Jump to content

First steps with ONIOM : excited state of Bicyclo(10,2,2)Hexadeca-1(15),12(16)13-triene

From ChemWiki

Introduction

In order to introduce the ONIOM methodology some calculations will be run on BICYCLO(10.2.2)HEXADECA-1(15),12(16),13-TRIENE

Ultimately, we wish to include a CASSCF calculation in the high level of theory in order to optimize the ground state. This can then be used to explore the first excited state of the molecule and find any points of interest on the potential energy surface (PES). In this example AM1 will be used for the low level model.


Advice break
First read the parts Introduction, and First steps with ONIOM


First, draw the molecule as below, then select the high and low layers as was done in the previous tutorial. The high layer should include the benzene ring, and the environment should be in the low layer.

The high layer (ball and stick) and low layer (wireframe) regions of the molecule


The orbitals


Advice break
Before beginning this part make sure that you read the part ONIOM for excited states.


We need initial orbitals for the CASSCF computation. The active orbitals shall be chosen from these molecular orbitals.

Calculation

In order to specify the correct orbitals for the CASSCF active space they must be calculated on the high model separately and then read these back into the ONIOM calculation. This is done using the onlyinputfiles option. It is important to use the nosymm keyword in the route section so that the molecular specification is consistent throughout. The first calculation was carried out on the STO-3G basis set using Hartree-Fock theory and then the size of the basis set was increased to 4-31G.

#p oniom(RHF/STO-3G:am1)=onlyinputfiles pop=full nosymm

Results

The output gives the three parts of the ONIOM calculation as three separate input files. The high model input can then be used to calculate initial orbitals at the STO-3G level.

  #P Test IOp(2/15=1,5/32=2,5/38=1) RHF/STO-3G

 sto3g starting orbital calc of bchdt
 Point  2 -- high level on model system.

     0     1
  H(Iso=12)                                         0.243857585655      1.123532208217      1.625607623259
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          0.365994000000      0.235394000000      0.711838000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)         -0.935727000000      0.660481000000      1.789731000000
  Bq-#1(Iso=12)                                    -0.323129000000      2.285691000000      0.484179000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)         -0.702530000000      3.047859000000      1.132295000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)         -1.048587000000      2.060305000000     -0.269354000000
  Bq-#1(Iso=12)                                     0.983896000000      2.798525000000     -0.203538000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          1.332005000000      2.051805000000     -0.886275000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          0.772907000000      3.702462000000     -0.735781000000
  Bq-#1(Iso=12)                                     2.093084000000      3.060075000000      0.850709000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          2.278899000000      2.141164000000      1.366436000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          1.774786000000      3.806383000000      1.548284000000
  Bq-#1(Iso=12)                                     3.415381000000      3.524574000000      0.158930000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          3.295725000000      4.491963000000     -0.282365000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          3.670954000000      2.817601000000     -0.602497000000
  Bq-#1(Iso=12)                                     4.543434000000      3.528876000000      1.220662000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          5.495493000000      3.727181000000      0.774388000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          4.367924000000      4.260174000000      1.981779000000
  Bq-#1(Iso=12)                                     4.456281000000      2.127451000000      1.796023000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          3.479403000000      2.046995000000      2.225133000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          4.574031000000      1.434144000000      0.989574000000
  Bq-#1(Iso=12)                                     5.463634000000      1.714145000000      2.887830000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          5.108574000000      0.758074000000      3.211499000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          6.456876000000      1.631187000000      2.498615000000
  Bq-#1(Iso=12)                                     5.526159000000      2.646486000000      4.124035000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          5.836259000000      2.016484000000      4.931399000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          6.221698000000      3.449776000000      3.998138000000
  H(Iso=12)                                         3.852485354805      3.091818942897      4.262001608287
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          4.114326000000      3.568051000000      5.434101000000
  Bq-#1(Iso=1.00782504,Spin=1,GFac=2.792846)          4.123134000000      4.212585000000      3.804036000000
  C                                                 3.003688000000      2.488547000000      3.914278000000
  C                                                 2.972790000000      1.096362000000      3.761867000000
  C                                                 1.918003000000      3.272905000000      3.546773000000
  C                                                 1.938222000000      0.548655000000      2.964640000000
  H                                                 3.717611000000      0.472056000000      4.209510000000
  C                                                 0.910010000000      2.742444000000      2.788282000000
  H                                                 1.880394000000      4.301750000000      3.838260000000
  C                                                 0.975169000000      1.418853000000      2.399498000000
  H                                                 1.893799000000     -0.504464000000      2.780608000000
  H                                                 0.086018000000      3.353573000000      2.484210000000


The input file created by the inputfilesonly option, shown above, contains a number of ghost atoms. It is not known the exact purpose of these, however, it appears that they act as 'place-holders' for the other atoms in the system that are outside the specific part of the model being calculated. Indeed, if they are not used then, when the orbitals are fed into the full ONIOM calculation, an error message is obtained:

Unable to project occupied orbitals !

Initial Orbitals

A single point energy calculation can be carried out using the above input file, remembering to use the nosymm keyword. Once the single point energy calculation with the STO-3G basis set has been carried out, these orbitals can be used to calculate a single-point energy with a 4-31G basis set, using the guess=read keyword.

Visualize the orbitals

The correct CASSCF active space must be specified in the relevant checkpoint file prior to the ONIOM calculation. This can be done using the orbitals from the RHF/4-31g single point energy calculation in conjunction with the guess=alter keyword to obtain a CASSCF/6-31g* single point energy calculation.

By visualizing the orbitals in GaussView it can be determined that the relevant molecular orbitals are 17, 20, 21, 22, 23, 30. A new input file can then be constructed to obtain the correct CAS space, so that the correct orbitals have been swapped into it. The correct input file should appear, therefore, as below:

%chk=/work/lmt09/bchdt/cas631gd_full_mo_2
%mem=800mb
#P Test IOp(2/15=1,5/32=2,5/38=1) CAS(6,6)/6-31G(d) guess=(read,alter) geom=check pop=full nosymm

 631gd starting orbital calc of bchdt
 Point  2 -- high level on model system.

     0     1

17 19
24 30

Input and output files

Media:oniom_rhfsto3g_am1_inputfile_nosymm.log
Media:rhfsto3g_full_mo_nosymm.log
Media:rhf431g_full_mo_2.log
Media:cas631gd_full_mo_2.log

Oniom Ground State Optimization

Calculation

The correctly ordered active space is now held in the checkpoint file of the CASSCF(6,6)/6-31G* single point energy calculation. This must now be read in using the guess=input keyword. The checkpoint file must be specified below the molecule coordinate data so that it is in the following order:

Low Real
High Model
Low Model

The low model and low real systems have not been calculated in this example and so generate must be put so that these are calculated during the oniom calculation

#p oniom(CAS(6,6)/6-31G(d):am1) guess=input nosymm pop=full opt

   ''Molecular Specification''

generate

/work/lmt09/bchdt/cas631gd_full_mo_2.chk

generate

NOTE: Gaussian versions previous to GDV H08 require the orbital files to be entered on consecutive lines so if you receive an error message relating to blank lines or otherwise this may be due to how these are entered in the input file. Further information can be found at the bottom of the ONIOM user reference.

Results

The output should indicate that the high model initial orbitals have optimized within a few iterations, indicating that these have been read in correctly from the checkpoint file. The calculation should converge in 41 steps giving the following energies:

 ONIOM: calculating energy.
 ONIOM: gridpoint  1 method:  low   system:  model energy:     0.039218019520
 ONIOM: gridpoint  2 method:  high  system:  model energy:  -230.774789631291
 ONIOM: gridpoint  3 method:  low   system:  real  energy:    -0.049880009326
 ONIOM: extrapolated energy =    -230.863887660137

Input and output files

Media:oniom_cas631gd_am1_opt_2.gjf
Media:oniom_cas631gd_am1_opt_2.log

Calculate the S1 Franck-Condon vertical excitation energy

Calculation

The vertical excitation energies can be calculated from this optimised geometry. The force keyword can be used to provide information about the gradient of the potential energy surface at this geometry.


Keyword break
You must include nroot=x in the CAS keyword ==> Calculations on excited states of molecular systems may be requested using the NRoot option. (Note that a value of 1 specifies the ground state, not the first excited state)


 #p oniom(CAS(6,6,nroot=2)/6-31G(d):am1) guess=read geom=check force nosymm pop=full

Results


Advice break
When calculating an energy difference between two states it is important to use the same basis set that was used to print the orbitals for the optimized ground state of the molecule.


You should get this energy in the output file. Ensure that the orbitals have converged within a few iterations so that we know they have been read in correctly.

ONIOM: calculating energy.
ONIOM: gridpoint  1 method:  low   system:  model energy:     0.039218019520
ONIOM: gridpoint  2 method:  high  system:  model energy:  -230.593515342634
ONIOM: gridpoint  3 method:  low   system:  real  energy:    -0.049880009324
ONIOM: extrapolated energy =    -230.682613371479

The difference between the energy of the excited state and the ground state is:
ΔE = ES1FC - ES0min = (-230.68261) - (-230.86389) = 0.18127 Har = 113.75 Kcal mol-1

Input and output files

Media:oniom_nroot2_cas631gd_am1_fc_dir.gjf
Media:oniom_nroot2_cas631gd_am1_fc_dir.log

Optimize the S1 minimum

Calculation

We will optimize the minimum on the S1 to be able to give the energy difference between the S1 minimum and the conical intersection.

#p oniom(casscf(6,6,nroot=2)/6-31g(d):am1) geom=check Guess=read nosymm pop=full opt

Results

The geometry optimizes in 11 steps with this geometry :

                          Input orientation:                          
 ---------------------------------------------------------------------
 Center     Atomic      Atomic             Coordinates (Angstroms)
 Number     Number       Type             X           Y           Z
 ---------------------------------------------------------------------
      1          6           0       -0.397359    1.509315    1.703924
      2          1           0       -0.432226    0.447000    1.337085
      3          1           0       -1.392518    1.722582    2.184654
      4          6           0       -0.239846    2.435995    0.506433
      5          1           0       -0.330737    3.499987    0.851183
      6          1           0       -1.096600    2.238934   -0.191836
      7          6           0        1.065374    2.251667   -0.246153
      8          1           0        1.445215    1.207509   -0.088833
      9          1           0        0.882412    2.374662   -1.346028
     10          6           0        2.117507    3.248383    0.196432
     11          1           0        2.175856    3.234268    1.319725
     12          1           0        1.801000    4.282972   -0.100125
     13          6           0        3.486247    2.954955   -0.385458
     14          1           0        3.574340    3.439175   -1.393106
     15          1           0        3.612447    1.850879   -0.539702
     16          6           0        4.595463    3.464365    0.517914
     17          1           0        5.532928    3.598957   -0.082608
     18          1           0        4.313296    4.474335    0.916714
     19          6           0        4.863430    2.506758    1.662173
     20          1           0        3.909598    1.980824    1.943231
     21          1           0        5.583962    1.715919    1.324675
     22          6           0        5.414016    3.200554    2.891729
     23          1           0        6.442359    3.587508    2.665657
     24          1           0        4.774424    4.087958    3.142193
     25          6           0        5.477464    2.266800    4.086731
     26          1           0        5.573918    1.206157    3.733289
     27          1           0        6.396688    2.501584    4.687019
     28          6           0        4.277815    2.374278    5.017766
     29          1           0        4.425555    1.649431    5.866112
     30          1           0        4.259951    3.404760    5.467312
     31          6           0        2.999475    2.093391    4.351312
     32          6           0        2.741107    0.794121    3.782971
     33          6           0        2.012118    3.132321    4.201999
     34          6           0        1.592039    0.584429    2.953048
     35          1           0        3.447729   -0.001227    3.927629
     36          6           0        0.849471    2.914428    3.393373
     37          1           0        2.168143    4.089945    4.662020
     38          6           0        0.670414    1.663055    2.700639
     39          1           0        1.442771   -0.369114    2.482431
     40          1           0        0.142500    3.709566    3.249263


hexadiene_anti

And this energy :

 ONIOM: calculating energy.
 ONIOM: gridpoint  1 method:  low   system:  model energy:     0.054177360561
 ONIOM: gridpoint  2 method:  high  system:  model energy:  -230.599106815981
 ONIOM: gridpoint  3 method:  low   system:  real  energy:    -0.037302631996
 ONIOM: extrapolated energy =    -230.690586808537

Input and output files

Media:oniom_nroot2_cas631gd_am1_opt_dir.gjf
Media:oniom_nroot2_cas631gd_am1_opt_dir.log

Find the S1/S0 conical intersections


Advice break
Before beginning this part make sure that you read the part ONIOM for crossings.


In order to find the conical intersection we will start from the Franck-Condon geometry. As was done in the CASSCF tutorial, the planar structure of the benzene ring must be broken by moving one of the carbon atoms out of the plane. The molecule has C2 symmetry so there are three possible carbon atoms to move out the plane. This suggests that there may be multiple different S1/S0 crossings that can be located by the conical intersection optimization.

Calculation

In order to locate a conical intersection the Opt=conical option must be specified.

#p oniom(CAS(6,6,nroot=2)/6-31g(d):am1) guess=read nosymm pop=full opt=conical



In the versions of Gaussian prior to GDVH08 (G09A.02 and GDVH01) there is a bug which results in the low level parts of the molecule not being included in the gradient calculation. Until this is resolved the route must be modified. This can be done by using the testrt command and then inputting the above route when requested. The non-standard route must then be copied and pasted into the input file and appended with the bold type as below:

# nonstd
1/9=11,11=1,14=-1,18=20,19=9,26=1,38=1,52=2/1,3;
2/9=110,12=2,15=1,17=6,18=5,40=1/2;
1/9=11,11=1,14=-1,18=20,19=9,38=1,52=2,53=3172/20;
3/5=2,16=1,25=1,41=700000,71=1,116=-2/1,2,3;
4/5=1,17=6,18=6,35=1/1;
5/5=2,17=30000000,35=1,38=6/2;
6/7=3,28=1/1;
7/7=1,30=1,33=-1/1,2,3,16;  <==========================
1/9=11,11=1,14=-1,18=20,19=9,52=2,53=2032/20;
3/5=1,6=6,7=1,16=1,25=1,32=1,71=1,116=101/1,2,3;
4/5=1,17=6,18=6/1,5;
5/5=2,17=31000200,28=2,38=6/10;
8/6=4,10=90,11=11/1;
11/31=1,42=1,45=1/1;
10/10=900005,28=2,31=1/3;
6/7=3/1;
7/7=1,30=1,33=-1/16;
1/9=11,11=1,14=-1,18=20,19=9,52=2,53=1022/20;
3/5=2,16=1,25=1,41=700000,71=1,116=-2/1,2,3;
4/5=1,17=6,18=6,35=1/1;
5/5=2,17=30000000,35=1,38=6/2;
6/7=3,28=1/1;
7/7=1,30=1,33=-1/1,2,3,16;  <===========================
1/9=11,11=1,14=-1,18=20,19=9,52=2,53=3015/20;
7/9=1,44=-1/16;
1/9=11,11=1,14=-1,18=20,19=9,52=2/3(2);
2/9=110,15=1/2;
99//99;
2/9=110,15=1/2;
1/9=11,11=1,14=-1,18=20,19=9,52=2,53=3173/20;
3/5=2,16=1,25=1,41=700000,71=1,135=20/1,2,3;
4/5=5,16=3,17=6,18=6,35=1/1;
5/5=2,17=30000000,35=1,38=5/2;
7/7=1,30=1,33=-1/1,2,3,16;  <===========================
1/9=11,11=1,14=-1,18=20,19=9,52=2,53=2033/20;
3/5=1,6=6,7=1,16=1,25=1,32=1,71=1,116=101/1,2,3;
4/5=5,16=3,17=6,18=6/1,5;
5/5=2,17=31000200,23=1,28=2,38=5/10;
8/6=4,10=90,11=11/1;
11/31=1,42=1,45=1/1;
10/10=900005,28=2,31=1/3;
7/7=1,30=1,33=-1/16;
1/9=11,11=1,14=-1,18=20,19=9,52=2,53=1023/20;
3/5=2,16=1,25=1,41=700000,71=1,135=20/1,2,3;
4/5=5,16=3,17=6,18=6,35=1/1;
5/5=2,17=30000000,35=1,38=5/2;
7/7=1,30=1,33=-1/1,2,3,16;  <===========================
1/9=11,11=1,14=-1,18=20,19=9,52=2,53=3015/20;
7/9=1,44=-1/16;
1/9=11,11=1,14=-1,18=20,19=9,52=2/3(-21);
2/9=110,15=1/2;
99//99;

Results

Three different conical intersection (CI) geometries can be found to exist by comparison of the extrapolated energies for the completed CI optimization. An image of each CI geometry and its energy is given below:
CIUP1: Optimized in 23 steps

hexadiene_anti


and with the following energy:

 ONIOM: calculating energy.
 ONIOM: gridpoint  1 method:  low   system:  model energy:     0.211163466995
 ONIOM: gridpoint  2 method:  high  system:  model energy:  -230.569085296465
 ONIOM: gridpoint  3 method:  low   system:  real  energy:     0.112316208274
 ONIOM: extrapolated energy =    -230.667932555186


ΔE = ECIUP1 - ES1min = (-230.56909) - (-230.69059) = 0.02265 Har = 14.22 Kcal mol-1


CIUP3: Optimized in 54 steps

hexadiene_anti


and with the following energy:

 ONIOM: calculating energy.
 ONIOM: gridpoint  1 method:  low   system:  model energy:     0.222741936300
 ONIOM: gridpoint  2 method:  high  system:  model energy:  -230.562330862710
 ONIOM: gridpoint  3 method:  low   system:  real  energy:     0.144329339459
 ONIOM: extrapolated energy =    -230.640743459551


ΔE = ECIUP3 - ES1min = (-230.64074) - (-230.69059) = 0.04985 Har = 31.28 Kcal mol-1


CIDOWN3: Optimized in 28 steps

hexadiene_anti


and with the following energy:

 ONIOM: calculating energy.
 ONIOM: gridpoint  1 method:  low   system:  model energy:     0.216660845836
 ONIOM: gridpoint  2 method:  high  system:  model energy:  -230.569464938114
 ONIOM: gridpoint  3 method:  low   system:  real  energy:     0.122156322610
 ONIOM: extrapolated energy =    -230.663969461340


ΔE = ECIDOWN3 - ES1min = (-230.66397) - (-230.69059) = 0.02662 Har = 16.70 Kcal mol-1


CIDOWN1: Optimized in 32 steps

hexadiene_anti


and with the following energy:

 ONIOM: calculating energy.
 ONIOM: gridpoint  1 method:  low   system:  model energy:     0.227957830383
 ONIOM: gridpoint  2 method:  high  system:  model energy:  -230.560046131581
 ONIOM: gridpoint  3 method:  low   system:  real  energy:     0.147593210079
 ONIOM: extrapolated energy =    -230.640410751885


ΔE = ECIDOWN1 - ES1min = (-230.64041) - (-230.69059) = 0.05018 Har = 31.49 Kcal mol-1


CIDOWN2: Optimized in 32 steps

hexadiene_anti


and with the following energy:

 ONIOM: calculating energy.
 ONIOM: gridpoint  1 method:  low   system:  model energy:     0.216199244003
 ONIOM: gridpoint  2 method:  high  system:  model energy:  -230.569023708297
 ONIOM: gridpoint  3 method:  low   system:  real  energy:     0.123880540105
 ONIOM: extrapolated energy =    -230.661342412195


ΔE = ECIDOWN2 - ES1min = (-230.66134) - (-230.69059) = 0.02925 Har = 18.35 Kcal mol-1

Input and output files

Media:oniom_nroot2_cas631gd_am1_con_dira.gjf
Media:oniom_nroot2_cas631gd_am1_con_dir.log
Media:oniom_nroot2_cas631gd_am1_con_alt1.log
Media:oniom_nroot2_cas631gd_am1_con_alt2.log
Media:oniom_nroot2_cas631gd_am1_con_alt3.log

Comparison of ONIOM with Alternative Methods

In order to demonstrate the extent to which ONIOM agrees with alternative methods, the ΔE values, chromophore geometry and frequencies have been compared to benzene in isolation and the whole molecule calculated at the CAS(6,6)/6-31G* level.

ΔE Values


ΔE / Kcal mol-1 ONIOM benzene full molecule
ES1FC - ES0min 113.75 113.27 112.83
EFCS1 - ES1min 5.00 3.02 4.98
ECIUP1 - ES1min 14.22 19.09 15.40
ECIUP2 - ES1min N/A N/A 37.32
ECIUP3 - ES1min 31.28 N/A N/A
ECIDOWN1 - ES1min 31.49 N/A 37.92
ECIDOWN2 - ES1min 18.35 N/A 17.56
ECIDOWN3 - ES1min 16.70 N/A N/A


The effect of the aliphatic chain can be determined by the above figures to increase the energy difference between the S1 minimum and the conical intersection. This is because as the chromophore bends upwards, the interactions between it and the aliphatic chain increase. This also explains the greater difference between CIUP1 and CIUP2/ CIUP3, as the chromophore is bent into closer proximity in the later two CIs.

Chromophore Geometry


atom labels of chromophore

ONIOM CIUP1

Atom 1 2 3 4 5
1 -X-
2 1.4542 -X-
3 2.5364 1.4662 -X-
4 2.9474 2.4209 1.3948 -X-
5 2.5362 2.5773 2.3257 1.3947 -X-
6 1.4540 1.9316 2.5773 2.4211 1.4664


benzene

Atom 1 2 3 4 5
1 -X-
2 1.4543 -X-
3 2.5368 1.4664 -X-
4 2.9480 2.4212 1.3949 -X-
5 2.5368 2.5776 2.3260 1.3949 -X-
6 1.4543 1.9322 2.5777 2.4213 1.4664


Full molecule

Atom 1 2 3 4 5
1 -X-
2 1.4762 -X-
3 2.5465 1.4788 -X-
4 2.9640 2.4502 1.4131 -X-
5 2.5474 2.5949 2.3439 1.4112 -X-
6 1.4784 1.9397 2.5936 2.4473 1.4766


Frequencies


These are analysed here

IOP keyword

There are many IOp keywords, and here we can use IOp(1/33=1). This keyword indicates that we want to get back the geometry of the target molecule in this ONIOM calculation, and so not only get back the geometry of the real molecule.

 #p oniom(casscf(6,6)/6-31g(d):am1) Guess=read nosymm IOp(1/33=1)

So, thanks to this keyword, the geometry of the target molecule is the following :

 ONIOM: restoring gridpoint  1 on chk file.
 ONIOM: generating point  1 -- low level on model system.
                            At end of L120:                            
 ---------------------------------------------------------------------
 Center     Atomic      Atomic             Coordinates (Angstroms)
 Number     Number       Type             X           Y           Z
 ---------------------------------------------------------------------
      1          1           0        2.638717    4.881571    1.665528
      2          1          -1        2.020669    3.806841    2.119983
      3          1          -1        1.564638    5.088371    0.929869
      4          6          -1        3.314030    3.943445    0.389290
      5          1          -1        3.584379    4.705053   -0.389281
      6          1          -1        2.699570    3.153485   -0.119072
      7          6          -1        4.577518    3.310210    0.944654
      8          1          -1        4.425122    3.058103    2.027696
      9          1          -1        4.780995    2.347863    0.405654
     10          6          -1        5.778946    4.223227    0.800534
     11          1          -1        5.512725    5.234946    1.213375
     12          1          -1        6.011110    4.366215   -0.287617
     13          6          -1        7.009661    3.696294    1.512628
     14          1          -1        7.588584    3.035757    0.815342
     15          1          -1        6.709064    3.063651    2.388981
     16          6          -1        7.903617    4.826480    1.993550
     17          1          -1        8.948652    4.442296    2.127550
     18          1          -1        7.946627    5.624976    1.206684
     19          6          -1        7.409836    5.408652    3.303756
     20          1          -1        6.293275    5.290111    3.368030
     21          1          -1        7.848762    4.828586    4.157713
     22          6          -1        7.750705    6.877079    3.462777
     23          1          -1        8.863562    6.988595    3.547120
     24          1          -1        7.429483    7.438715    2.545653
     25          6          -1        7.087576    7.483957    4.686597
     26          1          -1        6.880832    6.679877    5.441567
     27          1          -1        7.794562    8.213303    5.164295
     28          1           0        5.642638    7.961321    4.163574
     29          1          -1        5.361452    8.598202    5.364997
     30          1          -1        6.037749    9.149773    3.782291
     31          6           0        5.232283    7.237539    3.559949
     32          6           0        4.265206    6.282722    4.297471
     33          6           0        4.457125    7.660606    2.321484
     34          6           0        3.439064    5.381387    3.596924
     35          1           0        4.501131    6.078114    5.327092
     36          6           0        3.650875    6.777430    1.632915
     37          1           0        4.862797    8.527096    1.829134
     38          6           0        3.163893    5.610494    2.240833
     39          1           0        3.055582    4.500581    4.081594
     40          1           0        3.429852    6.972394    0.598125

The indication -1 corresponds to a frozen atom, i.e. an atom which is not include in the model.



Break advice
If you want to make some calculation just on the model part you can take back the geometry of this part with this keyword, but you can not just copy and paste the geometry because gaussian do not understand the code 0 or -1. So you have to copy the geometry, but after that to erase the line where the atom is marked as -1 and so change the nature of the atom which is in the border of the real/model molecule.



Step to calculations with a smaller ring

Back to ONIOM for excited states

Back to ONIOM for crossings

Back to ONIOM