 = -0.2633916451D-01 EUMP2 = -0.11576386308401D+01 Keep R2 and R3 ints in memory in canonical form, NReq=804284. Iterations= 50 Convergence= 0.100D-07 Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. MP4(R+Q)= 0.21565342D-03 E3= -0.55126934D-02 EUMP3= -0.11631513242D+01 E4(DQ)= -0.13138216D-02 UMP4(DQ)= -0.11644651458D+01 E4(SDQ)= -0.14163029D-02 UMP4(SDQ)= -0.11645676271D+01 DE(Corr)= -0.31633297E-01 E(Corr)= -1.1629327635 NORM(A)= 0.10070236D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33474240E-01 E(CORR)= -1.1647737064 Delta=-1.84D-03 NORM(A)= 0.10076790D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33832981E-01 E(CORR)= -1.1651324478 Delta=-3.59D-04 NORM(A)= 0.10077358D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33857807E-01 E(CORR)= -1.1651572732 Delta=-2.48D-05 NORM(A)= 0.10077355D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33857066E-01 E(CORR)= -1.1651565321 Delta= 7.41D-07 NORM(A)= 0.10077359D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33857260E-01 E(CORR)= -1.1651567264 Delta=-1.94D-07 NORM(A)= 0.10077358D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33857227E-01 E(CORR)= -1.1651566929 Delta= 3.35D-08 NORM(A)= 0.10077358D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33857227E-01 E(CORR)= -1.1651566937 Delta=-7.35D-10 NORM(A)= 0.10077358D+01 Largest amplitude= 6.99D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33448105D-01 E(Z)= -0.11647475710D+01 NORM(A)= 0.10077358D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33448096D-01 E(Z)= -0.11647475621D+01 NORM(A)= 0.10077358D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33448075D-01 E(Z)= -0.11647475409D+01 NORM(A)= 0.10077357D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33448027D-01 E(Z)= -0.11647474932D+01 NORM(A)= 0.10077357D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33448042D-01 E(Z)= -0.11647475082D+01 NORM(A)= 0.10074926D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33333547D-01 E(Z)= -0.11646330131D+01 NORM(A)= 0.10074928D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33333613D-01 E(Z)= -0.11646330793D+01 NORM(A)= 0.10074930D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33333652D-01 E(Z)= -0.11646331184D+01 NORM(A)= 0.10074930D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33333652D-01 E(Z)= -0.11646331185D+01 NORM(A)= 0.10074930D+01 Discarding MO integrals. IDoAtm=11 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=804613. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=9.43D-03 Max=2.61D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.92D-05 Max=5.30D-05 NDo= 1 LinEq1: Iter= 2 NonCon= 0 RMS=8.71D-19 Max=2.48D-18 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist.
**********************************************************************
Population analysis using the QCI/CC density.
**********************************************************************
Alpha occ. eigenvalues -- -0.59509 Alpha virt. eigenvalues -- 0.23968 0.77095 1.31103 1.95917 1.95917 Alpha virt. eigenvalues -- 2.70733 2.93178 2.93178 4.53752 Molecular Orbital Coefficients: 1 2 3 4 5 O V V V V Eigenvalues -- -0.59509 0.23968 0.77095 1.31103 1.95917 1 1 H 1S 0.31846 0.12018 0.74564 -0.88091 0.00000 2 2S 0.27507 1.72203 -0.67738 1.39340 0.00000 3 3PX 0.00000 0.00000 0.00000 0.00000 0.55307 4 3PY 0.00000 0.00000 0.00000 0.00000 0.25843 5 3PZ -0.01826 -0.00242 -0.03547 -0.28288 0.00000 6 2 H 1S 0.31846 -0.12018 0.74564 0.88091 0.00000 7 2S 0.27507 -1.72203 -0.67738 -1.39340 0.00000 8 3PX 0.00000 0.00000 0.00000 0.00000 0.55307 9 3PY 0.00000 0.00000 0.00000 0.00000 0.25843 10 3PZ 0.01826 -0.00242 0.03547 -0.28288 0.00000 6 7 8 9 10 V V V V V Eigenvalues -- 1.95917 2.70733 2.93178 2.93178 4.53752 1 1 H 1S 0.00000 0.38633 0.00000 0.00000 -1.45550 2 2S 0.00000 -0.18671 0.00000 0.00000 -0.16064 3 3PX -0.25843 0.00000 -0.28241 0.82446 0.00000 4 3PY 0.55307 0.00000 0.82446 0.28241 0.00000 5 3PZ 0.00000 0.64800 0.00000 0.00000 1.58063 6 2 H 1S 0.00000 0.38633 0.00000 0.00000 1.45550 7 2S 0.00000 -0.18671 0.00000 0.00000 0.16064 8 3PX -0.25843 0.00000 0.28241 -0.82446 0.00000 9 3PY 0.55307 0.00000 -0.82446 -0.28241 0.00000 10 3PZ 0.00000 -0.64800 0.00000 0.00000 1.58063 Density Matrix: 1 2 3 4 5 1 1 H 1S 0.22189 2 2S 0.17822 0.15313 3 3PX 0.00000 0.00000 0.00068 4 3PY 0.00000 0.00000 0.00000 0.00068 5 3PZ -0.01067 -0.00720 0.00000 0.00000 0.00098 6 2 H 1S 0.20079 0.16206 0.00000 0.00000 -0.01178 7 2S 0.16206 0.13697 0.00000 0.00000 -0.00872 8 3PX 0.00000 0.00000 0.00050 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00050 0.00000 10 3PZ 0.01178 0.00872 0.00000 0.00000 -0.00071 6 7 8 9 10 6 2 H 1S 0.22189 7 2S 0.17822 0.15313 8 3PX 0.00000 0.00000 0.00068 9 3PY 0.00000 0.00000 0.00000 0.00068 10 3PZ 0.01067 0.00720 0.00000 0.00000 0.00098 Full Mulliken population analysis: 1 2 3 4 5 1 1 H 1S 0.22189 2 2S 0.11732 0.15313 3 3PX 0.00000 0.00000 0.00068 4 3PY 0.00000 0.00000 0.00000 0.00068 5 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098 6 2 H 1S 0.09152 0.08253 0.00000 0.00000 0.00554 7 2S 0.08253 0.11701 0.00000 0.00000 0.00135 8 3PX 0.00000 0.00000 0.00017 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00017 0.00000 10 3PZ 0.00554 0.00135 0.00000 0.00000 0.00028 6 7 8 9 10 6 2 H 1S 0.22189 7 2S 0.11732 0.15313 8 3PX 0.00000 0.00000 0.00068 9 3PY 0.00000 0.00000 0.00000 0.00068 10 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098 Gross orbital populations: 1 1 1 H 1S 0.51880 2 2S 0.47135 3 3PX 0.00085 4 3PY 0.00085 5 3PZ 0.00815 6 2 H 1S 0.51880 7 2S 0.47135 8 3PX 0.00085 9 3PY 0.00085 10 3PZ 0.00815 Condensed to atoms (all electrons): 1 2 1 H 0.611997 0.388003 2 H 0.388003 0.611997 Mulliken charges: 1 1 H 0.000000 2 H 0.000000 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 Electronic spatial extent (au): <R**2>= 5.1097 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -2.0183 YY= -2.0183 ZZ= -1.5230 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.1651 YY= -0.1651 ZZ= 0.3302 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -0.0023 XYY= 0.0000 XXY= 0.0000 XXZ= -0.0010 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.0010 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1.8649 YYYY= -1.8649 ZZZZ= -2.7834 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.6216 XXZZ= -0.7887 YYZZ= -0.7887 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 7.156350306323D-01 E-N=-3.659710553709D+00 KE= 1.181368928477D+00 Orbital energies and kinetic energies (alpha): 1 2 1 O -0.595091 0.564467 2 V 0.239678 0.446229 3 V 0.770947 1.413732 4 V 1.311033 2.284212 5 V 1.959171 2.449168 6 V 1.959171 2.449168 7 V 2.707333 3.282170 8 V 2.931779 3.363079 9 V 2.931779 3.363079 10 V 4.537516 5.463578 Total kinetic energy from orbitals= 1.128933422157D+00 Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000000000 0.000000000 -0.000728499 2 1 0.000000000 0.000000000 0.000728499 ------------------------------------------------------------------- Cartesian Forces: Max 0.000728499 RMS 0.000420599 NDeriv= 6 NFrqRd= 0 NDerD0= 0 MskFDP= 0 MskDFD= 0 MskDF0= 0 Re-enter D2Numr: IAtom= 1 IXYZ=3 IStep= 1. Standard basis: 6-31G(d,p) (6D, 7F) 10 basis functions, 14 primitive gaussians, 10 cartesian basis functions 1 alpha electrons 1 beta electrons nuclear repulsion energy 0.7175758641 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned off. One-electron integrals computed using PRISM. NBasis= 10 RedAO= T EigKep= 9.56D-02 NBF= 10 NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 10 Initial guess from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk" B after Tr= 0.000000 0.000000 -0.001890 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Keep R1 ints in memory in canonical form, NReq=823603. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -1.13131635041 A.U. after 4 cycles NFock= 4 Conv=0.41D-10 -V/T= 2.0003 Range of M.O.s used for correlation: 1 10 NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0 NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9 Semi-Direct transformation. ModeAB= 2 MOrb= 1 LenV= 805199366 LASXX= 405 LTotXX= 405 LenRXX= 405 LTotAB= 541 MaxLAS= 550 LenRXY= 550 NonZer= 810 LenScr= 785920 LnRSAI= 0 LnScr1= 0 LExtra= 4980290 Total= 5767165 MaxDsk= 1342177280 SrtSym= F ITran= 4 JobTyp=0 Pass 1: I= 1 to 1. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00 alpha-beta T2 = 0.8170207449D-02 E2= -0.2633542247D-01 beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00 ANorm= 0.1004076794D+01 E2 = -0.2633542247D-01 EUMP2 = -0.11576517728762D+01 Keep R2 and R3 ints in memory in canonical form, NReq=804284. Iterations= 50 Convergence= 0.100D-07 Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. MP4(R+Q)= 0.21516586D-03 E3= -0.55080154D-02 EUMP3= -0.11631597883D+01 E4(DQ)= -0.13103948D-02 UMP4(DQ)= -0.11644701831D+01 E4(SDQ)= -0.14119811D-02 UMP4(SDQ)= -0.11645717695D+01 DE(Corr)= -0.31625388E-01 E(Corr)= -1.1629417381 NORM(A)= 0.10070032D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33460710E-01 E(CORR)= -1.1647770601 Delta=-1.84D-03 NORM(A)= 0.10076517D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33816309E-01 E(CORR)= -1.1651326597 Delta=-3.56D-04 NORM(A)= 0.10077080D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33840920E-01 E(CORR)= -1.1651572709 Delta=-2.46D-05 NORM(A)= 0.10077076D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33840178E-01 E(CORR)= -1.1651565287 Delta= 7.42D-07 NORM(A)= 0.10077080D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33840372E-01 E(CORR)= -1.1651567227 Delta=-1.94D-07 NORM(A)= 0.10077079D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33840339E-01 E(CORR)= -1.1651566892 Delta= 3.35D-08 NORM(A)= 0.10077079D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Corr)= -0.33840340E-01 E(CORR)= -1.1651566900 Delta=-7.33D-10 NORM(A)= 0.10077079D+01 Largest amplitude= 6.95D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33432768D-01 E(Z)= -0.11647491184D+01 NORM(A)= 0.10077079D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33432759D-01 E(Z)= -0.11647491098D+01 NORM(A)= 0.10077079D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33432723D-01 E(Z)= -0.11647490736D+01 NORM(A)= 0.10077076D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33432600D-01 E(Z)= -0.11647489501D+01 NORM(A)= 0.10077072D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33432430D-01 E(Z)= -0.11647487804D+01 NORM(A)= 0.10074669D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33318924D-01 E(Z)= -0.11646352740D+01 NORM(A)= 0.10074668D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(Z) -0.33318921D-01 E(Z)= -0.11646352714D+01 NORM(A)= 0.10074668D+01 Discarding MO integrals. IDoAtm=11 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=804613. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=9.39D-03 Max=2.60D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.91D-05 Max=5.29D-05 NDo= 1 LinEq1: Iter= 2 NonCon= 0 RMS=3.62D-18 Max=1.03D-17 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist.
**********************************************************************
Population analysis using the QCI/CC density.
**********************************************************************
Alpha occ. eigenvalues -- -0.59571 Alpha virt. eigenvalues -- 0.24019 0.77011 1.31279 1.95911 1.95911 Alpha virt. eigenvalues -- 2.71126 2.93411 2.93411 4.54802 Molecular Orbital Coefficients: 1 2 3 4 5 O V V V V Eigenvalues -- -0.59571 0.24019 0.77011 1.31279 1.95911 1 1 H 1S 0.31875 0.11985 0.74500 -0.87931 0.00000 2 2S 0.27460 1.72713 -0.67735 1.39474 0.00000 3 3PX 0.00000 0.00000 0.00000 0.00000 0.03706 4 3PY 0.00000 0.00000 0.00000 0.00000 0.60889 5 3PZ -0.01825 -0.00248 -0.03503 -0.28482 0.00000 6 2 H 1S 0.31875 -0.11985 0.74500 0.87931 0.00000 7 2S 0.27460 -1.72713 -0.67735 -1.39474 0.00000 8 3PX 0.00000 0.00000 0.00000 0.00000 0.03706 9 3PY 0.00000 0.00000 0.00000 0.00000 0.60889 10 3PZ 0.01825 -0.00248 0.03503 -0.28482 0.00000 6 7 8 9 10 V V V V V Eigenvalues -- 1.95911 2.71126 2.93411 2.93411 4.54802 1 1 H 1S 0.00000 0.38664 0.00000 0.00000 -1.46988 2 2S 0.00000 -0.18687 0.00000 0.00000 -0.15815 3 3PX 0.60889 0.00000 0.82060 0.29733 0.00000 4 3PY -0.03706 0.00000 -0.29733 0.82060 0.00000 5 3PZ 0.00000 0.64875 0.00000 0.00000 1.58653 6 2 H 1S 0.00000 0.38664 0.00000 0.00000 1.46988 7 2S 0.00000 -0.18687 0.00000 0.00000 0.15815 8 3PX 0.60889 0.00000 -0.82060 -0.29733 0.00000 9 3PY -0.03706 0.00000 0.29733 -0.82060 0.00000 10 3PZ 0.00000 -0.64875 0.00000 0.00000 1.58653 Density Matrix: 1 2 3 4 5 1 1 H 1S 0.22219 2 2S 0.17803 0.15264 3 3PX 0.00000 0.00000 0.00068 4 3PY 0.00000 0.00000 0.00000 0.00068 5 3PZ -0.01067 -0.00718 0.00000 0.00000 0.00098 6 2 H 1S 0.20116 0.16196 0.00000 0.00000 -0.01179 7 2S 0.16196 0.13656 0.00000 0.00000 -0.00870 8 3PX 0.00000 0.00000 0.00050 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00050 0.00000 10 3PZ 0.01179 0.00870 0.00000 0.00000 -0.00071 6 7 8 9 10 6 2 H 1S 0.22219 7 2S 0.17803 0.15264 8 3PX 0.00000 0.00000 0.00068 9 3PY 0.00000 0.00000 0.00000 0.00068 10 3PZ 0.01067 0.00718 0.00000 0.00000 0.00098 Full Mulliken population analysis: 1 2 3 4 5 1 1 H 1S 0.22219 2 2S 0.11720 0.15264 3 3PX 0.00000 0.00000 0.00068 4 3PY 0.00000 0.00000 0.00000 0.00068 5 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098 6 2 H 1S 0.09205 0.08259 0.00000 0.00000 0.00556 7 2S 0.08259 0.11676 0.00000 0.00000 0.00135 8 3PX 0.00000 0.00000 0.00017 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00017 0.00000 10 3PZ 0.00556 0.00135 0.00000 0.00000 0.00028 6 7 8 9 10 6 2 H 1S 0.22219 7 2S 0.11720 0.15264 8 3PX 0.00000 0.00000 0.00068 9 3PY 0.00000 0.00000 0.00000 0.00068 10 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098 Gross orbital populations: 1 1 1 H 1S 0.51959 2 2S 0.47054 3 3PX 0.00085 4 3PY 0.00085 5 3PZ 0.00817 6 2 H 1S 0.51959 7 2S 0.47054 8 3PX 0.00085 9 3PY 0.00085 10 3PZ 0.00817 Condensed to atoms (all electrons): 1 2 1 H 0.611563 0.388437 2 H 0.388437 0.611563 Mulliken charges: 1 1 H 0.000000 2 H 0.000000 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 Electronic spatial extent (au): <R**2>= 5.1001 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -2.0157 YY= -2.0157 ZZ= -1.5225 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.1644 YY= -0.1644 ZZ= 0.3288 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0023 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0010 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0010 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1.8609 YYYY= -1.8609 ZZZZ= -2.7730 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.6203 XXZZ= -0.7862 YYZZ= -0.7862 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 7.175758641269D-01 E-N=-3.664236780278D+00 KE= 1.183225278970D+00 Orbital energies and kinetic energies (alpha): 1 2 1 O -0.595709 0.565469 2 V 0.240194 0.445941 3 V 0.770109 1.412607 4 V 1.312794 2.285343 5 V 1.959111 2.449497 6 V 1.959111 2.449497 7 V 2.711258 3.286078 8 V 2.934110 3.365172 9 V 2.934110 3.365172 10 V 4.548016 5.478709 Total kinetic energy from orbitals= 1.130938436444D+00 Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000000000 0.000000000 0.000733677 2 1 0.000000000 0.000000000 -0.000733677 ------------------------------------------------------------------- Cartesian Forces: Max 0.000733677 RMS 0.000423589 NDeriv= 6 NFrqRd= 0 NDerD0= 0 MskFDP= 0 MskDFD= 0 MskDF0= 0 Re-enter D2Numr: IAtom= 1 IXYZ=3 IStep= 2. Maximum difference in off-diagonal FC elements: I= 5 J= 4 Difference= 2.7123017823D-14 Max difference between analytic and numerical forces: I= 3 Difference= 8.0430943037D-07 Full mass-weighted force constant matrix: Low frequencies --- 0.0000 0.0000 0.0014 3.4498 3.4655 4504.1432 Diagonal vibrational polarizability: 0.0000000 0.0000000 0.0000000 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates: 1 SGG Frequencies -- 4504.1432 Red. masses -- 1.0078 Frc consts -- 12.0465 IR Inten -- 0.0000 Atom AN X Y Z 1 1 0.00 0.00 0.71 2 1 0.00 0.00 -0.71
------------------- - Thermochemistry - ------------------- Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 1 and mass 1.00783 Atom 2 has atomic number 1 and mass 1.00783 Molecular mass: 2.01565 amu. Principal axes and moments of inertia in atomic units: 1 2 3 Eigenvalues -- 0.00000 0.98129 0.98129 X 0.00000 1.00000 0.00000 Y 0.00000 0.00000 1.00000 Z 1.00000 0.00000 0.00000 This molecule is a prolate symmetric top. Rotational symmetry number 2. Rotational temperature (Kelvin) 88.26543 Rotational constant (GHZ): 1839.155304 Zero-point vibrational energy 26940.8 (Joules/Mol) 6.43900 (Kcal/Mol) Vibrational temperatures: 6480.45 (Kelvin) Zero-point correction= 0.010261 (Hartree/Particle) Thermal correction to Energy= 0.012622 Thermal correction to Enthalpy= 0.013566 Thermal correction to Gibbs Free Energy= -0.001215 Sum of electronic and zero-point Energies= -1.154896 Sum of electronic and thermal Energies= -1.152536 Sum of electronic and thermal Enthalpies= -1.151592 Sum of electronic and thermal Free Energies= -1.166372 E (Thermal) CV S KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin Total 7.920 4.968 31.109 Electronic 0.000 0.000 0.000 Translational 0.889 2.981 28.080 Rotational 0.592 1.987 3.029 Vibrational 6.439 0.000 0.000 Q Log10(Q) Ln(Q) Total Bot 0.362144D+01 0.558881 1.286871 Total V=0 0.189973D+06 5.278692 12.154638 Vib (Bot) 0.190629D-04 -4.719811 -10.867767 Vib (V=0) 0.100000D+01 0.000000 0.000000 Electronic 0.100000D+01 0.000000 0.000000 Translational 0.112481D+06 5.051078 11.630537 Rotational 0.168894D+01 0.227614 0.524101 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000000000 0.000000000 0.000000179 2 1 0.000000000 0.000000000 -0.000000179 ------------------------------------------------------------------- Cartesian Forces: Max 0.000000179 RMS 0.000000103 FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000000179 RMS 0.000000179 Search for a local minimum. Step number 1 out of a maximum of 2 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- analytic derivatives used. The second derivative matrix: R1 R1 0.38688 ITU= 0 Eigenvalues --- 0.38688 Angle between quadratic step and forces= 90.00 degrees. Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00000033 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.41D-23 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.39547 0.00000 0.00000 0.00000 0.00000 1.39547 Item Value Threshold Converged? Maximum Force 0.000000 0.000450 YES RMS Force 0.000000 0.000300 YES Maximum Displacement 0.000000 0.001800 YES RMS Displacement 0.000000 0.001200 YES Predicted change in Energy=-4.124889D-14 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 0.7385 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
1|1| IMPERIAL COLLEGE-SKLB-L1WOLF-044|Freq|RCCSD-FC|6-31G(d,p)|H2|MYS1 8|11-Feb-2019|0||#N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RCCSD (FC)/6-31G(d,p) Freq||H2Opt||0,1|H,0.,0.,0.3692256185|H,0.,0.,-0.36922 56185||Version=EM64W-G09RevD.01|State=1-SGG|HF=-1.1313086|MP2=-1.15764 59|MP3=-1.1631563|MP4D=-1.1646838|MP4DQ=-1.1644684|MP4SDQ=-1.1645704|C CSD=-1.1651574|RMSD=0.000e+000|RMSF=1.031e-007|ZeroPoint=0.0102612|The rmal=0.0126217|Dipole=0.,0.,0.|DipoleDeriv=0.,0.,0.,0.,0.,0.,0.,0.,0., 0.,0.,0.,0.,0.,0.,0.,0.,0.|Quadrupole=-0.1224784,-0.1224784,0.2449569, 0.,0.,0.|QuadrupoleDeriv=0.,0.,0.,0.,0.2633056,0.,0.,0.,0.,0.,0.,0.263 3056,-0.1338715,-0.1338715,0.2677429,0.,0.,0.,0.,0.,0.,0.,-0.2633056,0 .,0.,0.,0.,0.,0.,-0.2633056,0.1338715,0.1338715,-0.2677429,0.,0.,0.|PG =D*H [C*(H1.H1)]|NImag=0||0.00000023,0.,0.00000023,0.,0.,0.38687528,-0 .00000023,0.,0.,0.00000023,0.,-0.00000023,0.,0.,0.00000023,0.,0.,-0.38 687528,0.,0.,0.38687528||0.,0.,-0.00000018,0.,0.,0.00000018|||@
The mind is not a vessel to be filled but a fire to be kindled. -- Plutarch Job cpu time: 0 days 0 hours 0 minutes 58.0 seconds. File lengths (MBytes): RWF= 49 Int= 0 D2E= 0 Chk= 38 Scr= 1 Normal termination of Gaussian 09 at Mon Feb 11 11:05:40 2019.