Hydrogen.log
Appearance
Default is to use a total of 8 processors:
8 via shared-memory
1 via Linda
Entering Link 1 = C:\G09W\l1.exe PID= 3164.
Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
Gaussian, Inc. All Rights Reserved.
This is part of the Gaussian(R) 09 program. It is based on
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.
This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.
This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.
The following legend is applicable only to US Government
contracts under FAR:
RESTRICTED RIGHTS LEGEND
Use, reproduction and disclosure by the US Government is
subject to restrictions as set forth in subparagraphs (a)
and (c) of the Commercial Computer Software - Restricted
Rights clause in FAR 52.227-19.
Gaussian, Inc.
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
---------------------------------------------------------------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
---------------------------------------------------------------
Cite this work as:
Gaussian 09, Revision D.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
******************************************
Gaussian 09: EM64W-G09RevD.01 13-Apr-2013
11-Feb-2019
******************************************
%chk=C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk
Default route: MaxDisk=10GB
----------------------------------------------------------------------
# opt freq ccsd/6-31g(d,p) geom=connectivity integral=grid=ultrafine p
op=full
----------------------------------------------------------------------
1/18=20,19=15,38=1,57=2/1,3;
2/9=110,12=2,17=6,18=5,40=1/2;
3/5=1,6=6,7=101,11=9,16=1,25=1,30=1,71=1,75=-5/1,2,3;
4//1;
5/5=2,38=5/2;
8/6=4,9=120000,10=2/1,4;
9/5=7,15=1/13;
11/28=-8,29=200,42=3/11;
10/5=6/2;
6/7=3/1;
7/12=7/1,2,3,16;
1/18=20,19=15/3(2);
2/9=110/2;
99//99;
2/9=110/2;
3/5=1,6=6,7=101,11=9,16=1,25=1,30=1,71=1,75=-5/1,2,3;
4/5=5,16=3,69=1/1;
5/5=2,38=5/2;
8/6=4,9=120000,10=2/1,4;
9/5=7,15=1/13;
11/28=-8,29=200,42=3/11;
10/5=6/2;
7/12=7/1,2,3,16;
1/18=20,19=15/3(-9);
2/9=110/2;
6/7=3/1;
99//99;
-----
H2Opt
-----
Symbolic Z-matrix:
Charge = 0 Multiplicity = 1
H 0. 0. 0.3
H 0. 0. -0.3
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Initialization pass.
----------------------------
! Initial Parameters !
! (Angstroms and Degrees) !
-------------------------- --------------------------
! Name Definition Value Derivative Info. !
--------------------------------------------------------------------------------
! R1 R(1,2) 0.6 estimate D2E/DX2 !
--------------------------------------------------------------------------------
Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07
Number of steps in this run= 20 maximum allowed number of steps= 100.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 1 0 0.000000 0.000000 0.300000
2 1 0 0.000000 0.000000 -0.300000
---------------------------------------------------------------------
Stoichiometry H2
Framework group D*H[C*(H.H)]
Deg. of freedom 1
Full point group D*H NOp 8
Largest Abelian subgroup D2H NOp 8
Largest concise Abelian subgroup C2 NOp 2
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 1 0 0.000000 0.000000 0.300000
2 1 0 0.000000 0.000000 -0.300000
---------------------------------------------------------------------
Rotational constants (GHZ): 0.0000000 2785.8616682 2785.8616682
Standard basis: 6-31G(d,p) (6D, 7F)
There are 3 symmetry adapted cartesian basis functions of AG symmetry.
There are 0 symmetry adapted cartesian basis functions of B1G symmetry.
There are 1 symmetry adapted cartesian basis functions of B2G symmetry.
There are 1 symmetry adapted cartesian basis functions of B3G symmetry.
There are 0 symmetry adapted cartesian basis functions of AU symmetry.
There are 3 symmetry adapted cartesian basis functions of B1U symmetry.
There are 1 symmetry adapted cartesian basis functions of B2U symmetry.
There are 1 symmetry adapted cartesian basis functions of B3U symmetry.
There are 3 symmetry adapted basis functions of AG symmetry.
There are 0 symmetry adapted basis functions of B1G symmetry.
There are 1 symmetry adapted basis functions of B2G symmetry.
There are 1 symmetry adapted basis functions of B3G symmetry.
There are 0 symmetry adapted basis functions of AU symmetry.
There are 3 symmetry adapted basis functions of B1U symmetry.
There are 1 symmetry adapted basis functions of B2U symmetry.
There are 1 symmetry adapted basis functions of B3U symmetry.
10 basis functions, 14 primitive gaussians, 10 cartesian basis functions
1 alpha electrons 1 beta electrons
nuclear repulsion energy 0.8819620143 Hartrees.
NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 1 integral format.
Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM.
NBasis= 10 RedAO= T EigKep= 5.64D-02 NBF= 3 0 1 1 0 3 1 1
NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 1 1 0 3 1 1
ExpMin= 1.61D-01 ExpMax= 1.87D+01 ExpMxC= 1.87D+01 IAcc=3 IRadAn= 5 AccDes= 0.00D+00
Harris functional with IExCor= 205 and IRadAn= 5 diagonalized for initial guess.
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Initial guess orbital symmetries:
Occupied (SGG)
Virtual (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG)
(SGU)
The electronic state of the initial guess is 1-SGG.
Keep R1 ints in memory in symmetry-blocked form, NReq=824359.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
SCF Done: E(RHF) = -1.11393477871 A.U. after 5 cycles
NFock= 5 Conv=0.17D-09 -V/T= 1.8631
Range of M.O.s used for correlation: 1 10
NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0
NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9
Semi-Direct transformation.
ModeAB= 4 MOrb= 1 LenV= 805198401
LASXX= 69 LTotXX= 69 LenRXX= 172
LTotAB= 103 MaxLAS= 360 LenRXY= 0
NonZer= 241 LenScr= 785920 LnRSAI= 360
LnScr1= 785920 LExtra= 149747 Total= 1722119
MaxDsk= 1342177280 SrtSym= T ITran= 4
JobTyp=0 Pass 1: I= 1 to 1.
(rs|ai) integrals will be sorted in core.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00
alpha-beta T2 = 0.7131948521D-02 E2= -0.2608508579D-01
beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00
ANorm= 0.1003559639D+01
E2 = -0.2608508579D-01 EUMP2 = -0.11400198645080D+01
Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=803446.
Iterations= 50 Convergence= 0.100D-07
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
MP4(R+Q)= 0.18603749D-03
E3= -0.52448216D-02 EUMP3= -0.11452646861D+01
E4(DQ)= -0.11248550D-02 UMP4(DQ)= -0.11463895411D+01
E4(SDQ)= -0.11740965D-02 UMP4(SDQ)= -0.11464387826D+01
DE(Corr)= -0.31142438E-01 E(Corr)= -1.1450772164
NORM(A)= 0.10058470D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.32668901E-01 E(CORR)= -1.1466036800 Delta=-1.53D-03
NORM(A)= 0.10061595D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.32861066E-01 E(CORR)= -1.1467958449 Delta=-1.92D-04
NORM(A)= 0.10061853D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.32873849E-01 E(CORR)= -1.1468086280 Delta=-1.28D-05
NORM(A)= 0.10061846D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.32873176E-01 E(CORR)= -1.1468079543 Delta= 6.74D-07
NORM(A)= 0.10061849D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.32873330E-01 E(CORR)= -1.1468081089 Delta=-1.55D-07
NORM(A)= 0.10061848D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.32873297E-01 E(CORR)= -1.1468080758 Delta= 3.32D-08
NORM(A)= 0.10061848D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.32873298E-01 E(CORR)= -1.1468080763 Delta=-5.17D-10
NORM(A)= 0.10061848D+01
Largest amplitude= 5.69D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.32549970D-01 E(Z)= -0.11464847487D+01
NORM(A)= 0.10061848D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.32549961D-01 E(Z)= -0.11464847393D+01
NORM(A)= 0.10061847D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.32549918D-01 E(Z)= -0.11464846965D+01
NORM(A)= 0.10061842D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.32549627D-01 E(Z)= -0.11464844057D+01
NORM(A)= 0.10061835D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.32549290D-01 E(Z)= -0.11464840690D+01
NORM(A)= 0.10060303D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.32467878D-01 E(Z)= -0.11464026564D+01
NORM(A)= 0.10060303D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.32467877D-01 E(Z)= -0.11464026560D+01
NORM(A)= 0.10060303D+01
Discarding MO integrals.
IDoAtm=11
Differentiating once with respect to electric field.
with respect to dipole field.
Differentiating once with respect to nuclear coordinates.
Keep R1 ints in memory in symmetry-blocked form, NReq=805399.
There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1.
LinEq1: Iter= 0 NonCon= 1 RMS=6.21D-03 Max=1.74D-02 NDo= 1
AX will form 1 AO Fock derivatives at one time.
LinEq1: Iter= 1 NonCon= 1 RMS=1.01D-05 Max=2.82D-05 NDo= 1
LinEq1: Iter= 2 NonCon= 0 RMS=7.02D-20 Max=2.07D-19 NDo= 1
Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations.
End of Minotr F.D. properties file 721 does not exist.
End of Minotr F.D. properties file 722 does not exist.
End of Minotr F.D. properties file 788 does not exist.
**********************************************************************
Population analysis using the SCF density.
**********************************************************************
Orbital symmetries:
Occupied (SGG)
Virtual (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG)
(SGU)
The electronic state is 1-SGG.
Alpha occ. eigenvalues -- -0.64197
Alpha virt. eigenvalues -- 0.27435 0.71183 1.45768 1.97187 1.97187
Alpha virt. eigenvalues -- 2.96575 3.09753 3.09753 5.68848
Molecular Orbital Coefficients:
1 2 3 4 5
(SGG)--O (SGU)--V (SGG)--V (SGU)--V (PIU)--V
Eigenvalues -- -0.64197 0.27435 0.71183 1.45768 1.97187
1 1 H 1S 0.33970 0.09664 0.70038 -0.70529 0.00000
2 2S 0.24073 2.15432 -0.67601 1.49237 0.00000
3 3PX 0.00000 0.00000 0.00000 0.00000 0.00000
4 3PY 0.00000 0.00000 0.00000 0.00000 0.57869
5 3PZ -0.01804 -0.00506 -0.00416 -0.42959 0.00000
6 2 H 1S 0.33970 -0.09664 0.70038 0.70529 0.00000
7 2S 0.24073 -2.15432 -0.67601 -1.49237 0.00000
8 3PX 0.00000 0.00000 0.00000 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00000 0.57869
10 3PZ 0.01804 -0.00506 0.00416 -0.42959 0.00000
6 7 8 9 10
(PIU)--V (SGG)--V (PIG)--V (PIG)--V (SGU)--V
Eigenvalues -- 1.97187 2.96575 3.09753 3.09753 5.68848
1 1 H 1S 0.00000 0.40710 0.00000 0.00000 2.84932
2 2S 0.00000 -0.19708 0.00000 0.00000 -0.11133
3 3PX 0.57869 0.00000 0.99316 0.00000 0.00000
4 3PY 0.00000 0.00000 0.00000 0.99316 0.00000
5 3PZ 0.00000 0.72398 0.00000 0.00000 -2.05343
6 2 H 1S 0.00000 0.40710 0.00000 0.00000 -2.84932
7 2S 0.00000 -0.19708 0.00000 0.00000 0.11133
8 3PX 0.57869 0.00000 -0.99316 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 -0.99316 0.00000
10 3PZ 0.00000 -0.72398 0.00000 0.00000 -2.05343
Density Matrix:
1 2 3 4 5
1 1 H 1S 0.23079
2 2S 0.16355 0.11590
3 3PX 0.00000 0.00000 0.00000
4 3PY 0.00000 0.00000 0.00000 0.00000
5 3PZ -0.01225 -0.00868 0.00000 0.00000 0.00065
6 2 H 1S 0.23079 0.16355 0.00000 0.00000 -0.01225
7 2S 0.16355 0.11590 0.00000 0.00000 -0.00868
8 3PX 0.00000 0.00000 0.00000 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00000 0.00000
10 3PZ 0.01225 0.00868 0.00000 0.00000 -0.00065
6 7 8 9 10
6 2 H 1S 0.23079
7 2S 0.16355 0.11590
8 3PX 0.00000 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00000
10 3PZ 0.01225 0.00868 0.00000 0.00000 0.00065
Full Mulliken population analysis:
1 2 3 4 5
1 1 H 1S 0.23079
2 2S 0.10766 0.11590
3 3PX 0.00000 0.00000 0.00000
4 3PY 0.00000 0.00000 0.00000 0.00000
5 3PZ 0.00000 0.00000 0.00000 0.00000 0.00065
6 2 H 1S 0.13546 0.09092 0.00000 0.00000 0.00650
7 2S 0.09092 0.10449 0.00000 0.00000 0.00120
8 3PX 0.00000 0.00000 0.00000 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00000 0.00000
10 3PZ 0.00650 0.00120 0.00000 0.00000 0.00013
6 7 8 9 10
6 2 H 1S 0.23079
7 2S 0.10766 0.11590
8 3PX 0.00000 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00000
10 3PZ 0.00000 0.00000 0.00000 0.00000 0.00065
Gross orbital populations:
1
1 1 H 1S 0.57134
2 2S 0.42018
3 3PX 0.00000
4 3PY 0.00000
5 3PZ 0.00849
6 2 H 1S 0.57134
7 2S 0.42018
8 3PX 0.00000
9 3PY 0.00000
10 3PZ 0.00849
Condensed to atoms (all electrons):
1 2
1 H 0.562668 0.437332
2 H 0.437332 0.562668
Mulliken charges:
1
1 H 0.000000
2 H 0.000000
Sum of Mulliken charges = 0.00000
Mulliken charges with hydrogens summed into heavy atoms:
1
Electronic spatial extent (au): <R**2>= 4.4820
Charge= 0.0000 electrons
Dipole moment (field-independent basis, Debye):
X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -1.8488 YY= -1.8488 ZZ= -1.4662
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= -0.1275 YY= -0.1275 ZZ= 0.2550
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000
XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000
YYZ= 0.0000 XYZ= 0.0000
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -1.6051 YYYY= -1.6051 ZZZZ= -2.1171 XXXY= 0.0000
XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000
ZZZY= 0.0000 XXYY= -0.5350 XXZZ= -0.6276 YYZZ= -0.6276
XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000
N-N= 8.819620143167D-01 E-N=-3.998494146104D+00 KE= 1.290638343225D+00
Symmetry AG KE= 1.290638343225D+00
Symmetry B1G KE= 0.000000000000D+00
Symmetry B2G KE= 3.627875552423D-34
Symmetry B3G KE= 3.627875552423D-34
Symmetry AU KE= 0.000000000000D+00
Symmetry B1U KE= 5.245687086437D-32
Symmetry B2U KE= 7.139705097430D-35
Symmetry B3U KE= 7.139705097430D-35
Orbital energies and kinetic energies (alpha):
1 2
1 (SGG)--O -0.641969 0.645319
2 (SGU)--V 0.274350 0.428020
3 (SGG)--V 0.711832 1.332971
4 (SGU)--V 1.457678 2.373467
5 (PIU)--V 1.971875 2.493142
6 (PIU)--V 1.971875 2.493142
7 (SGG)--V 2.965747 3.532991
8 (PIG)--V 3.097529 3.506562
9 (PIG)--V 3.097529 3.506562
10 (SGU)--V 5.688485 7.085916
Total kinetic energy from orbitals= 1.290638343225D+00
Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
***** Axes restored to original set *****
-------------------------------------------------------------------
Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
-------------------------------------------------------------------
1 1 0.000000000 0.000000000 0.164956475
2 1 0.000000000 0.000000000 -0.164956475
-------------------------------------------------------------------
Cartesian Forces: Max 0.164956475 RMS 0.095237665
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4.
Internal Forces: Max 0.164956475 RMS 0.164956475
Search for a local minimum.
Step number 1 out of a maximum of 20
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Mixed Optimization -- RFO/linear search
Second derivative matrix not updated -- first step.
The second derivative matrix:
R1
R1 0.66291
ITU= 0
Eigenvalues --- 0.66291
RFO step: Lambda=-3.87786058D-02 EMin= 6.62913423D-01
Linear search not attempted -- first point.
Iteration 1 RMS(Cart)= 0.14142136 RMS(Int)= 0.03508387
Iteration 2 RMS(Cart)= 0.02480804 RMS(Int)= 0.00000000
Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000
ClnCor: largest displacement from symmetrization is 7.20D-18 for atom 1.
Variable Old X -DE/DX Delta X Delta X Delta X New X
(Linear) (Quad) (Total)
R1 1.13384 0.16496 0.00000 0.23508 0.23508 1.36892
Item Value Threshold Converged?
Maximum Force 0.164956 0.000450 NO
RMS Force 0.164956 0.000300 NO
Maximum Displacement 0.117542 0.001800 NO
RMS Displacement 0.166229 0.001200 NO
Predicted change in Energy=-2.046084D-02
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 1 0 0.000000 0.000000 0.362201
2 1 0 0.000000 0.000000 -0.362201
---------------------------------------------------------------------
Stoichiometry H2
Framework group D*H[C*(H.H)]
Deg. of freedom 1
Full point group D*H NOp 8
Largest Abelian subgroup D2H NOp 8
Largest concise Abelian subgroup C2 NOp 2
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 1 0 0.000000 0.000000 0.362201
2 1 0 0.000000 0.000000 -0.362201
---------------------------------------------------------------------
Rotational constants (GHZ): 0.0000000 1911.1903218 1911.1903218
Standard basis: 6-31G(d,p) (6D, 7F)
There are 3 symmetry adapted cartesian basis functions of AG symmetry.
There are 0 symmetry adapted cartesian basis functions of B1G symmetry.
There are 1 symmetry adapted cartesian basis functions of B2G symmetry.
There are 1 symmetry adapted cartesian basis functions of B3G symmetry.
There are 0 symmetry adapted cartesian basis functions of AU symmetry.
There are 3 symmetry adapted cartesian basis functions of B1U symmetry.
There are 1 symmetry adapted cartesian basis functions of B2U symmetry.
There are 1 symmetry adapted cartesian basis functions of B3U symmetry.
There are 3 symmetry adapted basis functions of AG symmetry.
There are 0 symmetry adapted basis functions of B1G symmetry.
There are 1 symmetry adapted basis functions of B2G symmetry.
There are 1 symmetry adapted basis functions of B3G symmetry.
There are 0 symmetry adapted basis functions of AU symmetry.
There are 3 symmetry adapted basis functions of B1U symmetry.
There are 1 symmetry adapted basis functions of B2U symmetry.
There are 1 symmetry adapted basis functions of B3U symmetry.
10 basis functions, 14 primitive gaussians, 10 cartesian basis functions
1 alpha electrons 1 beta electrons
nuclear repulsion energy 0.7305031207 Hartrees.
NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 1 integral format.
Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM.
NBasis= 10 RedAO= T EigKep= 1.30D-01 NBF= 3 0 1 1 0 3 1 1
NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 1 1 0 3 1 1
Initial guess from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk"
B after Tr= 0.000000 0.000000 0.000000
Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg.
Initial guess orbital symmetries:
Occupied (SGG)
Virtual (SGG) (SGG) (PIG) (PIG) (SGU) (SGU) (SGU) (PIU)
(PIU)
ExpMin= 1.61D-01 ExpMax= 1.87D+01 ExpMxC= 1.87D+01 IAcc=2 IRadAn= 4 AccDes= 0.00D+00
Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess.
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Keep R1 ints in memory in symmetry-blocked form, NReq=824359.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
SCF Done: E(RHF) = -1.13128389397 A.U. after 6 cycles
NFock= 6 Conv=0.76D-11 -V/T= 1.9887
Range of M.O.s used for correlation: 1 10
NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0
NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9
Semi-Direct transformation.
ModeAB= 4 MOrb= 1 LenV= 805198401
LASXX= 69 LTotXX= 69 LenRXX= 172
LTotAB= 103 MaxLAS= 360 LenRXY= 0
NonZer= 241 LenScr= 785920 LnRSAI= 360
LnScr1= 785920 LExtra= 152890 Total= 1725262
MaxDsk= 1342177280 SrtSym= T ITran= 4
JobTyp=0 Pass 1: I= 1 to 1.
(rs|ai) integrals will be sorted in core.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00
alpha-beta T2 = 0.8058812715D-02 E2= -0.2631145437D-01
beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00
ANorm= 0.1004021321D+01
E2 = -0.2631145437D-01 EUMP2 = -0.11575953483419D+01
Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=803446.
Iterations= 50 Convergence= 0.100D-07
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
MP4(R+Q)= 0.21203908D-03
E3= -0.54782376D-02 EUMP3= -0.11630735859D+01
E4(DQ)= -0.12886223D-02 UMP4(DQ)= -0.11643622083D+01
E4(SDQ)= -0.13844610D-02 UMP4(SDQ)= -0.11644580469D+01
DE(Corr)= -0.31574917E-01 E(Corr)= -1.1628588111
NORM(A)= 0.10068732D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33374462E-01 E(CORR)= -1.1646583561 Delta=-1.80D-03
NORM(A)= 0.10074784D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33710168E-01 E(CORR)= -1.1649940615 Delta=-3.36D-04
NORM(A)= 0.10075308D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33733408E-01 E(CORR)= -1.1650173019 Delta=-2.32D-05
NORM(A)= 0.10075304D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33732661E-01 E(CORR)= -1.1650165549 Delta= 7.47D-07
NORM(A)= 0.10075308D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33732853E-01 E(CORR)= -1.1650167468 Delta=-1.92D-07
NORM(A)= 0.10075307D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33732819E-01 E(CORR)= -1.1650167131 Delta= 3.38D-08
NORM(A)= 0.10075307D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33732820E-01 E(CORR)= -1.1650167138 Delta=-7.14D-10
NORM(A)= 0.10075307D+01
Largest amplitude= 6.73D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33335096D-01 E(Z)= -0.11646189900D+01
NORM(A)= 0.10075307D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33335088D-01 E(Z)= -0.11646189823D+01
NORM(A)= 0.10075305D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33335018D-01 E(Z)= -0.11646189124D+01
NORM(A)= 0.10075304D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33334943D-01 E(Z)= -0.11646188371D+01
NORM(A)= 0.10075282D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33333896D-01 E(Z)= -0.11646177897D+01
NORM(A)= 0.10073005D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33225073D-01 E(Z)= -0.11645089666D+01
NORM(A)= 0.10073005D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33225073D-01 E(Z)= -0.11645089668D+01
NORM(A)= 0.10073005D+01
Discarding MO integrals.
IDoAtm=11
Differentiating once with respect to electric field.
with respect to dipole field.
Differentiating once with respect to nuclear coordinates.
Keep R1 ints in memory in symmetry-blocked form, NReq=805399.
There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1.
LinEq1: Iter= 0 NonCon= 1 RMS=9.09D-03 Max=2.52D-02 NDo= 1
AX will form 1 AO Fock derivatives at one time.
LinEq1: Iter= 1 NonCon= 1 RMS=1.89D-05 Max=5.22D-05 NDo= 1
LinEq1: Iter= 2 NonCon= 0 RMS=1.39D-19 Max=3.67D-19 NDo= 1
Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations.
End of Minotr F.D. properties file 721 does not exist.
End of Minotr F.D. properties file 722 does not exist.
End of Minotr F.D. properties file 788 does not exist.
Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
***** Axes restored to original set *****
-------------------------------------------------------------------
Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
-------------------------------------------------------------------
1 1 0.000000000 0.000000000 0.010761477
2 1 0.000000000 0.000000000 -0.010761477
-------------------------------------------------------------------
Cartesian Forces: Max 0.010761477 RMS 0.006213142
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Using GEDIIS/GDIIS optimizer.
Internal Forces: Max 0.010761477 RMS 0.010761477
Search for a local minimum.
Step number 2 out of a maximum of 20
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Mixed Optimization -- RFO/linear search
Update second derivatives using D2CorX and points 1 2
DE= -1.82D-02 DEPred=-2.05D-02 R= 8.90D-01
TightC=F SS= 1.41D+00 RLast= 2.35D-01 DXNew= 5.0454D-01 7.0525D-01
Trust test= 8.90D-01 RLast= 2.35D-01 DXMaxT set to 5.05D-01
The second derivative matrix:
R1
R1 0.65591
ITU= 1 0
Use linear search instead of GDIIS.
Eigenvalues --- 0.65591
RFO step: Lambda= 0.00000000D+00 EMin= 6.55914845D-01
Quartic linear search produced a step of 0.11924.
Iteration 1 RMS(Cart)= 0.01982057 RMS(Int)= 0.00000000
Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000
ClnCor: largest displacement from symmetrization is 8.58D-19 for atom 1.
Variable Old X -DE/DX Delta X Delta X Delta X New X
(Linear) (Quad) (Total)
R1 1.36892 0.01076 0.02803 0.00000 0.02803 1.39695
Item Value Threshold Converged?
Maximum Force 0.010761 0.000450 NO
RMS Force 0.010761 0.000300 NO
Maximum Displacement 0.014015 0.001800 NO
RMS Displacement 0.019821 0.001200 NO
Predicted change in Energy=-4.397035D-05
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 1 0 0.000000 0.000000 0.369617
2 1 0 0.000000 0.000000 -0.369617
---------------------------------------------------------------------
Stoichiometry H2
Framework group D*H[C*(H.H)]
Deg. of freedom 1
Full point group D*H NOp 8
Largest Abelian subgroup D2H NOp 8
Largest concise Abelian subgroup C2 NOp 2
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 1 0 0.000000 0.000000 0.369617
2 1 0 0.000000 0.000000 -0.369617
---------------------------------------------------------------------
Rotational constants (GHZ): 0.0000000 1835.2617813 1835.2617813
Standard basis: 6-31G(d,p) (6D, 7F)
There are 3 symmetry adapted cartesian basis functions of AG symmetry.
There are 0 symmetry adapted cartesian basis functions of B1G symmetry.
There are 1 symmetry adapted cartesian basis functions of B2G symmetry.
There are 1 symmetry adapted cartesian basis functions of B3G symmetry.
There are 0 symmetry adapted cartesian basis functions of AU symmetry.
There are 3 symmetry adapted cartesian basis functions of B1U symmetry.
There are 1 symmetry adapted cartesian basis functions of B2U symmetry.
There are 1 symmetry adapted cartesian basis functions of B3U symmetry.
There are 3 symmetry adapted basis functions of AG symmetry.
There are 0 symmetry adapted basis functions of B1G symmetry.
There are 1 symmetry adapted basis functions of B2G symmetry.
There are 1 symmetry adapted basis functions of B3G symmetry.
There are 0 symmetry adapted basis functions of AU symmetry.
There are 3 symmetry adapted basis functions of B1U symmetry.
There are 1 symmetry adapted basis functions of B2U symmetry.
There are 1 symmetry adapted basis functions of B3U symmetry.
10 basis functions, 14 primitive gaussians, 10 cartesian basis functions
1 alpha electrons 1 beta electrons
nuclear repulsion energy 0.7158451999 Hartrees.
NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 1 integral format.
Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM.
NBasis= 10 RedAO= T EigKep= 1.36D-01 NBF= 3 0 1 1 0 3 1 1
NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 1 1 0 3 1 1
Initial guess from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk"
B after Tr= 0.000000 0.000000 0.000000
Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg.
Initial guess orbital symmetries:
Occupied (SGG)
Virtual (SGG) (SGG) (PIG) (PIG) (SGU) (SGU) (SGU) (PIU)
(PIU)
Keep R1 ints in memory in symmetry-blocked form, NReq=824359.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
SCF Done: E(RHF) = -1.13130157145 A.U. after 4 cycles
NFock= 4 Conv=0.23D-08 -V/T= 2.0019
Range of M.O.s used for correlation: 1 10
NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0
NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9
Semi-Direct transformation.
ModeAB= 4 MOrb= 1 LenV= 805198401
LASXX= 69 LTotXX= 69 LenRXX= 172
LTotAB= 103 MaxLAS= 360 LenRXY= 0
NonZer= 241 LenScr= 785920 LnRSAI= 360
LnScr1= 785920 LExtra= 153092 Total= 1725464
MaxDsk= 1342177280 SrtSym= T ITran= 4
JobTyp=0 Pass 1: I= 1 to 1.
(rs|ai) integrals will be sorted in core.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00
alpha-beta T2 = 0.8185670270D-02 E2= -0.2633875733D-01
beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00
ANorm= 0.1004084494D+01
E2 = -0.2633875733D-01 EUMP2 = -0.11576403287854D+01
Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=803446.
Iterations= 50 Convergence= 0.100D-07
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
MP4(R+Q)= 0.21560038D-03
E3= -0.55121841D-02 EUMP3= -0.11631525129D+01
E4(DQ)= -0.13134485D-02 UMP4(DQ)= -0.11644659613D+01
E4(SDQ)= -0.14158324D-02 UMP4(SDQ)= -0.11645683453D+01
DE(Corr)= -0.31632436E-01 E(Corr)= -1.1629340077
NORM(A)= 0.10070214D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33472767E-01 E(CORR)= -1.1647743386 Delta=-1.84D-03
NORM(A)= 0.10076760D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33831166E-01 E(CORR)= -1.1651327377 Delta=-3.58D-04
NORM(A)= 0.10077328D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33855968E-01 E(CORR)= -1.1651575399 Delta=-2.48D-05
NORM(A)= 0.10077324D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33855227E-01 E(CORR)= -1.1651567986 Delta= 7.41D-07
NORM(A)= 0.10077329D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33855421E-01 E(CORR)= -1.1651569929 Delta=-1.94D-07
NORM(A)= 0.10077328D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33855388E-01 E(CORR)= -1.1651569594 Delta= 3.35D-08
NORM(A)= 0.10077328D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33855389E-01 E(CORR)= -1.1651569602 Delta=-7.35D-10
NORM(A)= 0.10077328D+01
Largest amplitude= 6.99D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33446435D-01 E(Z)= -0.11647480064D+01
NORM(A)= 0.10077328D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33446426D-01 E(Z)= -0.11647479978D+01
NORM(A)= 0.10077326D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33446356D-01 E(Z)= -0.11647479271D+01
NORM(A)= 0.10077324D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33446272D-01 E(Z)= -0.11647478431D+01
NORM(A)= 0.10077319D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33446033D-01 E(Z)= -0.11647476046D+01
NORM(A)= 0.10074902D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33332051D-01 E(Z)= -0.11646336222D+01
NORM(A)= 0.10074901D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33332048D-01 E(Z)= -0.11646336198D+01
NORM(A)= 0.10074901D+01
Discarding MO integrals.
IDoAtm=11
Differentiating once with respect to electric field.
with respect to dipole field.
Differentiating once with respect to nuclear coordinates.
Keep R1 ints in memory in symmetry-blocked form, NReq=805399.
There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1.
LinEq1: Iter= 0 NonCon= 1 RMS=9.43D-03 Max=2.61D-02 NDo= 1
AX will form 1 AO Fock derivatives at one time.
LinEq1: Iter= 1 NonCon= 1 RMS=1.92D-05 Max=5.29D-05 NDo= 1
LinEq1: Iter= 2 NonCon= 0 RMS=1.98D-19 Max=5.48D-19 NDo= 1
Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations.
End of Minotr F.D. properties file 721 does not exist.
End of Minotr F.D. properties file 722 does not exist.
End of Minotr F.D. properties file 788 does not exist.
Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
***** Axes restored to original set *****
-------------------------------------------------------------------
Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
-------------------------------------------------------------------
1 1 0.000000000 0.000000000 -0.000570712
2 1 0.000000000 0.000000000 0.000570712
-------------------------------------------------------------------
Cartesian Forces: Max 0.000570712 RMS 0.000329501
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Using GEDIIS/GDIIS optimizer.
Internal Forces: Max 0.000570712 RMS 0.000570712
Search for a local minimum.
Step number 3 out of a maximum of 20
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Mixed Optimization -- En-DIIS/RFO-DIIS
Update second derivatives using D2CorX and points 2 3
DE= -1.40D-04 DEPred=-4.40D-05 R= 3.19D+00
TightC=F SS= 1.41D+00 RLast= 2.80D-02 DXNew= 8.4853D-01 8.4092D-02
Trust test= 3.19D+00 RLast= 2.80D-02 DXMaxT set to 5.05D-01
The second derivative matrix:
R1
R1 0.40428
ITU= 1 1
Use linear search instead of GDIIS.
Eigenvalues --- 0.40428
RFO step: Lambda= 0.00000000D+00 EMin= 4.04280356D-01
Quartic linear search produced a step of -0.05278.
Iteration 1 RMS(Cart)= 0.00104614 RMS(Int)= 0.00000000
Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000
ClnCor: largest displacement from symmetrization is 4.53D-20 for atom 2.
Variable Old X -DE/DX Delta X Delta X Delta X New X
(Linear) (Quad) (Total)
R1 1.39695 -0.00057 -0.00148 0.00000 -0.00148 1.39547
Item Value Threshold Converged?
Maximum Force 0.000571 0.000450 NO
RMS Force 0.000571 0.000300 NO
Maximum Displacement 0.000740 0.001800 YES
RMS Displacement 0.001046 0.001200 YES
Predicted change in Energy=-4.019006D-07
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 1 0 0.000000 0.000000 0.369226
2 1 0 0.000000 0.000000 -0.369226
---------------------------------------------------------------------
Stoichiometry H2
Framework group D*H[C*(H.H)]
Deg. of freedom 1
Full point group D*H NOp 8
Largest Abelian subgroup D2H NOp 8
Largest concise Abelian subgroup C2 NOp 2
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 1 0 0.000000 0.000000 0.369226
2 1 0 0.000000 0.000000 -0.369226
---------------------------------------------------------------------
Rotational constants (GHZ): 0.0000000 1839.1553040 1839.1553040
Standard basis: 6-31G(d,p) (6D, 7F)
There are 3 symmetry adapted cartesian basis functions of AG symmetry.
There are 0 symmetry adapted cartesian basis functions of B1G symmetry.
There are 1 symmetry adapted cartesian basis functions of B2G symmetry.
There are 1 symmetry adapted cartesian basis functions of B3G symmetry.
There are 0 symmetry adapted cartesian basis functions of AU symmetry.
There are 3 symmetry adapted cartesian basis functions of B1U symmetry.
There are 1 symmetry adapted cartesian basis functions of B2U symmetry.
There are 1 symmetry adapted cartesian basis functions of B3U symmetry.
There are 3 symmetry adapted basis functions of AG symmetry.
There are 0 symmetry adapted basis functions of B1G symmetry.
There are 1 symmetry adapted basis functions of B2G symmetry.
There are 1 symmetry adapted basis functions of B3G symmetry.
There are 0 symmetry adapted basis functions of AU symmetry.
There are 3 symmetry adapted basis functions of B1U symmetry.
There are 1 symmetry adapted basis functions of B2U symmetry.
There are 1 symmetry adapted basis functions of B3U symmetry.
10 basis functions, 14 primitive gaussians, 10 cartesian basis functions
1 alpha electrons 1 beta electrons
nuclear repulsion energy 0.7166041333 Hartrees.
NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 1 integral format.
Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM.
NBasis= 10 RedAO= T EigKep= 1.36D-01 NBF= 3 0 1 1 0 3 1 1
NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 1 1 0 3 1 1
Initial guess from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk"
B after Tr= 0.000000 0.000000 0.000000
Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg.
Initial guess orbital symmetries:
Occupied (SGG)
Virtual (SGG) (SGG) (PIG) (PIG) (SGU) (SGU) (SGU) (PIU)
(PIU)
Keep R1 ints in memory in symmetry-blocked form, NReq=824359.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
SCF Done: E(RHF) = -1.13130861316 A.U. after 4 cycles
NFock= 4 Conv=0.62D-11 -V/T= 2.0012
Range of M.O.s used for correlation: 1 10
NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0
NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9
Semi-Direct transformation.
ModeAB= 4 MOrb= 1 LenV= 805198401
LASXX= 69 LTotXX= 69 LenRXX= 172
LTotAB= 103 MaxLAS= 360 LenRXY= 0
NonZer= 241 LenScr= 785920 LnRSAI= 360
LnScr1= 785920 LExtra= 153092 Total= 1725464
MaxDsk= 1342177280 SrtSym= T ITran= 4
JobTyp=0 Pass 1: I= 1 to 1.
(rs|ai) integrals will be sorted in core.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00
alpha-beta T2 = 0.8178872959D-02 E2= -0.2633729098D-01
beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00
ANorm= 0.1004081109D+01
E2 = -0.2633729098D-01 EUMP2 = -0.11576459041456D+01
Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=803446.
Iterations= 50 Convergence= 0.100D-07
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
MP4(R+Q)= 0.21540936D-03
E3= -0.55103505D-02 EUMP3= -0.11631562547D+01
E4(DQ)= -0.13121052D-02 UMP4(DQ)= -0.11644683599D+01
E4(SDQ)= -0.14141385D-02 UMP4(SDQ)= -0.11645703932D+01
DE(Corr)= -0.31629336E-01 E(Corr)= -1.1629379495
NORM(A)= 0.10070134D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33467464E-01 E(CORR)= -1.1647760773 Delta=-1.84D-03
NORM(A)= 0.10076654D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33824632E-01 E(CORR)= -1.1651332447 Delta=-3.57D-04
NORM(A)= 0.10077219D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33849350E-01 E(CORR)= -1.1651579628 Delta=-2.47D-05
NORM(A)= 0.10077215D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33848608E-01 E(CORR)= -1.1651572211 Delta= 7.42D-07
NORM(A)= 0.10077219D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33848802E-01 E(CORR)= -1.1651574153 Delta=-1.94D-07
NORM(A)= 0.10077219D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33848769E-01 E(CORR)= -1.1651573818 Delta= 3.35D-08
NORM(A)= 0.10077219D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33848769E-01 E(CORR)= -1.1651573826 Delta=-7.34D-10
NORM(A)= 0.10077219D+01
Largest amplitude= 6.97D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440424D-01 E(Z)= -0.11647490369D+01
NORM(A)= 0.10077218D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440415D-01 E(Z)= -0.11647490284D+01
NORM(A)= 0.10077218D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440391D-01 E(Z)= -0.11647490045D+01
NORM(A)= 0.10077214D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440226D-01 E(Z)= -0.11647488393D+01
NORM(A)= 0.10077208D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33439912D-01 E(Z)= -0.11647485256D+01
NORM(A)= 0.10074798D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33326247D-01 E(Z)= -0.11646348606D+01
NORM(A)= 0.10074799D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33326275D-01 E(Z)= -0.11646348884D+01
NORM(A)= 0.10074799D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33326274D-01 E(Z)= -0.11646348871D+01
NORM(A)= 0.10074799D+01
Discarding MO integrals.
IDoAtm=11
Differentiating once with respect to electric field.
with respect to dipole field.
Differentiating once with respect to nuclear coordinates.
Keep R1 ints in memory in symmetry-blocked form, NReq=805399.
There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1.
LinEq1: Iter= 0 NonCon= 1 RMS=9.41D-03 Max=2.60D-02 NDo= 1
AX will form 1 AO Fock derivatives at one time.
LinEq1: Iter= 1 NonCon= 1 RMS=1.91D-05 Max=5.29D-05 NDo= 1
LinEq1: Iter= 2 NonCon= 0 RMS=3.90D-19 Max=1.07D-18 NDo= 1
Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations.
End of Minotr F.D. properties file 721 does not exist.
End of Minotr F.D. properties file 722 does not exist.
End of Minotr F.D. properties file 788 does not exist.
Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
***** Axes restored to original set *****
-------------------------------------------------------------------
Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
-------------------------------------------------------------------
1 1 0.000000000 0.000000000 0.000000178
2 1 0.000000000 0.000000000 -0.000000178
-------------------------------------------------------------------
Cartesian Forces: Max 0.000000178 RMS 0.000000103
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Using GEDIIS/GDIIS optimizer.
Internal Forces: Max 0.000000178 RMS 0.000000178
Search for a local minimum.
Step number 4 out of a maximum of 20
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Mixed Optimization -- En-DIIS/RFO-DIIS
Swapping is turned off.
Update second derivatives using D2CorX and points 3 4
DE= -4.22D-07 DEPred=-4.02D-07 R= 1.05D+00
Trust test= 1.05D+00 RLast= 1.48D-03 DXMaxT set to 5.05D-01
The second derivative matrix:
R1
R1 0.38588
ITU= 0 1
Eigenvalues --- 0.38588
En-DIIS/RFO-DIIS IScMMF= 0 using points: 4 3
RFO step: Lambda=-5.08482145D-14.
DidBck=F Rises=F RFO-DIIS coefs: 0.99969 0.00031
Iteration 1 RMS(Cart)= 0.00000033 RMS(Int)= 0.00000000
ClnCor: largest displacement from symmetrization is 1.41D-23 for atom 1.
Variable Old X -DE/DX Delta X Delta X Delta X New X
(Linear) (Quad) (Total)
R1 1.39547 0.00000 0.00000 0.00000 0.00000 1.39547
Item Value Threshold Converged?
Maximum Force 0.000000 0.000450 YES
RMS Force 0.000000 0.000300 YES
Maximum Displacement 0.000000 0.001800 YES
RMS Displacement 0.000000 0.001200 YES
Predicted change in Energy=-4.092849D-14
Optimization completed.
-- Stationary point found.
----------------------------
! Optimized Parameters !
! (Angstroms and Degrees) !
-------------------------- --------------------------
! Name Definition Value Derivative Info. !
--------------------------------------------------------------------------------
! R1 R(1,2) 0.7385 -DE/DX = 0.0 !
--------------------------------------------------------------------------------
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 1 0 0.000000 0.000000 0.369226
2 1 0 0.000000 0.000000 -0.369226
---------------------------------------------------------------------
Stoichiometry H2
Framework group D*H[C*(H.H)]
Deg. of freedom 1
Full point group D*H NOp 8
Largest Abelian subgroup D2H NOp 8
Largest concise Abelian subgroup C2 NOp 2
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 1 0 0.000000 0.000000 0.369226
2 1 0 0.000000 0.000000 -0.369226
---------------------------------------------------------------------
Rotational constants (GHZ): 0.0000000 1839.1553040 1839.1553040
**********************************************************************
Population analysis using the SCF density.
**********************************************************************
Orbital symmetries:
Occupied (SGG)
Virtual (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG)
(SGU)
The electronic state is 1-SGG.
Alpha occ. eigenvalues -- -0.59540
Alpha virt. eigenvalues -- 0.23994 0.77053 1.31191 1.95914 1.95914
Alpha virt. eigenvalues -- 2.70930 2.93294 2.93294 4.54275
Molecular Orbital Coefficients:
1 2 3 4 5
(SGG)--O (SGU)--V (SGG)--V (SGU)--V (PIU)--V
Eigenvalues -- -0.59540 0.23994 0.77053 1.31191 1.95914
1 1 H 1S 0.31861 0.12002 0.74532 -0.88012 0.00000
2 2S 0.27484 1.72458 -0.67737 1.39407 0.00000
3 3PX 0.00000 0.00000 0.00000 0.00000 0.61024
4 3PY 0.00000 0.00000 0.00000 0.00000 0.00000
5 3PZ -0.01825 -0.00245 -0.03525 -0.28385 0.00000
6 2 H 1S 0.31861 -0.12002 0.74532 0.88012 0.00000
7 2S 0.27484 -1.72458 -0.67737 -1.39407 0.00000
8 3PX 0.00000 0.00000 0.00000 0.00000 0.61024
9 3PY 0.00000 0.00000 0.00000 0.00000 0.00000
10 3PZ 0.01825 -0.00245 0.03525 -0.28385 0.00000
6 7 8 9 10
(PIU)--V (SGG)--V (PIG)--V (PIG)--V (SGU)--V
Eigenvalues -- 1.95914 2.70930 2.93294 2.93294 4.54275
1 1 H 1S 0.00000 0.38649 0.00000 0.00000 -1.46267
2 2S 0.00000 -0.18679 0.00000 0.00000 -0.15940
3 3PX 0.00000 0.00000 0.00000 0.87214 0.00000
4 3PY 0.61024 0.00000 0.87214 0.00000 0.00000
5 3PZ 0.00000 0.64838 0.00000 0.00000 1.58358
6 2 H 1S 0.00000 0.38649 0.00000 0.00000 1.46267
7 2S 0.00000 -0.18679 0.00000 0.00000 0.15940
8 3PX 0.00000 0.00000 0.00000 -0.87214 0.00000
9 3PY 0.61024 0.00000 -0.87214 0.00000 0.00000
10 3PZ 0.00000 -0.64838 0.00000 0.00000 1.58358
Density Matrix:
1 2 3 4 5
1 1 H 1S 0.20302
2 2S 0.17513 0.15107
3 3PX 0.00000 0.00000 0.00000
4 3PY 0.00000 0.00000 0.00000 0.00000
5 3PZ -0.01163 -0.01003 0.00000 0.00000 0.00067
6 2 H 1S 0.20302 0.17513 0.00000 0.00000 -0.01163
7 2S 0.17513 0.15107 0.00000 0.00000 -0.01003
8 3PX 0.00000 0.00000 0.00000 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00000 0.00000
10 3PZ 0.01163 0.01003 0.00000 0.00000 -0.00067
6 7 8 9 10
6 2 H 1S 0.20302
7 2S 0.17513 0.15107
8 3PX 0.00000 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00000
10 3PZ 0.01163 0.01003 0.00000 0.00000 0.00067
Full Mulliken population analysis:
1 2 3 4 5
1 1 H 1S 0.20302
2 2S 0.11529 0.15107
3 3PX 0.00000 0.00000 0.00000
4 3PY 0.00000 0.00000 0.00000 0.00000
5 3PZ 0.00000 0.00000 0.00000 0.00000 0.00067
6 2 H 1S 0.09272 0.08925 0.00000 0.00000 0.00548
7 2S 0.08925 0.12912 0.00000 0.00000 0.00156
8 3PX 0.00000 0.00000 0.00000 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00000 0.00000
10 3PZ 0.00548 0.00156 0.00000 0.00000 0.00026
6 7 8 9 10
6 2 H 1S 0.20302
7 2S 0.11529 0.15107
8 3PX 0.00000 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00000
10 3PZ 0.00000 0.00000 0.00000 0.00000 0.00067
Gross orbital populations:
1
1 1 H 1S 0.50576
2 2S 0.48628
3 3PX 0.00000
4 3PY 0.00000
5 3PZ 0.00797
6 2 H 1S 0.50576
7 2S 0.48628
8 3PX 0.00000
9 3PY 0.00000
10 3PZ 0.00797
Condensed to atoms (all electrons):
1 2
1 H 0.585330 0.414670
2 H 0.414670 0.585330
Mulliken charges:
1
1 H 0.000000
2 H 0.000000
Sum of Mulliken charges = 0.00000
Mulliken charges with hydrogens summed into heavy atoms:
1
Electronic spatial extent (au): <R**2>= 5.1659
Charge= 0.0000 electrons
Dipole moment (field-independent basis, Debye):
X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -2.0584 YY= -2.0584 ZZ= -1.5218
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= -0.1789 YY= -0.1789 ZZ= 0.3577
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000
XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000
YYZ= 0.0000 XYZ= 0.0000
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -1.9221 YYYY= -1.9221 ZZZZ= -2.8011 XXXY= 0.0000
XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000
ZZZY= 0.0000 XXYY= -0.6407 XXZZ= -0.8024 YYZZ= -0.8024
XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000
N-N= 7.166041332553D-01 E-N=-3.634961279941D+00 KE= 1.129934888862D+00
Symmetry AG KE= 1.129934888862D+00
Symmetry B1G KE= 0.000000000000D+00
Symmetry B2G KE= 2.333384556558D-34
Symmetry B3G KE= 2.333384556558D-34
Symmetry AU KE= 0.000000000000D+00
Symmetry B1U KE= 8.497895942569D-32
Symmetry B2U KE= 6.359962177641D-35
Symmetry B3U KE= 6.359962177641D-35
Orbital energies and kinetic energies (alpha):
1 2
1 (SGG)--O -0.595400 0.564967
2 (SGU)--V 0.239936 0.446085
3 (SGG)--V 0.770528 1.413169
4 (SGU)--V 1.311913 2.284778
5 (PIU)--V 1.959140 2.449332
6 (PIU)--V 1.959140 2.449332
7 (SGG)--V 2.709296 3.284125
8 (PIG)--V 2.932944 3.364126
9 (PIG)--V 2.932944 3.364126
10 (SGU)--V 4.542751 5.471122
Total kinetic energy from orbitals= 1.129934888862D+00
1|1| IMPERIAL COLLEGE-SKLB-L1WOLF-044|FOpt|RCCSD-FC|6-31G(d,p)|H2|MYS1
8|11-Feb-2019|0||# opt freq ccsd/6-31g(d,p) geom=connectivity integral
=grid=ultrafine pop=full||H2Opt||0,1|H,0.,0.,0.3692256185|H,0.,0.,-0.3
692256185||Version=EM64W-G09RevD.01|State=1-SGG|HF=-1.1313086|MP2=-1.1
576459|MP3=-1.1631563|MP4D=-1.1646838|MP4DQ=-1.1644684|MP4SDQ=-1.16457
04|CCSD=-1.1651574|RMSD=6.247e-012|RMSF=1.026e-007|Dipole=0.,0.,0.|PG=
D*H [C*(H1.H1)]||@
I think that all right-thinking people in this
country are sick and tired of being told that
ordinary, decent people are fed up in this country
with being sick and tired. I'm certainly not!
But I'm sick and tired of being told that I am!
-- Monty Python
Job cpu time: 0 days 0 hours 0 minutes 48.0 seconds.
File lengths (MBytes): RWF= 18 Int= 0 D2E= 0 Chk= 1 Scr= 1
Normal termination of Gaussian 09 at Mon Feb 11 11:04:42 2019.
Link1: Proceeding to internal job step number 2.
----------------------------------------------------------------------
#N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RCCSD(FC)/6-31G(d,p) F
req
----------------------------------------------------------------------
1/10=4,29=7,30=1,38=11,40=1/1,6,3;
2/12=2,40=1/2;
3/5=1,6=6,7=101,11=1,14=-4,16=1,25=1,30=1,70=2,71=1,75=-5,116=1/1,2,3;
4/5=101,69=2/1;
5/5=2,98=1/2;
8/6=4,9=120000,10=2/1,4;
9/5=7,15=1/13;
11/28=-8,29=200,42=3/11;
10/5=6/2;
6/7=3,22=-1/1;
7/12=7/1,2,3,16;
1/38=10/6(3);
7/8=1,25=1,44=-1/16;
1/10=4,30=1,38=10/3;
99//99;
3/5=1,6=6,7=101,11=1,14=-2,16=1,25=1,30=1,70=5,71=1,75=-5,116=1/1,2,3;
4/5=5,16=3,69=2/1;
5/5=2,38=5,98=1/2;
8/6=4,9=120000,10=2/1,4;
9/5=7,15=1/13;
11/28=-8,29=200,42=3/11;
10/5=6/2;
6/7=3,22=-1/1;
7/7=1,12=7/1,2,3,16;
1/38=10/6(-9);
7/8=1,25=1,44=-1/16;
1/10=4,30=1,38=10/3;
99//99;
Structure from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk"
-----
H2Opt
-----
Charge = 0 Multiplicity = 1
Redundant internal coordinates found in file.
H,0,0.,0.,0.3692256185
H,0,0.,0.,-0.3692256185
Recover connectivity data from disk.
Numerical evaluation of force-constants.
Nuclear step= 0.001000 Angstroms, electric field step= 0.000333 atomic units, NStep=1.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Initialization pass.
----------------------------
! Initial Parameters !
! (Angstroms and Degrees) !
-------------------------- --------------------------
! Name Definition Value Derivative Info. !
--------------------------------------------------------------------------------
! R1 R(1,2) 0.7385 calculate D2E/DX2 analytically !
--------------------------------------------------------------------------------
Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07
Number of steps in this run= 2 maximum allowed number of steps= 2.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 1 0 0.000000 0.000000 0.369226
2 1 0 0.000000 0.000000 -0.369226
---------------------------------------------------------------------
Stoichiometry H2
Framework group D*H[C*(H.H)]
Deg. of freedom 1
Full point group D*H NOp 8
Largest Abelian subgroup D2H NOp 8
Largest concise Abelian subgroup C2 NOp 2
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 1 0 0.000000 0.000000 0.369226
2 1 0 0.000000 0.000000 -0.369226
---------------------------------------------------------------------
Rotational constants (GHZ): 0.0000000 1839.1553040 1839.1553040
Standard basis: 6-31G(d,p) (6D, 7F)
There are 3 symmetry adapted cartesian basis functions of AG symmetry.
There are 0 symmetry adapted cartesian basis functions of B1G symmetry.
There are 1 symmetry adapted cartesian basis functions of B2G symmetry.
There are 1 symmetry adapted cartesian basis functions of B3G symmetry.
There are 0 symmetry adapted cartesian basis functions of AU symmetry.
There are 3 symmetry adapted cartesian basis functions of B1U symmetry.
There are 1 symmetry adapted cartesian basis functions of B2U symmetry.
There are 1 symmetry adapted cartesian basis functions of B3U symmetry.
There are 3 symmetry adapted basis functions of AG symmetry.
There are 0 symmetry adapted basis functions of B1G symmetry.
There are 1 symmetry adapted basis functions of B2G symmetry.
There are 1 symmetry adapted basis functions of B3G symmetry.
There are 0 symmetry adapted basis functions of AU symmetry.
There are 3 symmetry adapted basis functions of B1U symmetry.
There are 1 symmetry adapted basis functions of B2U symmetry.
There are 1 symmetry adapted basis functions of B3U symmetry.
10 basis functions, 14 primitive gaussians, 10 cartesian basis functions
1 alpha electrons 1 beta electrons
nuclear repulsion energy 0.7166041333 Hartrees.
NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 1 integral format.
Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM.
NBasis= 10 RedAO= T EigKep= 1.36D-01 NBF= 3 0 1 1 0 3 1 1
NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 1 1 0 3 1 1
Initial guess from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk"
B after Tr= 0.000000 0.000000 0.000000
Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg.
Initial guess orbital symmetries:
Occupied (SGG)
Virtual (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG)
(SGU)
Keep R1 ints in memory in symmetry-blocked form, NReq=824359.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
Skip diagonalization as Alpha Fock matrix is already diagonal.
SCF Done: E(RHF) = -1.13130861316 A.U. after 1 cycles
NFock= 1 Conv=0.00D+00 -V/T= 2.0012
Range of M.O.s used for correlation: 1 10
NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0
NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9
Semi-Direct transformation.
ModeAB= 4 MOrb= 1 LenV= 805198401
LASXX= 69 LTotXX= 69 LenRXX= 172
LTotAB= 103 MaxLAS= 360 LenRXY= 0
NonZer= 241 LenScr= 785920 LnRSAI= 360
LnScr1= 785920 LExtra= 147642 Total= 1720014
MaxDsk= 1342177280 SrtSym= T ITran= 4
JobTyp=0 Pass 1: I= 1 to 1.
(rs|ai) integrals will be sorted in core.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00
alpha-beta T2 = 0.8178872959D-02 E2= -0.2633729098D-01
beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00
ANorm= 0.1004081109D+01
E2 = -0.2633729098D-01 EUMP2 = -0.11576459041456D+01
Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=803446.
Iterations= 50 Convergence= 0.100D-07
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
MP4(R+Q)= 0.21540936D-03
E3= -0.55103505D-02 EUMP3= -0.11631562547D+01
E4(DQ)= -0.13121052D-02 UMP4(DQ)= -0.11644683599D+01
E4(SDQ)= -0.14141385D-02 UMP4(SDQ)= -0.11645703932D+01
DE(Corr)= -0.31629336E-01 E(Corr)= -1.1629379495
NORM(A)= 0.10070134D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33467464E-01 E(CORR)= -1.1647760773 Delta=-1.84D-03
NORM(A)= 0.10076654D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33824632E-01 E(CORR)= -1.1651332447 Delta=-3.57D-04
NORM(A)= 0.10077219D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33849350E-01 E(CORR)= -1.1651579628 Delta=-2.47D-05
NORM(A)= 0.10077215D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33848608E-01 E(CORR)= -1.1651572211 Delta= 7.42D-07
NORM(A)= 0.10077219D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33848802E-01 E(CORR)= -1.1651574153 Delta=-1.94D-07
NORM(A)= 0.10077219D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33848769E-01 E(CORR)= -1.1651573818 Delta= 3.35D-08
NORM(A)= 0.10077219D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33848769E-01 E(CORR)= -1.1651573826 Delta=-7.34D-10
NORM(A)= 0.10077219D+01
Largest amplitude= 6.97D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440424D-01 E(Z)= -0.11647490369D+01
NORM(A)= 0.10077218D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440416D-01 E(Z)= -0.11647490288D+01
NORM(A)= 0.10077217D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440354D-01 E(Z)= -0.11647489670D+01
NORM(A)= 0.10077215D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440255D-01 E(Z)= -0.11647488687D+01
NORM(A)= 0.10077212D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440095D-01 E(Z)= -0.11647487085D+01
NORM(A)= 0.10074799D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33326275D-01 E(Z)= -0.11646348880D+01
NORM(A)= 0.10074799D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33326274D-01 E(Z)= -0.11646348869D+01
NORM(A)= 0.10074799D+01
Discarding MO integrals.
IDoAtm=11
Differentiating once with respect to electric field.
with respect to dipole field.
Differentiating once with respect to nuclear coordinates.
Keep R1 ints in memory in symmetry-blocked form, NReq=805399.
There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1.
LinEq1: Iter= 0 NonCon= 1 RMS=9.41D-03 Max=2.60D-02 NDo= 1
AX will form 1 AO Fock derivatives at one time.
LinEq1: Iter= 1 NonCon= 1 RMS=1.91D-05 Max=5.29D-05 NDo= 1
LinEq1: Iter= 2 NonCon= 0 RMS=4.47D-19 Max=1.30D-18 NDo= 1
Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations.
End of Minotr F.D. properties file 721 does not exist.
End of Minotr F.D. properties file 722 does not exist.
End of Minotr F.D. properties file 788 does not exist.
**********************************************************************
Population analysis using the QCI/CC density.
**********************************************************************
Orbital symmetries:
Occupied (SGG)
Virtual (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG)
(SGU)
The electronic state is 1-SGG.
Alpha occ. eigenvalues -- -0.59540
Alpha virt. eigenvalues -- 0.23994 0.77053 1.31191 1.95914 1.95914
Alpha virt. eigenvalues -- 2.70930 2.93294 2.93294 4.54275
Molecular Orbital Coefficients:
1 2 3 4 5
(SGG)--O (SGU)--V (SGG)--V (SGU)--V (PIU)--V
Eigenvalues -- -0.59540 0.23994 0.77053 1.31191 1.95914
1 1 H 1S 0.31861 0.12002 0.74532 -0.88012 0.00000
2 2S 0.27484 1.72458 -0.67737 1.39407 0.00000
3 3PX 0.00000 0.00000 0.00000 0.00000 0.61024
4 3PY 0.00000 0.00000 0.00000 0.00000 0.00000
5 3PZ -0.01825 -0.00245 -0.03525 -0.28385 0.00000
6 2 H 1S 0.31861 -0.12002 0.74532 0.88012 0.00000
7 2S 0.27484 -1.72458 -0.67737 -1.39407 0.00000
8 3PX 0.00000 0.00000 0.00000 0.00000 0.61024
9 3PY 0.00000 0.00000 0.00000 0.00000 0.00000
10 3PZ 0.01825 -0.00245 0.03525 -0.28385 0.00000
6 7 8 9 10
(PIU)--V (SGG)--V (PIG)--V (PIG)--V (SGU)--V
Eigenvalues -- 1.95914 2.70930 2.93294 2.93294 4.54275
1 1 H 1S 0.00000 0.38649 0.00000 0.00000 -1.46267
2 2S 0.00000 -0.18679 0.00000 0.00000 -0.15940
3 3PX 0.00000 0.00000 0.00000 0.87214 0.00000
4 3PY 0.61024 0.00000 0.87214 0.00000 0.00000
5 3PZ 0.00000 0.64838 0.00000 0.00000 1.58358
6 2 H 1S 0.00000 0.38649 0.00000 0.00000 1.46267
7 2S 0.00000 -0.18679 0.00000 0.00000 0.15940
8 3PX 0.00000 0.00000 0.00000 -0.87214 0.00000
9 3PY 0.61024 0.00000 -0.87214 0.00000 0.00000
10 3PZ 0.00000 -0.64838 0.00000 0.00000 1.58358
Density Matrix:
1 2 3 4 5
1 1 H 1S 0.22204
2 2S 0.17812 0.15288
3 3PX 0.00000 0.00000 0.00068
4 3PY 0.00000 0.00000 0.00000 0.00068
5 3PZ -0.01067 -0.00719 0.00000 0.00000 0.00098
6 2 H 1S 0.20097 0.16201 0.00000 0.00000 -0.01178
7 2S 0.16201 0.13676 0.00000 0.00000 -0.00871
8 3PX 0.00000 0.00000 0.00050 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00050 0.00000
10 3PZ 0.01178 0.00871 0.00000 0.00000 -0.00071
6 7 8 9 10
6 2 H 1S 0.22204
7 2S 0.17812 0.15288
8 3PX 0.00000 0.00000 0.00068
9 3PY 0.00000 0.00000 0.00000 0.00068
10 3PZ 0.01067 0.00719 0.00000 0.00000 0.00098
Full Mulliken population analysis:
1 2 3 4 5
1 1 H 1S 0.22204
2 2S 0.11726 0.15288
3 3PX 0.00000 0.00000 0.00068
4 3PY 0.00000 0.00000 0.00000 0.00068
5 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098
6 2 H 1S 0.09178 0.08256 0.00000 0.00000 0.00555
7 2S 0.08256 0.11689 0.00000 0.00000 0.00135
8 3PX 0.00000 0.00000 0.00017 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00017 0.00000
10 3PZ 0.00555 0.00135 0.00000 0.00000 0.00028
6 7 8 9 10
6 2 H 1S 0.22204
7 2S 0.11726 0.15288
8 3PX 0.00000 0.00000 0.00068
9 3PY 0.00000 0.00000 0.00000 0.00068
10 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098
Gross orbital populations:
1
1 1 H 1S 0.51919
2 2S 0.47094
3 3PX 0.00085
4 3PY 0.00085
5 3PZ 0.00816
6 2 H 1S 0.51919
7 2S 0.47094
8 3PX 0.00085
9 3PY 0.00085
10 3PZ 0.00816
Condensed to atoms (all electrons):
1 2
1 H 0.611780 0.388220
2 H 0.388220 0.611780
Mulliken charges:
1
1 H 0.000000
2 H 0.000000
Sum of Mulliken charges = 0.00000
Mulliken charges with hydrogens summed into heavy atoms:
1
Electronic spatial extent (au): <R**2>= 5.1049
Charge= 0.0000 electrons
Dipole moment (field-independent basis, Debye):
X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -2.0170 YY= -2.0170 ZZ= -1.5227
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= -0.1647 YY= -0.1647 ZZ= 0.3295
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000
XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000
YYZ= 0.0000 XYZ= 0.0000
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -1.8629 YYYY= -1.8629 ZZZZ= -2.7782 XXXY= 0.0000
XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000
ZZZY= 0.0000 XXYY= -0.6210 XXZZ= -0.7874 YYZZ= -0.7874
XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000
N-N= 7.166041332553D-01 E-N=-3.661971793491D+00 KE= 1.182296054886D+00
Symmetry AG KE= 1.143214290139D+00
Symmetry B1G KE= 0.000000000000D+00
Symmetry B2G KE= 3.996450757026D-04
Symmetry B3G KE= 3.996450757026D-04
Symmetry AU KE= 0.000000000000D+00
Symmetry B1U KE= 3.050536190333D-02
Symmetry B2U KE= 3.888556345988D-03
Symmetry B3U KE= 3.888556345988D-03
Orbital energies and kinetic energies (alpha):
1 2
1 (SGG)--O -0.595400 0.564967
2 (SGU)--V 0.239936 0.446085
3 (SGG)--V 0.770528 1.413169
4 (SGU)--V 1.311913 2.284778
5 (PIU)--V 1.959140 2.449332
6 (PIU)--V 1.959140 2.449332
7 (SGG)--V 2.709296 3.284125
8 (PIG)--V 2.932944 3.364126
9 (PIG)--V 2.932944 3.364126
10 (SGU)--V 4.542751 5.471122
Total kinetic energy from orbitals= 1.129934888862D+00
Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
***** Axes restored to original set *****
-------------------------------------------------------------------
Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
-------------------------------------------------------------------
1 1 0.000000000 0.000000000 0.000000179
2 1 0.000000000 0.000000000 -0.000000179
-------------------------------------------------------------------
Cartesian Forces: Max 0.000000179 RMS 0.000000103
NDeriv= 6 NFrqRd= 0 NDerD0= 0 MskFDP= 0 MskDFD= 0 MskDF0= 0
At 1st pt F.D. properties file 721 does not exist.
At 1st pt F.D. properties file 722 does not exist.
D2Numr ... symmetry will be used.
Standard basis: 6-31G(d,p) (6D, 7F)
10 basis functions, 14 primitive gaussians, 10 cartesian basis functions
1 alpha electrons 1 beta electrons
nuclear repulsion energy 0.7166034762 Hartrees.
NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 1 integral format.
Two-electron integral symmetry is turned off.
One-electron integrals computed using PRISM.
NBasis= 10 RedAO= T EigKep= 9.58D-02 NBF= 10
NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 10
Initial guess from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk"
B after Tr= 0.000945 0.000000 0.000000
Rot= 1.000000 0.000000 -0.000677 0.000000 Ang= -0.08 deg.
Keep R1 ints in memory in canonical form, NReq=823603.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
SCF Done: E(RHF) = -1.13130860745 A.U. after 2 cycles
NFock= 2 Conv=0.33D-08 -V/T= 2.0012
Range of M.O.s used for correlation: 1 10
NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0
NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9
Semi-Direct transformation.
ModeAB= 2 MOrb= 1 LenV= 805199366
LASXX= 405 LTotXX= 405 LenRXX= 405
LTotAB= 541 MaxLAS= 550 LenRXY= 550
NonZer= 810 LenScr= 785920 LnRSAI= 0
LnScr1= 0 LExtra= 4980162 Total= 5767037
MaxDsk= 1342177280 SrtSym= F ITran= 4
JobTyp=0 Pass 1: I= 1 to 1.
(rs|ai) integrals will be sorted in core.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00
alpha-beta T2 = 0.8178878838D-02 E2= -0.2633729226D-01
beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00
ANorm= 0.1004081112D+01
E2 = -0.2633729226D-01 EUMP2 = -0.11576458997068D+01
Keep R2 and R3 ints in memory in canonical form, NReq=804284.
Iterations= 50 Convergence= 0.100D-07
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
MP4(R+Q)= 0.21540952D-03
E3= -0.55103521D-02 EUMP3= -0.11631562518D+01
E4(DQ)= -0.13121063D-02 UMP4(DQ)= -0.11644683582D+01
E4(SDQ)= -0.14141400D-02 UMP4(SDQ)= -0.11645703918D+01
DE(Corr)= -0.31629339E-01 E(Corr)= -1.1629379465
NORM(A)= 0.10070134D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33467469E-01 E(CORR)= -1.1647760762 Delta=-1.84D-03
NORM(A)= 0.10076654D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33824637E-01 E(CORR)= -1.1651332446 Delta=-3.57D-04
NORM(A)= 0.10077219D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33849355E-01 E(CORR)= -1.1651579628 Delta=-2.47D-05
NORM(A)= 0.10077215D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33848614E-01 E(CORR)= -1.1651572211 Delta= 7.42D-07
NORM(A)= 0.10077220D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33848808E-01 E(CORR)= -1.1651574153 Delta=-1.94D-07
NORM(A)= 0.10077219D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33848774E-01 E(CORR)= -1.1651573819 Delta= 3.35D-08
NORM(A)= 0.10077219D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33848775E-01 E(CORR)= -1.1651573826 Delta=-7.34D-10
NORM(A)= 0.10077219D+01
Largest amplitude= 6.97D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440429D-01 E(Z)= -0.11647490364D+01
NORM(A)= 0.10077219D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440421D-01 E(Z)= -0.11647490287D+01
NORM(A)= 0.10077218D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440397D-01 E(Z)= -0.11647490043D+01
NORM(A)= 0.10077217D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440332D-01 E(Z)= -0.11647489397D+01
NORM(A)= 0.10077222D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440594D-01 E(Z)= -0.11647492012D+01
NORM(A)= 0.10074799D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33326272D-01 E(Z)= -0.11646348797D+01
NORM(A)= 0.10074799D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33326278D-01 E(Z)= -0.11646348856D+01
NORM(A)= 0.10074799D+01
Discarding MO integrals.
IDoAtm=11
Differentiating once with respect to electric field.
with respect to dipole field.
Differentiating once with respect to nuclear coordinates.
Keep R1 ints in memory in canonical form, NReq=804613.
There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1.
LinEq1: Iter= 0 NonCon= 1 RMS=9.41D-03 Max=2.60D-02 NDo= 1
AX will form 1 AO Fock derivatives at one time.
LinEq1: Iter= 1 NonCon= 1 RMS=1.91D-05 Max=5.29D-05 NDo= 1
LinEq1: Iter= 2 NonCon= 0 RMS=1.10D-19 Max=2.61D-19 NDo= 1
Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations.
End of Minotr F.D. properties file 721 does not exist.
End of Minotr F.D. properties file 722 does not exist.
End of Minotr F.D. properties file 788 does not exist.
**********************************************************************
Population analysis using the QCI/CC density.
**********************************************************************
Alpha occ. eigenvalues -- -0.59540
Alpha virt. eigenvalues -- 0.23994 0.77053 1.31191 1.95914 1.95914
Alpha virt. eigenvalues -- 2.70929 2.93294 2.93294 4.54275
Molecular Orbital Coefficients:
1 2 3 4 5
O V V V V
Eigenvalues -- -0.59540 0.23994 0.77053 1.31191 1.95914
1 1 H 1S 0.31861 0.12002 0.74532 -0.88012 0.00000
2 2S 0.27484 1.72457 -0.67737 1.39407 0.00000
3 3PX -0.00002 0.00000 -0.00005 -0.00038 0.52233
4 3PY 0.00000 0.00000 0.00000 0.00000 -0.31555
5 3PZ -0.01825 -0.00245 -0.03525 -0.28385 -0.00071
6 2 H 1S 0.31861 -0.12002 0.74532 0.88012 0.00000
7 2S 0.27484 -1.72457 -0.67737 -1.39407 0.00000
8 3PX 0.00002 0.00000 0.00005 -0.00038 0.52233
9 3PY 0.00000 0.00000 0.00000 0.00000 -0.31555
10 3PZ 0.01825 -0.00245 0.03525 -0.28385 -0.00071
6 7 8 9 10
V V V V V
Eigenvalues -- 1.95914 2.70929 2.93294 2.93294 4.54275
1 1 H 1S 0.00000 0.38649 0.00000 0.00000 -1.46267
2 2S 0.00000 -0.18679 0.00000 0.00000 -0.15940
3 3PX 0.31555 0.00088 0.85698 0.16192 0.00214
4 3PY 0.52233 0.00000 -0.16192 0.85698 0.00000
5 3PZ -0.00043 0.64837 -0.00116 -0.00022 1.58357
6 2 H 1S 0.00000 0.38649 0.00000 0.00000 1.46267
7 2S 0.00000 -0.18679 0.00000 0.00000 0.15940
8 3PX 0.31555 -0.00088 -0.85698 -0.16192 0.00214
9 3PY 0.52233 0.00000 0.16192 -0.85698 0.00000
10 3PZ -0.00043 -0.64837 0.00116 0.00022 1.58357
Density Matrix:
1 2 3 4 5
1 1 H 1S 0.22204
2 2S 0.17812 0.15288
3 3PX -0.00001 -0.00001 0.00068
4 3PY 0.00000 0.00000 0.00000 0.00068
5 3PZ -0.01067 -0.00719 0.00000 0.00000 0.00098
6 2 H 1S 0.20097 0.16201 -0.00002 0.00000 -0.01178
7 2S 0.16201 0.13676 -0.00001 0.00000 -0.00871
8 3PX 0.00002 0.00001 0.00050 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00050 0.00000
10 3PZ 0.01178 0.00871 0.00000 0.00000 -0.00071
6 7 8 9 10
6 2 H 1S 0.22204
7 2S 0.17812 0.15288
8 3PX 0.00001 0.00001 0.00068
9 3PY 0.00000 0.00000 0.00000 0.00068
10 3PZ 0.01067 0.00719 0.00000 0.00000 0.00098
Full Mulliken population analysis:
1 2 3 4 5
1 1 H 1S 0.22204
2 2S 0.11726 0.15288
3 3PX 0.00000 0.00000 0.00068
4 3PY 0.00000 0.00000 0.00000 0.00068
5 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098
6 2 H 1S 0.09178 0.08256 0.00000 0.00000 0.00555
7 2S 0.08256 0.11689 0.00000 0.00000 0.00135
8 3PX 0.00000 0.00000 0.00017 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00017 0.00000
10 3PZ 0.00555 0.00135 0.00000 0.00000 0.00028
6 7 8 9 10
6 2 H 1S 0.22204
7 2S 0.11726 0.15288
8 3PX 0.00000 0.00000 0.00068
9 3PY 0.00000 0.00000 0.00000 0.00068
10 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098
Gross orbital populations:
1
1 1 H 1S 0.51919
2 2S 0.47094
3 3PX 0.00085
4 3PY 0.00085
5 3PZ 0.00816
6 2 H 1S 0.51919
7 2S 0.47094
8 3PX 0.00085
9 3PY 0.00085
10 3PZ 0.00816
Condensed to atoms (all electrons):
1 2
1 H 0.611780 0.388220
2 H 0.388220 0.611780
Mulliken charges:
1
1 H 0.000000
2 H 0.000000
Sum of Mulliken charges = 0.00000
Mulliken charges with hydrogens summed into heavy atoms:
1
Electronic spatial extent (au): <R**2>= 5.1049
Charge= 0.0000 electrons
Dipole moment (field-independent basis, Debye):
X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -2.0170 YY= -2.0170 ZZ= -1.5227
XY= 0.0000 XZ= 0.0007 YZ= 0.0000
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= -0.1647 YY= -0.1647 ZZ= 0.3295
XY= 0.0000 XZ= 0.0007 YZ= 0.0000
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= -0.0030 YYY= 0.0000 ZZZ= 0.0000 XYY= -0.0010
XXY= 0.0000 XXZ= 0.0000 XZZ= -0.0008 YZZ= 0.0000
YYZ= 0.0000 XYZ= 0.0000
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -1.8629 YYYY= -1.8629 ZZZZ= -2.7782 XXXY= 0.0000
XXXZ= -0.0007 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= -0.0006
ZZZY= 0.0000 XXYY= -0.6210 XXZZ= -0.7874 YYZZ= -0.7874
XXYZ= 0.0000 YYXZ= -0.0002 ZZXY= 0.0000
N-N= 7.166034761952D-01 E-N=-3.661970264930D+00 KE= 1.182295429019D+00
Orbital energies and kinetic energies (alpha):
1 2
1 O -0.595399 0.564967
2 V 0.239936 0.446085
3 V 0.770528 1.413170
4 V 1.311912 2.284777
5 V 1.959140 2.449331
6 V 1.959140 2.449331
7 V 2.709295 3.284124
8 V 2.932943 3.364125
9 V 2.932943 3.364125
10 V 4.542748 5.471117
Total kinetic energy from orbitals= 1.129934210136D+00
Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
-------------------------------------------------------------------
Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
-------------------------------------------------------------------
1 1 0.000000000 0.000000000 -0.000000317
2 1 0.000000000 0.000000000 0.000000317
-------------------------------------------------------------------
Cartesian Forces: Max 0.000000317 RMS 0.000000183
NDeriv= 6 NFrqRd= 0 NDerD0= 0 MskFDP= 0 MskDFD= 0 MskDF0= 0
Re-enter D2Numr: IAtom= 1 IXYZ=1 IStep= 1.
Skip step-back as it is equivalent to step-up.
Standard basis: 6-31G(d,p) (6D, 7F)
10 basis functions, 14 primitive gaussians, 10 cartesian basis functions
1 alpha electrons 1 beta electrons
nuclear repulsion energy 0.7166034762 Hartrees.
NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 1 integral format.
Two-electron integral symmetry is turned off.
One-electron integrals computed using PRISM.
NBasis= 10 RedAO= T EigKep= 9.58D-02 NBF= 10
NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 10
Initial guess from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk"
B after Tr= 0.000000 0.000945 0.000000
Rot= 1.000000 0.000677 0.000000 0.000000 Ang= 0.08 deg.
Keep R1 ints in memory in canonical form, NReq=823603.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
SCF Done: E(RHF) = -1.13130860745 A.U. after 2 cycles
NFock= 2 Conv=0.33D-08 -V/T= 2.0012
Range of M.O.s used for correlation: 1 10
NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0
NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9
Semi-Direct transformation.
ModeAB= 2 MOrb= 1 LenV= 805199366
LASXX= 405 LTotXX= 405 LenRXX= 405
LTotAB= 541 MaxLAS= 550 LenRXY= 550
NonZer= 810 LenScr= 785920 LnRSAI= 0
LnScr1= 0 LExtra= 4980290 Total= 5767165
MaxDsk= 1342177280 SrtSym= F ITran= 4
JobTyp=0 Pass 1: I= 1 to 1.
(rs|ai) integrals will be sorted in core.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00
alpha-beta T2 = 0.8178878838D-02 E2= -0.2633729226D-01
beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00
ANorm= 0.1004081112D+01
E2 = -0.2633729226D-01 EUMP2 = -0.11576458997068D+01
Keep R2 and R3 ints in memory in canonical form, NReq=804284.
Iterations= 50 Convergence= 0.100D-07
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
MP4(R+Q)= 0.21540952D-03
E3= -0.55103521D-02 EUMP3= -0.11631562518D+01
E4(DQ)= -0.13121063D-02 UMP4(DQ)= -0.11644683582D+01
E4(SDQ)= -0.14141400D-02 UMP4(SDQ)= -0.11645703918D+01
DE(Corr)= -0.31629339E-01 E(Corr)= -1.1629379465
NORM(A)= 0.10070134D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33467469E-01 E(CORR)= -1.1647760762 Delta=-1.84D-03
NORM(A)= 0.10076654D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33824637E-01 E(CORR)= -1.1651332446 Delta=-3.57D-04
NORM(A)= 0.10077219D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33849355E-01 E(CORR)= -1.1651579628 Delta=-2.47D-05
NORM(A)= 0.10077215D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33848614E-01 E(CORR)= -1.1651572211 Delta= 7.42D-07
NORM(A)= 0.10077220D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33848808E-01 E(CORR)= -1.1651574153 Delta=-1.94D-07
NORM(A)= 0.10077219D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33848774E-01 E(CORR)= -1.1651573819 Delta= 3.35D-08
NORM(A)= 0.10077219D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33848775E-01 E(CORR)= -1.1651573826 Delta=-7.34D-10
NORM(A)= 0.10077219D+01
Largest amplitude= 6.97D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440429D-01 E(Z)= -0.11647490364D+01
NORM(A)= 0.10077219D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440421D-01 E(Z)= -0.11647490287D+01
NORM(A)= 0.10077214D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440231D-01 E(Z)= -0.11647488383D+01
NORM(A)= 0.10077216D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440286D-01 E(Z)= -0.11647488930D+01
NORM(A)= 0.10077216D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33440317D-01 E(Z)= -0.11647489249D+01
NORM(A)= 0.10074798D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33326255D-01 E(Z)= -0.11646348626D+01
NORM(A)= 0.10074799D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33326278D-01 E(Z)= -0.11646348850D+01
NORM(A)= 0.10074799D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33326280D-01 E(Z)= -0.11646348876D+01
NORM(A)= 0.10074799D+01
Discarding MO integrals.
IDoAtm=11
Differentiating once with respect to electric field.
with respect to dipole field.
Differentiating once with respect to nuclear coordinates.
Keep R1 ints in memory in canonical form, NReq=804613.
There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1.
LinEq1: Iter= 0 NonCon= 1 RMS=9.41D-03 Max=2.60D-02 NDo= 1
AX will form 1 AO Fock derivatives at one time.
LinEq1: Iter= 1 NonCon= 1 RMS=1.91D-05 Max=5.29D-05 NDo= 1
LinEq1: Iter= 2 NonCon= 0 RMS=9.61D-19 Max=2.86D-18 NDo= 1
Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations.
End of Minotr F.D. properties file 721 does not exist.
End of Minotr F.D. properties file 722 does not exist.
End of Minotr F.D. properties file 788 does not exist.
**********************************************************************
Population analysis using the QCI/CC density.
**********************************************************************
Alpha occ. eigenvalues -- -0.59540
Alpha virt. eigenvalues -- 0.23994 0.77053 1.31191 1.95914 1.95914
Alpha virt. eigenvalues -- 2.70929 2.93294 2.93294 4.54275
Molecular Orbital Coefficients:
1 2 3 4 5
O V V V V
Eigenvalues -- -0.59540 0.23994 0.77053 1.31191 1.95914
1 1 H 1S 0.31861 0.12002 0.74532 -0.88012 0.00000
2 2S 0.27484 1.72457 -0.67737 1.39407 0.00000
3 3PX 0.00000 0.00000 0.00000 0.00000 0.02761
4 3PY -0.00002 0.00000 -0.00005 -0.00038 0.60962
5 3PZ -0.01825 -0.00245 -0.03525 -0.28385 -0.00083
6 2 H 1S 0.31861 -0.12002 0.74532 0.88012 0.00000
7 2S 0.27484 -1.72457 -0.67737 -1.39407 0.00000
8 3PX 0.00000 0.00000 0.00000 0.00000 0.02761
9 3PY 0.00002 0.00000 0.00005 -0.00038 0.60962
10 3PZ 0.01825 -0.00245 0.03525 -0.28385 -0.00083
6 7 8 9 10
V V V V V
Eigenvalues -- 1.95914 2.70929 2.93294 2.93294 4.54275
1 1 H 1S 0.00000 0.38649 0.00000 0.00000 -1.46267
2 2S 0.00000 -0.18679 0.00000 0.00000 -0.15940
3 3PX 0.60962 0.00000 0.19241 0.85065 0.00000
4 3PY -0.02761 0.00088 0.85065 -0.19241 0.00214
5 3PZ 0.00004 0.64837 -0.00115 0.00026 1.58357
6 2 H 1S 0.00000 0.38649 0.00000 0.00000 1.46267
7 2S 0.00000 -0.18679 0.00000 0.00000 0.15940
8 3PX 0.60962 0.00000 -0.19241 -0.85065 0.00000
9 3PY -0.02761 -0.00088 -0.85065 0.19241 0.00214
10 3PZ 0.00004 -0.64837 0.00115 -0.00026 1.58357
Density Matrix:
1 2 3 4 5
1 1 H 1S 0.22204
2 2S 0.17812 0.15288
3 3PX 0.00000 0.00000 0.00068
4 3PY -0.00001 -0.00001 0.00000 0.00068
5 3PZ -0.01067 -0.00719 0.00000 0.00000 0.00098
6 2 H 1S 0.20097 0.16201 0.00000 -0.00002 -0.01178
7 2S 0.16201 0.13676 0.00000 -0.00001 -0.00871
8 3PX 0.00000 0.00000 0.00050 0.00000 0.00000
9 3PY 0.00002 0.00001 0.00000 0.00050 0.00000
10 3PZ 0.01178 0.00871 0.00000 0.00000 -0.00071
6 7 8 9 10
6 2 H 1S 0.22204
7 2S 0.17812 0.15288
8 3PX 0.00000 0.00000 0.00068
9 3PY 0.00001 0.00001 0.00000 0.00068
10 3PZ 0.01067 0.00719 0.00000 0.00000 0.00098
Full Mulliken population analysis:
1 2 3 4 5
1 1 H 1S 0.22204
2 2S 0.11726 0.15288
3 3PX 0.00000 0.00000 0.00068
4 3PY 0.00000 0.00000 0.00000 0.00068
5 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098
6 2 H 1S 0.09178 0.08256 0.00000 0.00000 0.00555
7 2S 0.08256 0.11689 0.00000 0.00000 0.00135
8 3PX 0.00000 0.00000 0.00017 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00017 0.00000
10 3PZ 0.00555 0.00135 0.00000 0.00000 0.00028
6 7 8 9 10
6 2 H 1S 0.22204
7 2S 0.11726 0.15288
8 3PX 0.00000 0.00000 0.00068
9 3PY 0.00000 0.00000 0.00000 0.00068
10 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098
Gross orbital populations:
1
1 1 H 1S 0.51919
2 2S 0.47094
3 3PX 0.00085
4 3PY 0.00085
5 3PZ 0.00816
6 2 H 1S 0.51919
7 2S 0.47094
8 3PX 0.00085
9 3PY 0.00085
10 3PZ 0.00816
Condensed to atoms (all electrons):
1 2
1 H 0.611780 0.388220
2 H 0.388220 0.611780
Mulliken charges:
1
1 H 0.000000
2 H 0.000000
Sum of Mulliken charges = 0.00000
Mulliken charges with hydrogens summed into heavy atoms:
1
Electronic spatial extent (au): <R**2>= 5.1049
Charge= 0.0000 electrons
Dipole moment (field-independent basis, Debye):
X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -2.0170 YY= -2.0170 ZZ= -1.5227
XY= 0.0000 XZ= 0.0000 YZ= 0.0007
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= -0.1647 YY= -0.1647 ZZ= 0.3295
XY= 0.0000 XZ= 0.0000 YZ= 0.0007
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= 0.0000 YYY= -0.0030 ZZZ= 0.0000 XYY= 0.0000
XXY= -0.0010 XXZ= 0.0000 XZZ= 0.0000 YZZ= -0.0008
YYZ= 0.0000 XYZ= 0.0000
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -1.8629 YYYY= -1.8629 ZZZZ= -2.7782 XXXY= 0.0000
XXXZ= 0.0000 YYYX= 0.0000 YYYZ= -0.0007 ZZZX= 0.0000
ZZZY= -0.0006 XXYY= -0.6210 XXZZ= -0.7874 YYZZ= -0.7874
XXYZ= -0.0002 YYXZ= 0.0000 ZZXY= 0.0000
N-N= 7.166034761952D-01 E-N=-3.661970255909D+00 KE= 1.182295423412D+00
Orbital energies and kinetic energies (alpha):
1 2
1 O -0.595399 0.564967
2 V 0.239936 0.446085
3 V 0.770528 1.413170
4 V 1.311912 2.284777
5 V 1.959140 2.449331
6 V 1.959140 2.449331
7 V 2.709295 3.284124
8 V 2.932943 3.364125
9 V 2.932943 3.364125
10 V 4.542748 5.471117
Total kinetic energy from orbitals= 1.129934210136D+00
Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
-------------------------------------------------------------------
Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
-------------------------------------------------------------------
1 1 0.000000000 0.000000000 -0.000000320
2 1 0.000000000 0.000000000 0.000000320
-------------------------------------------------------------------
Cartesian Forces: Max 0.000000320 RMS 0.000000185
NDeriv= 6 NFrqRd= 0 NDerD0= 0 MskFDP= 0 MskDFD= 0 MskDF0= 0
Re-enter D2Numr: IAtom= 1 IXYZ=2 IStep= 1.
Skip step-back as it is equivalent to step-up.
Standard basis: 6-31G(d,p) (6D, 7F)
10 basis functions, 14 primitive gaussians, 10 cartesian basis functions
1 alpha electrons 1 beta electrons
nuclear repulsion energy 0.7156350306 Hartrees.
NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 1 integral format.
Two-electron integral symmetry is turned off.
One-electron integrals computed using PRISM.
NBasis= 10 RedAO= T EigKep= 9.61D-02 NBF= 10
NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 10
Initial guess from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk"
B after Tr= 0.000000 0.000000 0.000945
Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg.
Keep R1 ints in memory in canonical form, NReq=823603.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
SCF Done: E(RHF) = -1.13129946633 A.U. after 4 cycles
NFock= 4 Conv=0.10D-10 -V/T= 2.0021
Range of M.O.s used for correlation: 1 10
NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0
NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9
Semi-Direct transformation.
ModeAB= 2 MOrb= 1 LenV= 805199366
LASXX= 405 LTotXX= 405 LenRXX= 405
LTotAB= 541 MaxLAS= 550 LenRXY= 550
NonZer= 810 LenScr= 785920 LnRSAI= 0
LnScr1= 0 LExtra= 4980290 Total= 5767165
MaxDsk= 1342177280 SrtSym= F ITran= 4
JobTyp=0 Pass 1: I= 1 to 1.
(rs|ai) integrals will be sorted in core.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00
alpha-beta T2 = 0.8187557218D-02 E2= -0.2633916451D-01
beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00
ANorm= 0.1004085433D+01
E2 = -0.2633916451D-01 EUMP2 = -0.11576386308401D+01
Keep R2 and R3 ints in memory in canonical form, NReq=804284.
Iterations= 50 Convergence= 0.100D-07
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
MP4(R+Q)= 0.21565342D-03
E3= -0.55126934D-02 EUMP3= -0.11631513242D+01
E4(DQ)= -0.13138216D-02 UMP4(DQ)= -0.11644651458D+01
E4(SDQ)= -0.14163029D-02 UMP4(SDQ)= -0.11645676271D+01
DE(Corr)= -0.31633297E-01 E(Corr)= -1.1629327635
NORM(A)= 0.10070236D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33474240E-01 E(CORR)= -1.1647737064 Delta=-1.84D-03
NORM(A)= 0.10076790D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33832981E-01 E(CORR)= -1.1651324478 Delta=-3.59D-04
NORM(A)= 0.10077358D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33857807E-01 E(CORR)= -1.1651572732 Delta=-2.48D-05
NORM(A)= 0.10077355D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33857066E-01 E(CORR)= -1.1651565321 Delta= 7.41D-07
NORM(A)= 0.10077359D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33857260E-01 E(CORR)= -1.1651567264 Delta=-1.94D-07
NORM(A)= 0.10077358D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33857227E-01 E(CORR)= -1.1651566929 Delta= 3.35D-08
NORM(A)= 0.10077358D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33857227E-01 E(CORR)= -1.1651566937 Delta=-7.35D-10
NORM(A)= 0.10077358D+01
Largest amplitude= 6.99D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33448105D-01 E(Z)= -0.11647475710D+01
NORM(A)= 0.10077358D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33448096D-01 E(Z)= -0.11647475621D+01
NORM(A)= 0.10077358D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33448075D-01 E(Z)= -0.11647475409D+01
NORM(A)= 0.10077357D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33448027D-01 E(Z)= -0.11647474932D+01
NORM(A)= 0.10077357D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33448042D-01 E(Z)= -0.11647475082D+01
NORM(A)= 0.10074926D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33333547D-01 E(Z)= -0.11646330131D+01
NORM(A)= 0.10074928D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33333613D-01 E(Z)= -0.11646330793D+01
NORM(A)= 0.10074930D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33333652D-01 E(Z)= -0.11646331184D+01
NORM(A)= 0.10074930D+01
Iteration Nr. 9
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33333652D-01 E(Z)= -0.11646331185D+01
NORM(A)= 0.10074930D+01
Discarding MO integrals.
IDoAtm=11
Differentiating once with respect to electric field.
with respect to dipole field.
Differentiating once with respect to nuclear coordinates.
Keep R1 ints in memory in canonical form, NReq=804613.
There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1.
LinEq1: Iter= 0 NonCon= 1 RMS=9.43D-03 Max=2.61D-02 NDo= 1
AX will form 1 AO Fock derivatives at one time.
LinEq1: Iter= 1 NonCon= 1 RMS=1.92D-05 Max=5.30D-05 NDo= 1
LinEq1: Iter= 2 NonCon= 0 RMS=8.71D-19 Max=2.48D-18 NDo= 1
Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations.
End of Minotr F.D. properties file 721 does not exist.
End of Minotr F.D. properties file 722 does not exist.
End of Minotr F.D. properties file 788 does not exist.
**********************************************************************
Population analysis using the QCI/CC density.
**********************************************************************
Alpha occ. eigenvalues -- -0.59509
Alpha virt. eigenvalues -- 0.23968 0.77095 1.31103 1.95917 1.95917
Alpha virt. eigenvalues -- 2.70733 2.93178 2.93178 4.53752
Molecular Orbital Coefficients:
1 2 3 4 5
O V V V V
Eigenvalues -- -0.59509 0.23968 0.77095 1.31103 1.95917
1 1 H 1S 0.31846 0.12018 0.74564 -0.88091 0.00000
2 2S 0.27507 1.72203 -0.67738 1.39340 0.00000
3 3PX 0.00000 0.00000 0.00000 0.00000 0.55307
4 3PY 0.00000 0.00000 0.00000 0.00000 0.25843
5 3PZ -0.01826 -0.00242 -0.03547 -0.28288 0.00000
6 2 H 1S 0.31846 -0.12018 0.74564 0.88091 0.00000
7 2S 0.27507 -1.72203 -0.67738 -1.39340 0.00000
8 3PX 0.00000 0.00000 0.00000 0.00000 0.55307
9 3PY 0.00000 0.00000 0.00000 0.00000 0.25843
10 3PZ 0.01826 -0.00242 0.03547 -0.28288 0.00000
6 7 8 9 10
V V V V V
Eigenvalues -- 1.95917 2.70733 2.93178 2.93178 4.53752
1 1 H 1S 0.00000 0.38633 0.00000 0.00000 -1.45550
2 2S 0.00000 -0.18671 0.00000 0.00000 -0.16064
3 3PX -0.25843 0.00000 -0.28241 0.82446 0.00000
4 3PY 0.55307 0.00000 0.82446 0.28241 0.00000
5 3PZ 0.00000 0.64800 0.00000 0.00000 1.58063
6 2 H 1S 0.00000 0.38633 0.00000 0.00000 1.45550
7 2S 0.00000 -0.18671 0.00000 0.00000 0.16064
8 3PX -0.25843 0.00000 0.28241 -0.82446 0.00000
9 3PY 0.55307 0.00000 -0.82446 -0.28241 0.00000
10 3PZ 0.00000 -0.64800 0.00000 0.00000 1.58063
Density Matrix:
1 2 3 4 5
1 1 H 1S 0.22189
2 2S 0.17822 0.15313
3 3PX 0.00000 0.00000 0.00068
4 3PY 0.00000 0.00000 0.00000 0.00068
5 3PZ -0.01067 -0.00720 0.00000 0.00000 0.00098
6 2 H 1S 0.20079 0.16206 0.00000 0.00000 -0.01178
7 2S 0.16206 0.13697 0.00000 0.00000 -0.00872
8 3PX 0.00000 0.00000 0.00050 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00050 0.00000
10 3PZ 0.01178 0.00872 0.00000 0.00000 -0.00071
6 7 8 9 10
6 2 H 1S 0.22189
7 2S 0.17822 0.15313
8 3PX 0.00000 0.00000 0.00068
9 3PY 0.00000 0.00000 0.00000 0.00068
10 3PZ 0.01067 0.00720 0.00000 0.00000 0.00098
Full Mulliken population analysis:
1 2 3 4 5
1 1 H 1S 0.22189
2 2S 0.11732 0.15313
3 3PX 0.00000 0.00000 0.00068
4 3PY 0.00000 0.00000 0.00000 0.00068
5 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098
6 2 H 1S 0.09152 0.08253 0.00000 0.00000 0.00554
7 2S 0.08253 0.11701 0.00000 0.00000 0.00135
8 3PX 0.00000 0.00000 0.00017 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00017 0.00000
10 3PZ 0.00554 0.00135 0.00000 0.00000 0.00028
6 7 8 9 10
6 2 H 1S 0.22189
7 2S 0.11732 0.15313
8 3PX 0.00000 0.00000 0.00068
9 3PY 0.00000 0.00000 0.00000 0.00068
10 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098
Gross orbital populations:
1
1 1 H 1S 0.51880
2 2S 0.47135
3 3PX 0.00085
4 3PY 0.00085
5 3PZ 0.00815
6 2 H 1S 0.51880
7 2S 0.47135
8 3PX 0.00085
9 3PY 0.00085
10 3PZ 0.00815
Condensed to atoms (all electrons):
1 2
1 H 0.611997 0.388003
2 H 0.388003 0.611997
Mulliken charges:
1
1 H 0.000000
2 H 0.000000
Sum of Mulliken charges = 0.00000
Mulliken charges with hydrogens summed into heavy atoms:
1
Electronic spatial extent (au): <R**2>= 5.1097
Charge= 0.0000 electrons
Dipole moment (field-independent basis, Debye):
X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -2.0183 YY= -2.0183 ZZ= -1.5230
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= -0.1651 YY= -0.1651 ZZ= 0.3302
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= 0.0000 YYY= 0.0000 ZZZ= -0.0023 XYY= 0.0000
XXY= 0.0000 XXZ= -0.0010 XZZ= 0.0000 YZZ= 0.0000
YYZ= -0.0010 XYZ= 0.0000
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -1.8649 YYYY= -1.8649 ZZZZ= -2.7834 XXXY= 0.0000
XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000
ZZZY= 0.0000 XXYY= -0.6216 XXZZ= -0.7887 YYZZ= -0.7887
XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000
N-N= 7.156350306323D-01 E-N=-3.659710553709D+00 KE= 1.181368928477D+00
Orbital energies and kinetic energies (alpha):
1 2
1 O -0.595091 0.564467
2 V 0.239678 0.446229
3 V 0.770947 1.413732
4 V 1.311033 2.284212
5 V 1.959171 2.449168
6 V 1.959171 2.449168
7 V 2.707333 3.282170
8 V 2.931779 3.363079
9 V 2.931779 3.363079
10 V 4.537516 5.463578
Total kinetic energy from orbitals= 1.128933422157D+00
Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
-------------------------------------------------------------------
Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
-------------------------------------------------------------------
1 1 0.000000000 0.000000000 -0.000728499
2 1 0.000000000 0.000000000 0.000728499
-------------------------------------------------------------------
Cartesian Forces: Max 0.000728499 RMS 0.000420599
NDeriv= 6 NFrqRd= 0 NDerD0= 0 MskFDP= 0 MskDFD= 0 MskDF0= 0
Re-enter D2Numr: IAtom= 1 IXYZ=3 IStep= 1.
Standard basis: 6-31G(d,p) (6D, 7F)
10 basis functions, 14 primitive gaussians, 10 cartesian basis functions
1 alpha electrons 1 beta electrons
nuclear repulsion energy 0.7175758641 Hartrees.
NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 1 integral format.
Two-electron integral symmetry is turned off.
One-electron integrals computed using PRISM.
NBasis= 10 RedAO= T EigKep= 9.56D-02 NBF= 10
NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 10
Initial guess from the checkpoint file: "C:\Users\mys18\Desktop\N2 and H2\MYS_H2_optf_pop.chk"
B after Tr= 0.000000 0.000000 -0.001890
Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg.
Keep R1 ints in memory in canonical form, NReq=823603.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
SCF Done: E(RHF) = -1.13131635041 A.U. after 4 cycles
NFock= 4 Conv=0.41D-10 -V/T= 2.0003
Range of M.O.s used for correlation: 1 10
NBasis= 10 NAE= 1 NBE= 1 NFC= 0 NFV= 0
NROrb= 10 NOA= 1 NOB= 1 NVA= 9 NVB= 9
Semi-Direct transformation.
ModeAB= 2 MOrb= 1 LenV= 805199366
LASXX= 405 LTotXX= 405 LenRXX= 405
LTotAB= 541 MaxLAS= 550 LenRXY= 550
NonZer= 810 LenScr= 785920 LnRSAI= 0
LnScr1= 0 LExtra= 4980290 Total= 5767165
MaxDsk= 1342177280 SrtSym= F ITran= 4
JobTyp=0 Pass 1: I= 1 to 1.
(rs|ai) integrals will be sorted in core.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00
alpha-beta T2 = 0.8170207449D-02 E2= -0.2633542247D-01
beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00
ANorm= 0.1004076794D+01
E2 = -0.2633542247D-01 EUMP2 = -0.11576517728762D+01
Keep R2 and R3 ints in memory in canonical form, NReq=804284.
Iterations= 50 Convergence= 0.100D-07
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
MP4(R+Q)= 0.21516586D-03
E3= -0.55080154D-02 EUMP3= -0.11631597883D+01
E4(DQ)= -0.13103948D-02 UMP4(DQ)= -0.11644701831D+01
E4(SDQ)= -0.14119811D-02 UMP4(SDQ)= -0.11645717695D+01
DE(Corr)= -0.31625388E-01 E(Corr)= -1.1629417381
NORM(A)= 0.10070032D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33460710E-01 E(CORR)= -1.1647770601 Delta=-1.84D-03
NORM(A)= 0.10076517D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33816309E-01 E(CORR)= -1.1651326597 Delta=-3.56D-04
NORM(A)= 0.10077080D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33840920E-01 E(CORR)= -1.1651572709 Delta=-2.46D-05
NORM(A)= 0.10077076D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33840178E-01 E(CORR)= -1.1651565287 Delta= 7.42D-07
NORM(A)= 0.10077080D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33840372E-01 E(CORR)= -1.1651567227 Delta=-1.94D-07
NORM(A)= 0.10077079D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33840339E-01 E(CORR)= -1.1651566892 Delta= 3.35D-08
NORM(A)= 0.10077079D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Corr)= -0.33840340E-01 E(CORR)= -1.1651566900 Delta=-7.33D-10
NORM(A)= 0.10077079D+01
Largest amplitude= 6.95D-02
Z-AMPLITUDE ITERATIONS
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33432768D-01 E(Z)= -0.11647491184D+01
NORM(A)= 0.10077079D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33432759D-01 E(Z)= -0.11647491098D+01
NORM(A)= 0.10077079D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33432723D-01 E(Z)= -0.11647490736D+01
NORM(A)= 0.10077076D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33432600D-01 E(Z)= -0.11647489501D+01
NORM(A)= 0.10077072D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33432430D-01 E(Z)= -0.11647487804D+01
NORM(A)= 0.10074669D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33318924D-01 E(Z)= -0.11646352740D+01
NORM(A)= 0.10074668D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 2
NAB= 1 NAA= 0 NBB= 0.
DE(Z) -0.33318921D-01 E(Z)= -0.11646352714D+01
NORM(A)= 0.10074668D+01
Discarding MO integrals.
IDoAtm=11
Differentiating once with respect to electric field.
with respect to dipole field.
Differentiating once with respect to nuclear coordinates.
Keep R1 ints in memory in canonical form, NReq=804613.
There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1.
LinEq1: Iter= 0 NonCon= 1 RMS=9.39D-03 Max=2.60D-02 NDo= 1
AX will form 1 AO Fock derivatives at one time.
LinEq1: Iter= 1 NonCon= 1 RMS=1.91D-05 Max=5.29D-05 NDo= 1
LinEq1: Iter= 2 NonCon= 0 RMS=3.62D-18 Max=1.03D-17 NDo= 1
Linear equations converged to 1.000D-10 1.000D-09 after 2 iterations.
End of Minotr F.D. properties file 721 does not exist.
End of Minotr F.D. properties file 722 does not exist.
End of Minotr F.D. properties file 788 does not exist.
**********************************************************************
Population analysis using the QCI/CC density.
**********************************************************************
Alpha occ. eigenvalues -- -0.59571
Alpha virt. eigenvalues -- 0.24019 0.77011 1.31279 1.95911 1.95911
Alpha virt. eigenvalues -- 2.71126 2.93411 2.93411 4.54802
Molecular Orbital Coefficients:
1 2 3 4 5
O V V V V
Eigenvalues -- -0.59571 0.24019 0.77011 1.31279 1.95911
1 1 H 1S 0.31875 0.11985 0.74500 -0.87931 0.00000
2 2S 0.27460 1.72713 -0.67735 1.39474 0.00000
3 3PX 0.00000 0.00000 0.00000 0.00000 0.03706
4 3PY 0.00000 0.00000 0.00000 0.00000 0.60889
5 3PZ -0.01825 -0.00248 -0.03503 -0.28482 0.00000
6 2 H 1S 0.31875 -0.11985 0.74500 0.87931 0.00000
7 2S 0.27460 -1.72713 -0.67735 -1.39474 0.00000
8 3PX 0.00000 0.00000 0.00000 0.00000 0.03706
9 3PY 0.00000 0.00000 0.00000 0.00000 0.60889
10 3PZ 0.01825 -0.00248 0.03503 -0.28482 0.00000
6 7 8 9 10
V V V V V
Eigenvalues -- 1.95911 2.71126 2.93411 2.93411 4.54802
1 1 H 1S 0.00000 0.38664 0.00000 0.00000 -1.46988
2 2S 0.00000 -0.18687 0.00000 0.00000 -0.15815
3 3PX 0.60889 0.00000 0.82060 0.29733 0.00000
4 3PY -0.03706 0.00000 -0.29733 0.82060 0.00000
5 3PZ 0.00000 0.64875 0.00000 0.00000 1.58653
6 2 H 1S 0.00000 0.38664 0.00000 0.00000 1.46988
7 2S 0.00000 -0.18687 0.00000 0.00000 0.15815
8 3PX 0.60889 0.00000 -0.82060 -0.29733 0.00000
9 3PY -0.03706 0.00000 0.29733 -0.82060 0.00000
10 3PZ 0.00000 -0.64875 0.00000 0.00000 1.58653
Density Matrix:
1 2 3 4 5
1 1 H 1S 0.22219
2 2S 0.17803 0.15264
3 3PX 0.00000 0.00000 0.00068
4 3PY 0.00000 0.00000 0.00000 0.00068
5 3PZ -0.01067 -0.00718 0.00000 0.00000 0.00098
6 2 H 1S 0.20116 0.16196 0.00000 0.00000 -0.01179
7 2S 0.16196 0.13656 0.00000 0.00000 -0.00870
8 3PX 0.00000 0.00000 0.00050 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00050 0.00000
10 3PZ 0.01179 0.00870 0.00000 0.00000 -0.00071
6 7 8 9 10
6 2 H 1S 0.22219
7 2S 0.17803 0.15264
8 3PX 0.00000 0.00000 0.00068
9 3PY 0.00000 0.00000 0.00000 0.00068
10 3PZ 0.01067 0.00718 0.00000 0.00000 0.00098
Full Mulliken population analysis:
1 2 3 4 5
1 1 H 1S 0.22219
2 2S 0.11720 0.15264
3 3PX 0.00000 0.00000 0.00068
4 3PY 0.00000 0.00000 0.00000 0.00068
5 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098
6 2 H 1S 0.09205 0.08259 0.00000 0.00000 0.00556
7 2S 0.08259 0.11676 0.00000 0.00000 0.00135
8 3PX 0.00000 0.00000 0.00017 0.00000 0.00000
9 3PY 0.00000 0.00000 0.00000 0.00017 0.00000
10 3PZ 0.00556 0.00135 0.00000 0.00000 0.00028
6 7 8 9 10
6 2 H 1S 0.22219
7 2S 0.11720 0.15264
8 3PX 0.00000 0.00000 0.00068
9 3PY 0.00000 0.00000 0.00000 0.00068
10 3PZ 0.00000 0.00000 0.00000 0.00000 0.00098
Gross orbital populations:
1
1 1 H 1S 0.51959
2 2S 0.47054
3 3PX 0.00085
4 3PY 0.00085
5 3PZ 0.00817
6 2 H 1S 0.51959
7 2S 0.47054
8 3PX 0.00085
9 3PY 0.00085
10 3PZ 0.00817
Condensed to atoms (all electrons):
1 2
1 H 0.611563 0.388437
2 H 0.388437 0.611563
Mulliken charges:
1
1 H 0.000000
2 H 0.000000
Sum of Mulliken charges = 0.00000
Mulliken charges with hydrogens summed into heavy atoms:
1
Electronic spatial extent (au): <R**2>= 5.1001
Charge= 0.0000 electrons
Dipole moment (field-independent basis, Debye):
X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -2.0157 YY= -2.0157 ZZ= -1.5225
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= -0.1644 YY= -0.1644 ZZ= 0.3288
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0023 XYY= 0.0000
XXY= 0.0000 XXZ= 0.0010 XZZ= 0.0000 YZZ= 0.0000
YYZ= 0.0010 XYZ= 0.0000
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -1.8609 YYYY= -1.8609 ZZZZ= -2.7730 XXXY= 0.0000
XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000
ZZZY= 0.0000 XXYY= -0.6203 XXZZ= -0.7862 YYZZ= -0.7862
XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000
N-N= 7.175758641269D-01 E-N=-3.664236780278D+00 KE= 1.183225278970D+00
Orbital energies and kinetic energies (alpha):
1 2
1 O -0.595709 0.565469
2 V 0.240194 0.445941
3 V 0.770109 1.412607
4 V 1.312794 2.285343
5 V 1.959111 2.449497
6 V 1.959111 2.449497
7 V 2.711258 3.286078
8 V 2.934110 3.365172
9 V 2.934110 3.365172
10 V 4.548016 5.478709
Total kinetic energy from orbitals= 1.130938436444D+00
Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
-------------------------------------------------------------------
Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
-------------------------------------------------------------------
1 1 0.000000000 0.000000000 0.000733677
2 1 0.000000000 0.000000000 -0.000733677
-------------------------------------------------------------------
Cartesian Forces: Max 0.000733677 RMS 0.000423589
NDeriv= 6 NFrqRd= 0 NDerD0= 0 MskFDP= 0 MskDFD= 0 MskDF0= 0
Re-enter D2Numr: IAtom= 1 IXYZ=3 IStep= 2.
Maximum difference in off-diagonal FC elements:
I= 5 J= 4 Difference= 2.7123017823D-14
Max difference between analytic and numerical forces:
I= 3 Difference= 8.0430943037D-07
Full mass-weighted force constant matrix:
Low frequencies --- 0.0000 0.0000 0.0014 3.4498 3.4655 4504.1432
Diagonal vibrational polarizability:
0.0000000 0.0000000 0.0000000
Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
activities (A**4/AMU), depolarization ratios for plane and unpolarized
incident light, reduced masses (AMU), force constants (mDyne/A),
and normal coordinates:
1
SGG
Frequencies -- 4504.1432
Red. masses -- 1.0078
Frc consts -- 12.0465
IR Inten -- 0.0000
Atom AN X Y Z
1 1 0.00 0.00 0.71
2 1 0.00 0.00 -0.71
-------------------
- Thermochemistry -
-------------------
Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Atom 1 has atomic number 1 and mass 1.00783
Atom 2 has atomic number 1 and mass 1.00783
Molecular mass: 2.01565 amu.
Principal axes and moments of inertia in atomic units:
1 2 3
Eigenvalues -- 0.00000 0.98129 0.98129
X 0.00000 1.00000 0.00000
Y 0.00000 0.00000 1.00000
Z 1.00000 0.00000 0.00000
This molecule is a prolate symmetric top.
Rotational symmetry number 2.
Rotational temperature (Kelvin) 88.26543
Rotational constant (GHZ): 1839.155304
Zero-point vibrational energy 26940.8 (Joules/Mol)
6.43900 (Kcal/Mol)
Vibrational temperatures: 6480.45
(Kelvin)
Zero-point correction= 0.010261 (Hartree/Particle)
Thermal correction to Energy= 0.012622
Thermal correction to Enthalpy= 0.013566
Thermal correction to Gibbs Free Energy= -0.001215
Sum of electronic and zero-point Energies= -1.154896
Sum of electronic and thermal Energies= -1.152536
Sum of electronic and thermal Enthalpies= -1.151592
Sum of electronic and thermal Free Energies= -1.166372
E (Thermal) CV S
KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin
Total 7.920 4.968 31.109
Electronic 0.000 0.000 0.000
Translational 0.889 2.981 28.080
Rotational 0.592 1.987 3.029
Vibrational 6.439 0.000 0.000
Q Log10(Q) Ln(Q)
Total Bot 0.362144D+01 0.558881 1.286871
Total V=0 0.189973D+06 5.278692 12.154638
Vib (Bot) 0.190629D-04 -4.719811 -10.867767
Vib (V=0) 0.100000D+01 0.000000 0.000000
Electronic 0.100000D+01 0.000000 0.000000
Translational 0.112481D+06 5.051078 11.630537
Rotational 0.168894D+01 0.227614 0.524101
***** Axes restored to original set *****
-------------------------------------------------------------------
Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
-------------------------------------------------------------------
1 1 0.000000000 0.000000000 0.000000179
2 1 0.000000000 0.000000000 -0.000000179
-------------------------------------------------------------------
Cartesian Forces: Max 0.000000179 RMS 0.000000103
FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Internal Forces: Max 0.000000179 RMS 0.000000179
Search for a local minimum.
Step number 1 out of a maximum of 2
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Second derivative matrix not updated -- analytic derivatives used.
The second derivative matrix:
R1
R1 0.38688
ITU= 0
Eigenvalues --- 0.38688
Angle between quadratic step and forces= 90.00 degrees.
Linear search not attempted -- first point.
Iteration 1 RMS(Cart)= 0.00000033 RMS(Int)= 0.00000000
ClnCor: largest displacement from symmetrization is 1.41D-23 for atom 1.
Variable Old X -DE/DX Delta X Delta X Delta X New X
(Linear) (Quad) (Total)
R1 1.39547 0.00000 0.00000 0.00000 0.00000 1.39547
Item Value Threshold Converged?
Maximum Force 0.000000 0.000450 YES
RMS Force 0.000000 0.000300 YES
Maximum Displacement 0.000000 0.001800 YES
RMS Displacement 0.000000 0.001200 YES
Predicted change in Energy=-4.124889D-14
Optimization completed.
-- Stationary point found.
----------------------------
! Optimized Parameters !
! (Angstroms and Degrees) !
-------------------------- --------------------------
! Name Definition Value Derivative Info. !
--------------------------------------------------------------------------------
! R1 R(1,2) 0.7385 -DE/DX = 0.0 !
--------------------------------------------------------------------------------
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
1|1| IMPERIAL COLLEGE-SKLB-L1WOLF-044|Freq|RCCSD-FC|6-31G(d,p)|H2|MYS1 8|11-Feb-2019|0||#N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RCCSD (FC)/6-31G(d,p) Freq||H2Opt||0,1|H,0.,0.,0.3692256185|H,0.,0.,-0.36922 56185||Version=EM64W-G09RevD.01|State=1-SGG|HF=-1.1313086|MP2=-1.15764 59|MP3=-1.1631563|MP4D=-1.1646838|MP4DQ=-1.1644684|MP4SDQ=-1.1645704|C CSD=-1.1651574|RMSD=0.000e+000|RMSF=1.031e-007|ZeroPoint=0.0102612|The rmal=0.0126217|Dipole=0.,0.,0.|DipoleDeriv=0.,0.,0.,0.,0.,0.,0.,0.,0., 0.,0.,0.,0.,0.,0.,0.,0.,0.|Quadrupole=-0.1224784,-0.1224784,0.2449569, 0.,0.,0.|QuadrupoleDeriv=0.,0.,0.,0.,0.2633056,0.,0.,0.,0.,0.,0.,0.263 3056,-0.1338715,-0.1338715,0.2677429,0.,0.,0.,0.,0.,0.,0.,-0.2633056,0 .,0.,0.,0.,0.,0.,-0.2633056,0.1338715,0.1338715,-0.2677429,0.,0.,0.|PG =D*H [C*(H1.H1)]|NImag=0||0.00000023,0.,0.00000023,0.,0.,0.38687528,-0 .00000023,0.,0.,0.00000023,0.,-0.00000023,0.,0.,0.00000023,0.,0.,-0.38 687528,0.,0.,0.38687528||0.,0.,-0.00000018,0.,0.,0.00000018|||@
The mind is not a vessel to be filled but a fire to be kindled.
-- Plutarch
Job cpu time: 0 days 0 hours 0 minutes 58.0 seconds.
File lengths (MBytes): RWF= 49 Int= 0 D2E= 0 Chk= 38 Scr= 1
Normal termination of Gaussian 09 at Mon Feb 11 11:05:40 2019.