Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 7980. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 05-Dec-2013 ****************************************** %chk=\\ic.ac.uk\homes\as11511\Desktop\Diels Alder part\wizard.chk Default route: MaxDisk=10GB ----------------------------------------------- # opt=(calcfc,ts,noeigen) am1 geom=connectivity ----------------------------------------------- 1/5=1,10=4,11=1,14=-1,18=20,26=1,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=2,16=1,25=1,41=700000,71=2,140=1/1,2,3; 4/35=1/1; 5/5=2,35=1,38=5/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1,13=1/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7/10=1,18=20,25=1/1,2,3,16; 1/5=1,10=4,11=1,14=-1,18=20,26=1/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=2,16=1,25=1,41=700000,71=1,135=20/1,2,3; 4/5=5,16=3,35=1/1; 5/5=2,35=1,38=5/2; 7//1,2,3,16; 1/5=1,11=1,14=-1,18=20,26=1/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C -1.255 0.69886 -0.28664 C -1.25516 -0.69861 -0.28665 C 1.45595 -0.6916 -0.25208 C 1.45605 0.69132 -0.25206 H -1.84321 -1.22249 -1.05723 H -1.84293 1.22286 -1.05724 H 2.00064 -1.24167 0.52972 H 1.30061 -1.24153 -1.19157 H 2.00094 1.24122 0.52972 H 1.30086 1.24125 -1.19159 C -0.38389 -1.41425 0.51228 H -0.08949 -1.04733 1.50746 H -0.27251 -2.49821 0.37025 C -0.38356 1.41431 0.51228 H -0.27197 2.49825 0.37024 H -0.08924 1.0474 1.50748 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3975 calculate D2E/DX2 analytically ! ! R2 R(1,6) 1.1018 calculate D2E/DX2 analytically ! ! R3 R(1,14) 1.3819 calculate D2E/DX2 analytically ! ! R4 R(2,5) 1.1018 calculate D2E/DX2 analytically ! ! R5 R(2,11) 1.3819 calculate D2E/DX2 analytically ! ! R6 R(3,4) 1.3829 calculate D2E/DX2 analytically ! ! R7 R(3,7) 1.1002 calculate D2E/DX2 analytically ! ! R8 R(3,8) 1.0996 calculate D2E/DX2 analytically ! ! R9 R(3,11) 2.1193 calculate D2E/DX2 analytically ! ! R10 R(4,9) 1.1002 calculate D2E/DX2 analytically ! ! R11 R(4,10) 1.0996 calculate D2E/DX2 analytically ! ! R12 R(4,14) 2.1192 calculate D2E/DX2 analytically ! ! R13 R(11,12) 1.1008 calculate D2E/DX2 analytically ! ! R14 R(11,13) 1.0989 calculate D2E/DX2 analytically ! ! R15 R(14,15) 1.0989 calculate D2E/DX2 analytically ! ! R16 R(14,16) 1.1008 calculate D2E/DX2 analytically ! ! A1 A(2,1,6) 118.3921 calculate D2E/DX2 analytically ! ! A2 A(2,1,14) 121.1859 calculate D2E/DX2 analytically ! ! A3 A(6,1,14) 119.6442 calculate D2E/DX2 analytically ! ! A4 A(1,2,5) 118.3932 calculate D2E/DX2 analytically ! ! A5 A(1,2,11) 121.1854 calculate D2E/DX2 analytically ! ! A6 A(5,2,11) 119.6439 calculate D2E/DX2 analytically ! ! A7 A(4,3,7) 119.9947 calculate D2E/DX2 analytically ! ! A8 A(4,3,8) 120.0081 calculate D2E/DX2 analytically ! ! A9 A(4,3,11) 109.9401 calculate D2E/DX2 analytically ! ! A10 A(7,3,8) 115.278 calculate D2E/DX2 analytically ! ! A11 A(7,3,11) 90.1734 calculate D2E/DX2 analytically ! ! A12 A(8,3,11) 90.8578 calculate D2E/DX2 analytically ! ! A13 A(3,4,9) 119.99 calculate D2E/DX2 analytically ! ! A14 A(3,4,10) 120.0056 calculate D2E/DX2 analytically ! ! A15 A(3,4,14) 109.9441 calculate D2E/DX2 analytically ! ! A16 A(9,4,10) 115.2801 calculate D2E/DX2 analytically ! ! A17 A(9,4,14) 90.1786 calculate D2E/DX2 analytically ! ! A18 A(10,4,14) 90.8614 calculate D2E/DX2 analytically ! ! A19 A(2,11,3) 99.3376 calculate D2E/DX2 analytically ! ! A20 A(2,11,12) 121.2452 calculate D2E/DX2 analytically ! ! A21 A(2,11,13) 120.002 calculate D2E/DX2 analytically ! ! A22 A(3,11,12) 88.8666 calculate D2E/DX2 analytically ! ! A23 A(3,11,13) 101.6391 calculate D2E/DX2 analytically ! ! A24 A(12,11,13) 114.7429 calculate D2E/DX2 analytically ! ! A25 A(1,14,4) 99.3385 calculate D2E/DX2 analytically ! ! A26 A(1,14,15) 120.0005 calculate D2E/DX2 analytically ! ! A27 A(1,14,16) 121.2482 calculate D2E/DX2 analytically ! ! A28 A(4,14,15) 101.6392 calculate D2E/DX2 analytically ! ! A29 A(4,14,16) 88.8693 calculate D2E/DX2 analytically ! ! A30 A(15,14,16) 114.7399 calculate D2E/DX2 analytically ! ! D1 D(6,1,2,5) -0.0005 calculate D2E/DX2 analytically ! ! D2 D(6,1,2,11) 169.8622 calculate D2E/DX2 analytically ! ! D3 D(14,1,2,5) -169.8619 calculate D2E/DX2 analytically ! ! D4 D(14,1,2,11) 0.0008 calculate D2E/DX2 analytically ! ! D5 D(2,1,14,4) 59.7639 calculate D2E/DX2 analytically ! ! D6 D(2,1,14,15) 169.0954 calculate D2E/DX2 analytically ! ! D7 D(2,1,14,16) -34.6172 calculate D2E/DX2 analytically ! ! D8 D(6,1,14,4) -109.9725 calculate D2E/DX2 analytically ! ! D9 D(6,1,14,15) -0.641 calculate D2E/DX2 analytically ! ! D10 D(6,1,14,16) 155.6464 calculate D2E/DX2 analytically ! ! D11 D(1,2,11,3) -59.7635 calculate D2E/DX2 analytically ! ! D12 D(1,2,11,12) 34.6133 calculate D2E/DX2 analytically ! ! D13 D(1,2,11,13) -169.0948 calculate D2E/DX2 analytically ! ! D14 D(5,2,11,3) 109.9744 calculate D2E/DX2 analytically ! ! D15 D(5,2,11,12) -155.6489 calculate D2E/DX2 analytically ! ! D16 D(5,2,11,13) 0.643 calculate D2E/DX2 analytically ! ! D17 D(7,3,4,9) 0.0074 calculate D2E/DX2 analytically ! ! D18 D(7,3,4,10) 154.5146 calculate D2E/DX2 analytically ! ! D19 D(7,3,4,14) -102.3052 calculate D2E/DX2 analytically ! ! D20 D(8,3,4,9) -154.5126 calculate D2E/DX2 analytically ! ! D21 D(8,3,4,10) -0.0054 calculate D2E/DX2 analytically ! ! D22 D(8,3,4,14) 103.1748 calculate D2E/DX2 analytically ! ! D23 D(11,3,4,9) 102.3131 calculate D2E/DX2 analytically ! ! D24 D(11,3,4,10) -103.1797 calculate D2E/DX2 analytically ! ! D25 D(11,3,4,14) 0.0005 calculate D2E/DX2 analytically ! ! D26 D(4,3,11,2) 51.8365 calculate D2E/DX2 analytically ! ! D27 D(4,3,11,12) -69.6647 calculate D2E/DX2 analytically ! ! D28 D(4,3,11,13) 175.2896 calculate D2E/DX2 analytically ! ! D29 D(7,3,11,2) 174.0383 calculate D2E/DX2 analytically ! ! D30 D(7,3,11,12) 52.5371 calculate D2E/DX2 analytically ! ! D31 D(7,3,11,13) -62.5087 calculate D2E/DX2 analytically ! ! D32 D(8,3,11,2) -70.6777 calculate D2E/DX2 analytically ! ! D33 D(8,3,11,12) 167.8211 calculate D2E/DX2 analytically ! ! D34 D(8,3,11,13) 52.7753 calculate D2E/DX2 analytically ! ! D35 D(3,4,14,1) -51.8372 calculate D2E/DX2 analytically ! ! D36 D(3,4,14,15) -175.289 calculate D2E/DX2 analytically ! ! D37 D(3,4,14,16) 69.6677 calculate D2E/DX2 analytically ! ! D38 D(9,4,14,1) -174.0369 calculate D2E/DX2 analytically ! ! D39 D(9,4,14,15) 62.5113 calculate D2E/DX2 analytically ! ! D40 D(9,4,14,16) -52.5321 calculate D2E/DX2 analytically ! ! D41 D(10,4,14,1) 70.6768 calculate D2E/DX2 analytically ! ! D42 D(10,4,14,15) -52.775 calculate D2E/DX2 analytically ! ! D43 D(10,4,14,16) -167.8183 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 99 maximum allowed number of steps= 100. Search for a saddle point of order 1. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.255000 0.698864 -0.286642 2 6 0 -1.255160 -0.698607 -0.286647 3 6 0 1.455953 -0.691600 -0.252080 4 6 0 1.456048 0.691319 -0.252064 5 1 0 -1.843211 -1.222486 -1.057234 6 1 0 -1.842932 1.222865 -1.057240 7 1 0 2.000641 -1.241666 0.529723 8 1 0 1.300606 -1.241534 -1.191573 9 1 0 2.000940 1.241215 0.529721 10 1 0 1.300861 1.241254 -1.191586 11 6 0 -0.383893 -1.414248 0.512282 12 1 0 -0.089486 -1.047325 1.507461 13 1 0 -0.272515 -2.498211 0.370255 14 6 0 -0.383563 1.414312 0.512277 15 1 0 -0.271972 2.498252 0.370235 16 1 0 -0.089240 1.047402 1.507485 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.397471 0.000000 3 C 3.046941 2.711342 0.000000 4 C 2.711279 3.046923 1.382919 0.000000 5 H 2.152066 1.101843 3.437236 3.898212 0.000000 6 H 1.101845 2.152056 3.898217 3.437167 2.445351 7 H 3.877023 3.400237 1.100216 2.155042 4.158605 8 H 3.333941 2.765068 1.099639 2.154706 3.146743 9 H 3.400256 3.877055 2.154994 1.100219 4.833813 10 H 2.765056 3.333950 2.154681 1.099642 3.996655 11 C 2.421229 1.381859 2.119317 2.898797 2.151688 12 H 2.761595 2.167769 2.368735 2.916760 3.111896 13 H 3.408530 2.153064 2.576576 3.680803 2.476345 14 C 1.381861 2.421237 2.898780 2.119222 3.398035 15 H 2.153051 3.408528 3.680782 2.576493 4.283731 16 H 2.167802 2.761671 2.916816 2.368696 3.847933 6 7 8 9 10 6 H 0.000000 7 H 4.833779 0.000000 8 H 3.996640 1.858201 0.000000 9 H 4.158622 2.482881 3.101187 0.000000 10 H 3.146716 3.101208 2.482788 1.858228 0.000000 11 C 3.398022 2.390835 2.402184 3.569204 3.576766 12 H 3.847860 2.315679 3.042180 3.250119 3.802041 13 H 4.283731 2.602224 2.548186 4.379193 4.347236 14 C 2.151696 3.569167 3.576736 2.390841 2.402162 15 H 2.476331 4.379177 4.347211 2.602250 2.548162 16 H 3.111918 3.250147 3.802080 2.315694 3.042194 11 12 13 14 15 11 C 0.000000 12 H 1.100768 0.000000 13 H 1.098887 1.852513 0.000000 14 C 2.828560 2.671429 3.916674 0.000000 15 H 3.916677 3.727962 4.996463 1.098888 0.000000 16 H 2.671511 2.094728 3.728036 1.100766 1.852483 16 16 H 0.000000 Stoichiometry C6H10 Framework group C1[X(C6H10)] Deg. of freedom 42 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.255000 0.698864 -0.286642 2 6 0 -1.255160 -0.698607 -0.286647 3 6 0 1.455953 -0.691600 -0.252080 4 6 0 1.456048 0.691319 -0.252064 5 1 0 -1.843211 -1.222486 -1.057234 6 1 0 -1.842932 1.222865 -1.057240 7 1 0 2.000641 -1.241666 0.529723 8 1 0 1.300606 -1.241534 -1.191573 9 1 0 2.000940 1.241215 0.529721 10 1 0 1.300861 1.241254 -1.191586 11 6 0 -0.383893 -1.414248 0.512282 12 1 0 -0.089486 -1.047325 1.507461 13 1 0 -0.272515 -2.498211 0.370255 14 6 0 -0.383563 1.414312 0.512277 15 1 0 -0.271972 2.498252 0.370235 16 1 0 -0.089240 1.047402 1.507485 --------------------------------------------------------------------- Rotational constants (GHZ): 4.3763437 3.8583476 2.4541132 Standard basis: VSTO-6G (5D, 7F) There are 34 symmetry adapted cartesian basis functions of A symmetry. There are 34 symmetry adapted basis functions of A symmetry. 34 basis functions, 204 primitive gaussians, 34 cartesian basis functions 17 alpha electrons 17 beta electrons nuclear repulsion energy 142.1993266583 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 34 RedAO= F EigKep= 0.00D+00 NBF= 34 NBsUse= 34 1.00D-04 EigRej= 0.00D+00 NBFU= 34 Simple Huckel Guess. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=895124. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RAM1) = 0.111654646918 A.U. after 14 cycles NFock= 13 Conv=0.50D-08 -V/T= 1.0052 Range of M.O.s used for correlation: 1 34 NBasis= 34 NAE= 17 NBE= 17 NFC= 0 NFV= 0 NROrb= 34 NOA= 17 NOB= 17 NVA= 17 NVB= 17 Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 17 centers at a time, making 1 passes. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. End of G2Drv F.D. properties file 721 does not exist. End of G2Drv F.D. properties file 722 does not exist. End of G2Drv F.D. properties file 788 does not exist. IDoAtm=1111111111111111 Differentiating once with respect to nuclear coordinates. Electric field/nuclear overlap derivatives assumed to be zero. Keep J ints in memory in canonical form, NReq=878686. There are 51 degrees of freedom in the 1st order CPHF. IDoFFX=5 NUNeed= 51. LinEq1: Iter= 0 NonCon= 48 RMS=1.70D-02 Max=1.21D-01 NDo= 48 AX will form 51 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 48 RMS=3.43D-03 Max=4.00D-02 NDo= 51 LinEq1: Iter= 2 NonCon= 48 RMS=7.02D-04 Max=7.13D-03 NDo= 51 LinEq1: Iter= 3 NonCon= 48 RMS=1.34D-04 Max=1.14D-03 NDo= 51 LinEq1: Iter= 4 NonCon= 48 RMS=2.36D-05 Max=1.77D-04 NDo= 51 LinEq1: Iter= 5 NonCon= 48 RMS=3.05D-06 Max=2.72D-05 NDo= 51 LinEq1: Iter= 6 NonCon= 48 RMS=6.20D-07 Max=5.55D-06 NDo= 51 LinEq1: Iter= 7 NonCon= 48 RMS=1.04D-07 Max=1.29D-06 NDo= 51 LinEq1: Iter= 8 NonCon= 12 RMS=1.86D-08 Max=1.66D-07 NDo= 51 LinEq1: Iter= 9 NonCon= 0 RMS=2.34D-09 Max=1.24D-08 NDo= 51 Linear equations converged to 1.000D-08 1.000D-07 after 9 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -1.36475 -1.17080 -1.10552 -0.89140 -0.80926 Alpha occ. eigenvalues -- -0.68409 -0.61838 -0.58400 -0.53128 -0.51040 Alpha occ. eigenvalues -- -0.49731 -0.46891 -0.45567 -0.43861 -0.42476 Alpha occ. eigenvalues -- -0.32499 -0.32394 Alpha virt. eigenvalues -- 0.02315 0.03378 0.10687 0.15321 0.15512 Alpha virt. eigenvalues -- 0.16103 0.16360 0.16855 0.16979 0.18787 Alpha virt. eigenvalues -- 0.18946 0.19150 0.20523 0.20547 0.20736 Alpha virt. eigenvalues -- 0.21908 0.22257 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.165123 0.000000 0.000000 0.000000 0.000000 0.000000 2 C 0.000000 4.165114 0.000000 0.000000 0.000000 0.000000 3 C 0.000000 0.000000 4.212149 0.000000 0.000000 0.000000 4 C 0.000000 0.000000 0.000000 4.212136 0.000000 0.000000 5 H 0.000000 0.000000 0.000000 0.000000 0.878542 0.000000 6 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.878541 7 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 8 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 9 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 11 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 12 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 13 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 14 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 15 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 16 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 7 8 9 10 11 12 1 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 7 H 0.895375 0.000000 0.000000 0.000000 0.000000 0.000000 8 H 0.000000 0.891998 0.000000 0.000000 0.000000 0.000000 9 H 0.000000 0.000000 0.895377 0.000000 0.000000 0.000000 10 H 0.000000 0.000000 0.000000 0.891998 0.000000 0.000000 11 C 0.000000 0.000000 0.000000 0.000000 4.169147 0.000000 12 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.890074 13 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 14 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 15 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 16 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 13 14 15 16 1 C 0.000000 0.000000 0.000000 0.000000 2 C 0.000000 0.000000 0.000000 0.000000 3 C 0.000000 0.000000 0.000000 0.000000 4 C 0.000000 0.000000 0.000000 0.000000 5 H 0.000000 0.000000 0.000000 0.000000 6 H 0.000000 0.000000 0.000000 0.000000 7 H 0.000000 0.000000 0.000000 0.000000 8 H 0.000000 0.000000 0.000000 0.000000 9 H 0.000000 0.000000 0.000000 0.000000 10 H 0.000000 0.000000 0.000000 0.000000 11 C 0.000000 0.000000 0.000000 0.000000 12 H 0.000000 0.000000 0.000000 0.000000 13 H 0.897610 0.000000 0.000000 0.000000 14 C 0.000000 4.169125 0.000000 0.000000 15 H 0.000000 0.000000 0.897617 0.000000 16 H 0.000000 0.000000 0.000000 0.890075 Mulliken charges: 1 1 C -0.165123 2 C -0.165114 3 C -0.212149 4 C -0.212136 5 H 0.121458 6 H 0.121459 7 H 0.104625 8 H 0.108002 9 H 0.104623 10 H 0.108002 11 C -0.169147 12 H 0.109926 13 H 0.102390 14 C -0.169125 15 H 0.102383 16 H 0.109925 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.043664 2 C -0.043655 3 C 0.000478 4 C 0.000489 11 C 0.043169 14 C 0.043184 APT charges: 1 1 C -0.165123 2 C -0.165114 3 C -0.212149 4 C -0.212136 5 H 0.121458 6 H 0.121459 7 H 0.104625 8 H 0.108002 9 H 0.104623 10 H 0.108002 11 C -0.169147 12 H 0.109926 13 H 0.102390 14 C -0.169125 15 H 0.102383 16 H 0.109925 Sum of APT charges = 0.00000 APT charges with hydrogens summed into heavy atoms: 1 1 C -0.043664 2 C -0.043655 3 C 0.000478 4 C 0.000489 11 C 0.043169 14 C 0.043184 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.5461 Y= 0.0000 Z= 0.1266 Tot= 0.5605 N-N= 1.421993266583D+02 E-N=-2.403663537279D+02 KE=-2.140086164719D+01 Exact polarizability: 0.000 0.000 0.000 0.000 0.000 0.000 Approx polarizability: 55.347 0.000 63.272 7.301 -0.001 28.363 Calling FoFJK, ICntrl= 100147 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.000000399 0.000009821 -0.000001528 2 6 0.000001917 -0.000012816 0.000000523 3 6 -0.000007207 0.000002301 -0.000002064 4 6 0.000011683 -0.000010297 -0.000006261 5 1 -0.000001203 0.000001095 -0.000000406 6 1 -0.000000298 -0.000000024 0.000001329 7 1 0.000001989 0.000004171 0.000000432 8 1 0.000000006 0.000000417 0.000001830 9 1 -0.000002946 0.000001622 -0.000000288 10 1 -0.000001109 0.000002354 0.000005004 11 6 0.000002890 0.000006584 0.000003828 12 1 -0.000001212 -0.000001553 0.000000125 13 1 -0.000001940 0.000002614 -0.000002322 14 6 0.000002825 -0.000001599 0.000003099 15 1 -0.000001657 -0.000000826 -0.000003764 16 1 -0.000003340 -0.000003864 0.000000464 ------------------------------------------------------------------- Cartesian Forces: Max 0.000012816 RMS 0.000004167 FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000007384 RMS 0.000001972 Search for a saddle point. Step number 1 out of a maximum of 99 All quantities printed in internal units (Hartrees-Bohrs-Radians) Swapping is turned off. Second derivative matrix not updated -- analytic derivatives used. ITU= 0 Eigenvalues --- -0.09593 0.00173 0.01117 0.01185 0.01221 Eigenvalues --- 0.01774 0.02022 0.02445 0.02949 0.03090 Eigenvalues --- 0.03322 0.03446 0.03589 0.04541 0.04689 Eigenvalues --- 0.04858 0.05282 0.05369 0.05526 0.06489 Eigenvalues --- 0.06679 0.06758 0.08097 0.10013 0.11567 Eigenvalues --- 0.11661 0.13405 0.15900 0.34581 0.34605 Eigenvalues --- 0.34658 0.34680 0.35458 0.36050 0.36505 Eigenvalues --- 0.36919 0.37147 0.37438 0.46856 0.60909 Eigenvalues --- 0.61216 0.72709 Eigenvectors required to have negative eigenvalues: R12 R9 D18 D20 R6 1 0.57804 0.57794 0.17504 -0.17504 -0.15642 D7 D12 D10 D15 R1 1 0.15251 -0.15250 0.14059 -0.14057 0.13471 RFO step: Lambda0=7.896328036D-11 Lambda= 0.00000000D+00. Linear search not attempted -- option 19 set. Iteration 1 RMS(Cart)= 0.00002688 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.64084 0.00000 0.00000 0.00001 0.00001 2.64085 R2 2.08219 0.00000 0.00000 -0.00001 -0.00001 2.08218 R3 2.61134 0.00000 0.00000 0.00000 0.00000 2.61134 R4 2.08218 0.00000 0.00000 0.00000 0.00000 2.08218 R5 2.61133 0.00000 0.00000 0.00000 0.00000 2.61134 R6 2.61334 -0.00001 0.00000 -0.00001 -0.00001 2.61333 R7 2.07911 0.00000 0.00000 0.00000 0.00000 2.07911 R8 2.07802 0.00000 0.00000 -0.00001 -0.00001 2.07801 R9 4.00493 0.00000 0.00000 -0.00010 -0.00010 4.00483 R10 2.07911 0.00000 0.00000 0.00000 0.00000 2.07911 R11 2.07802 0.00000 0.00000 -0.00001 -0.00001 2.07801 R12 4.00475 0.00000 0.00000 0.00008 0.00008 4.00483 R13 2.08015 0.00000 0.00000 0.00000 0.00000 2.08015 R14 2.07659 0.00000 0.00000 0.00000 0.00000 2.07659 R15 2.07660 0.00000 0.00000 0.00000 0.00000 2.07659 R16 2.08015 0.00000 0.00000 0.00000 0.00000 2.08015 A1 2.06633 0.00000 0.00000 0.00001 0.00001 2.06635 A2 2.11509 0.00000 0.00000 -0.00003 -0.00003 2.11507 A3 2.08819 0.00000 0.00000 0.00002 0.00002 2.08820 A4 2.06635 0.00000 0.00000 0.00000 0.00000 2.06635 A5 2.11508 0.00000 0.00000 -0.00002 -0.00002 2.11507 A6 2.08818 0.00000 0.00000 0.00002 0.00002 2.08820 A7 2.09430 0.00000 0.00000 -0.00006 -0.00006 2.09424 A8 2.09454 0.00000 0.00000 0.00002 0.00002 2.09455 A9 1.91882 0.00000 0.00000 0.00003 0.00003 1.91884 A10 2.01198 0.00000 0.00000 0.00001 0.00001 2.01199 A11 1.57382 0.00000 0.00000 0.00005 0.00005 1.57387 A12 1.58577 0.00000 0.00000 0.00001 0.00001 1.58578 A13 2.09422 0.00000 0.00000 0.00002 0.00002 2.09424 A14 2.09449 0.00000 0.00000 0.00006 0.00006 2.09455 A15 1.91889 0.00000 0.00000 -0.00004 -0.00004 1.91884 A16 2.01202 0.00000 0.00000 -0.00002 -0.00002 2.01199 A17 1.57391 0.00000 0.00000 -0.00004 -0.00004 1.57387 A18 1.58583 0.00000 0.00000 -0.00005 -0.00005 1.58578 A19 1.73377 0.00000 0.00000 0.00002 0.00002 1.73379 A20 2.11613 0.00000 0.00000 0.00002 0.00002 2.11615 A21 2.09443 0.00000 0.00000 -0.00005 -0.00005 2.09438 A22 1.55102 0.00000 0.00000 0.00006 0.00006 1.55107 A23 1.77394 0.00000 0.00000 -0.00002 -0.00002 1.77392 A24 2.00264 0.00000 0.00000 0.00001 0.00001 2.00265 A25 1.73378 0.00000 0.00000 0.00001 0.00001 1.73379 A26 2.09440 0.00000 0.00000 -0.00002 -0.00002 2.09438 A27 2.11618 0.00000 0.00000 -0.00003 -0.00003 2.11615 A28 1.77394 0.00000 0.00000 -0.00002 -0.00002 1.77392 A29 1.55106 0.00000 0.00000 0.00001 0.00001 1.55107 A30 2.00259 0.00000 0.00000 0.00006 0.00006 2.00265 D1 -0.00001 0.00000 0.00000 0.00001 0.00001 0.00000 D2 2.96465 0.00000 0.00000 0.00001 0.00001 2.96467 D3 -2.96465 0.00000 0.00000 -0.00002 -0.00002 -2.96467 D4 0.00001 0.00000 0.00000 -0.00001 -0.00001 0.00000 D5 1.04308 0.00000 0.00000 0.00001 0.00001 1.04308 D6 2.95127 0.00000 0.00000 -0.00002 -0.00002 2.95126 D7 -0.60418 0.00000 0.00000 0.00000 0.00000 -0.60419 D8 -1.91938 0.00000 0.00000 -0.00002 -0.00002 -1.91940 D9 -0.01119 0.00000 0.00000 -0.00004 -0.00004 -0.01123 D10 2.71654 0.00000 0.00000 -0.00003 -0.00003 2.71651 D11 -1.04307 0.00000 0.00000 -0.00002 -0.00002 -1.04308 D12 0.60412 0.00000 0.00000 0.00007 0.00007 0.60419 D13 -2.95126 0.00000 0.00000 0.00001 0.00001 -2.95126 D14 1.91941 0.00000 0.00000 -0.00001 -0.00001 1.91940 D15 -2.71659 0.00000 0.00000 0.00007 0.00007 -2.71651 D16 0.01122 0.00000 0.00000 0.00001 0.00001 0.01123 D17 0.00013 0.00000 0.00000 -0.00013 -0.00013 0.00000 D18 2.69679 0.00000 0.00000 0.00001 0.00001 2.69679 D19 -1.78556 0.00000 0.00000 -0.00006 -0.00006 -1.78562 D20 -2.69675 0.00000 0.00000 -0.00004 -0.00004 -2.69679 D21 -0.00009 0.00000 0.00000 0.00009 0.00009 0.00000 D22 1.80074 0.00000 0.00000 0.00003 0.00003 1.80077 D23 1.78570 0.00000 0.00000 -0.00008 -0.00008 1.78562 D24 -1.80083 0.00000 0.00000 0.00005 0.00005 -1.80077 D25 0.00001 0.00000 0.00000 -0.00001 -0.00001 0.00000 D26 0.90472 0.00000 0.00000 0.00003 0.00003 0.90475 D27 -1.21588 0.00000 0.00000 -0.00001 -0.00001 -1.21588 D28 3.05938 0.00000 0.00000 -0.00002 -0.00002 3.05936 D29 3.03754 0.00000 0.00000 -0.00001 -0.00001 3.03753 D30 0.91694 0.00000 0.00000 -0.00005 -0.00005 0.91690 D31 -1.09098 0.00000 0.00000 -0.00006 -0.00006 -1.09105 D32 -1.23356 0.00000 0.00000 0.00000 0.00000 -1.23356 D33 2.92903 0.00000 0.00000 -0.00003 -0.00003 2.92900 D34 0.92110 0.00000 0.00000 -0.00005 -0.00005 0.92105 D35 -0.90473 0.00000 0.00000 -0.00002 -0.00002 -0.90475 D36 -3.05937 0.00000 0.00000 0.00001 0.00001 -3.05936 D37 1.21593 0.00000 0.00000 -0.00005 -0.00005 1.21588 D38 -3.03752 0.00000 0.00000 -0.00001 -0.00001 -3.03753 D39 1.09103 0.00000 0.00000 0.00002 0.00002 1.09105 D40 -0.91686 0.00000 0.00000 -0.00004 -0.00004 -0.91690 D41 1.23354 0.00000 0.00000 0.00002 0.00002 1.23356 D42 -0.92110 0.00000 0.00000 0.00005 0.00005 -0.92105 D43 -2.92898 0.00000 0.00000 -0.00001 -0.00001 -2.92900 Item Value Threshold Converged? Maximum Force 0.000007 0.000450 YES RMS Force 0.000002 0.000300 YES Maximum Displacement 0.000102 0.001800 YES RMS Displacement 0.000027 0.001200 YES Predicted change in Energy=-2.028701D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3975 -DE/DX = 0.0 ! ! R2 R(1,6) 1.1018 -DE/DX = 0.0 ! ! R3 R(1,14) 1.3819 -DE/DX = 0.0 ! ! R4 R(2,5) 1.1018 -DE/DX = 0.0 ! ! R5 R(2,11) 1.3819 -DE/DX = 0.0 ! ! R6 R(3,4) 1.3829 -DE/DX = 0.0 ! ! R7 R(3,7) 1.1002 -DE/DX = 0.0 ! ! R8 R(3,8) 1.0996 -DE/DX = 0.0 ! ! R9 R(3,11) 2.1193 -DE/DX = 0.0 ! ! R10 R(4,9) 1.1002 -DE/DX = 0.0 ! ! R11 R(4,10) 1.0996 -DE/DX = 0.0 ! ! R12 R(4,14) 2.1192 -DE/DX = 0.0 ! ! R13 R(11,12) 1.1008 -DE/DX = 0.0 ! ! R14 R(11,13) 1.0989 -DE/DX = 0.0 ! ! R15 R(14,15) 1.0989 -DE/DX = 0.0 ! ! R16 R(14,16) 1.1008 -DE/DX = 0.0 ! ! A1 A(2,1,6) 118.3921 -DE/DX = 0.0 ! ! A2 A(2,1,14) 121.1859 -DE/DX = 0.0 ! ! A3 A(6,1,14) 119.6442 -DE/DX = 0.0 ! ! A4 A(1,2,5) 118.3932 -DE/DX = 0.0 ! ! A5 A(1,2,11) 121.1854 -DE/DX = 0.0 ! ! A6 A(5,2,11) 119.6439 -DE/DX = 0.0 ! ! A7 A(4,3,7) 119.9947 -DE/DX = 0.0 ! ! A8 A(4,3,8) 120.0081 -DE/DX = 0.0 ! ! A9 A(4,3,11) 109.9401 -DE/DX = 0.0 ! ! A10 A(7,3,8) 115.278 -DE/DX = 0.0 ! ! A11 A(7,3,11) 90.1734 -DE/DX = 0.0 ! ! A12 A(8,3,11) 90.8578 -DE/DX = 0.0 ! ! A13 A(3,4,9) 119.99 -DE/DX = 0.0 ! ! A14 A(3,4,10) 120.0056 -DE/DX = 0.0 ! ! A15 A(3,4,14) 109.9441 -DE/DX = 0.0 ! ! A16 A(9,4,10) 115.2801 -DE/DX = 0.0 ! ! A17 A(9,4,14) 90.1786 -DE/DX = 0.0 ! ! A18 A(10,4,14) 90.8614 -DE/DX = 0.0 ! ! A19 A(2,11,3) 99.3376 -DE/DX = 0.0 ! ! A20 A(2,11,12) 121.2452 -DE/DX = 0.0 ! ! A21 A(2,11,13) 120.002 -DE/DX = 0.0 ! ! A22 A(3,11,12) 88.8666 -DE/DX = 0.0 ! ! A23 A(3,11,13) 101.6391 -DE/DX = 0.0 ! ! A24 A(12,11,13) 114.7429 -DE/DX = 0.0 ! ! A25 A(1,14,4) 99.3385 -DE/DX = 0.0 ! ! A26 A(1,14,15) 120.0005 -DE/DX = 0.0 ! ! A27 A(1,14,16) 121.2482 -DE/DX = 0.0 ! ! A28 A(4,14,15) 101.6392 -DE/DX = 0.0 ! ! A29 A(4,14,16) 88.8693 -DE/DX = 0.0 ! ! A30 A(15,14,16) 114.7399 -DE/DX = 0.0 ! ! D1 D(6,1,2,5) -0.0005 -DE/DX = 0.0 ! ! D2 D(6,1,2,11) 169.8622 -DE/DX = 0.0 ! ! D3 D(14,1,2,5) -169.8619 -DE/DX = 0.0 ! ! D4 D(14,1,2,11) 0.0008 -DE/DX = 0.0 ! ! D5 D(2,1,14,4) 59.7639 -DE/DX = 0.0 ! ! D6 D(2,1,14,15) 169.0954 -DE/DX = 0.0 ! ! D7 D(2,1,14,16) -34.6172 -DE/DX = 0.0 ! ! D8 D(6,1,14,4) -109.9725 -DE/DX = 0.0 ! ! D9 D(6,1,14,15) -0.641 -DE/DX = 0.0 ! ! D10 D(6,1,14,16) 155.6464 -DE/DX = 0.0 ! ! D11 D(1,2,11,3) -59.7635 -DE/DX = 0.0 ! ! D12 D(1,2,11,12) 34.6133 -DE/DX = 0.0 ! ! D13 D(1,2,11,13) -169.0948 -DE/DX = 0.0 ! ! D14 D(5,2,11,3) 109.9744 -DE/DX = 0.0 ! ! D15 D(5,2,11,12) -155.6489 -DE/DX = 0.0 ! ! D16 D(5,2,11,13) 0.643 -DE/DX = 0.0 ! ! D17 D(7,3,4,9) 0.0074 -DE/DX = 0.0 ! ! D18 D(7,3,4,10) 154.5146 -DE/DX = 0.0 ! ! D19 D(7,3,4,14) -102.3052 -DE/DX = 0.0 ! ! D20 D(8,3,4,9) -154.5126 -DE/DX = 0.0 ! ! D21 D(8,3,4,10) -0.0054 -DE/DX = 0.0 ! ! D22 D(8,3,4,14) 103.1748 -DE/DX = 0.0 ! ! D23 D(11,3,4,9) 102.3131 -DE/DX = 0.0 ! ! D24 D(11,3,4,10) -103.1797 -DE/DX = 0.0 ! ! D25 D(11,3,4,14) 0.0005 -DE/DX = 0.0 ! ! D26 D(4,3,11,2) 51.8365 -DE/DX = 0.0 ! ! D27 D(4,3,11,12) -69.6647 -DE/DX = 0.0 ! ! D28 D(4,3,11,13) 175.2896 -DE/DX = 0.0 ! ! D29 D(7,3,11,2) 174.0383 -DE/DX = 0.0 ! ! D30 D(7,3,11,12) 52.5371 -DE/DX = 0.0 ! ! D31 D(7,3,11,13) -62.5087 -DE/DX = 0.0 ! ! D32 D(8,3,11,2) -70.6777 -DE/DX = 0.0 ! ! D33 D(8,3,11,12) 167.8211 -DE/DX = 0.0 ! ! D34 D(8,3,11,13) 52.7753 -DE/DX = 0.0 ! ! D35 D(3,4,14,1) -51.8372 -DE/DX = 0.0 ! ! D36 D(3,4,14,15) -175.289 -DE/DX = 0.0 ! ! D37 D(3,4,14,16) 69.6677 -DE/DX = 0.0 ! ! D38 D(9,4,14,1) -174.0369 -DE/DX = 0.0 ! ! D39 D(9,4,14,15) 62.5113 -DE/DX = 0.0 ! ! D40 D(9,4,14,16) -52.5321 -DE/DX = 0.0 ! ! D41 D(10,4,14,1) 70.6768 -DE/DX = 0.0 ! ! D42 D(10,4,14,15) -52.775 -DE/DX = 0.0 ! ! D43 D(10,4,14,16) -167.8183 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.255000 0.698864 -0.286642 2 6 0 -1.255160 -0.698607 -0.286647 3 6 0 1.455953 -0.691600 -0.252080 4 6 0 1.456048 0.691319 -0.252064 5 1 0 -1.843211 -1.222486 -1.057234 6 1 0 -1.842932 1.222865 -1.057240 7 1 0 2.000641 -1.241666 0.529723 8 1 0 1.300606 -1.241534 -1.191573 9 1 0 2.000940 1.241215 0.529721 10 1 0 1.300861 1.241254 -1.191586 11 6 0 -0.383893 -1.414248 0.512282 12 1 0 -0.089486 -1.047325 1.507461 13 1 0 -0.272515 -2.498211 0.370255 14 6 0 -0.383563 1.414312 0.512277 15 1 0 -0.271972 2.498252 0.370235 16 1 0 -0.089240 1.047402 1.507485 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.397471 0.000000 3 C 3.046941 2.711342 0.000000 4 C 2.711279 3.046923 1.382919 0.000000 5 H 2.152066 1.101843 3.437236 3.898212 0.000000 6 H 1.101845 2.152056 3.898217 3.437167 2.445351 7 H 3.877023 3.400237 1.100216 2.155042 4.158605 8 H 3.333941 2.765068 1.099639 2.154706 3.146743 9 H 3.400256 3.877055 2.154994 1.100219 4.833813 10 H 2.765056 3.333950 2.154681 1.099642 3.996655 11 C 2.421229 1.381859 2.119317 2.898797 2.151688 12 H 2.761595 2.167769 2.368735 2.916760 3.111896 13 H 3.408530 2.153064 2.576576 3.680803 2.476345 14 C 1.381861 2.421237 2.898780 2.119222 3.398035 15 H 2.153051 3.408528 3.680782 2.576493 4.283731 16 H 2.167802 2.761671 2.916816 2.368696 3.847933 6 7 8 9 10 6 H 0.000000 7 H 4.833779 0.000000 8 H 3.996640 1.858201 0.000000 9 H 4.158622 2.482881 3.101187 0.000000 10 H 3.146716 3.101208 2.482788 1.858228 0.000000 11 C 3.398022 2.390835 2.402184 3.569204 3.576766 12 H 3.847860 2.315679 3.042180 3.250119 3.802041 13 H 4.283731 2.602224 2.548186 4.379193 4.347236 14 C 2.151696 3.569167 3.576736 2.390841 2.402162 15 H 2.476331 4.379177 4.347211 2.602250 2.548162 16 H 3.111918 3.250147 3.802080 2.315694 3.042194 11 12 13 14 15 11 C 0.000000 12 H 1.100768 0.000000 13 H 1.098887 1.852513 0.000000 14 C 2.828560 2.671429 3.916674 0.000000 15 H 3.916677 3.727962 4.996463 1.098888 0.000000 16 H 2.671511 2.094728 3.728036 1.100766 1.852483 16 16 H 0.000000 Stoichiometry C6H10 Framework group C1[X(C6H10)] Deg. of freedom 42 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.255000 0.698864 -0.286642 2 6 0 -1.255160 -0.698607 -0.286647 3 6 0 1.455953 -0.691600 -0.252080 4 6 0 1.456048 0.691319 -0.252064 5 1 0 -1.843211 -1.222486 -1.057234 6 1 0 -1.842932 1.222865 -1.057240 7 1 0 2.000641 -1.241666 0.529723 8 1 0 1.300606 -1.241534 -1.191573 9 1 0 2.000940 1.241215 0.529721 10 1 0 1.300861 1.241254 -1.191586 11 6 0 -0.383893 -1.414248 0.512282 12 1 0 -0.089486 -1.047325 1.507461 13 1 0 -0.272515 -2.498211 0.370255 14 6 0 -0.383563 1.414312 0.512277 15 1 0 -0.271972 2.498252 0.370235 16 1 0 -0.089240 1.047402 1.507485 --------------------------------------------------------------------- Rotational constants (GHZ): 4.3763437 3.8583476 2.4541132 1|1| IMPERIAL COLLEGE-CHWS-LAP66|FTS|RAM1|ZDO|C6H10|AS11511|05-Dec-201 3|0||# opt=(calcfc,ts,noeigen) am1 geom=connectivity||Title Card Requi red||0,1|C,-1.25500017,0.69886381,-0.28664187|C,-1.25515983,-0.6986074 1,-0.28664668|C,1.45595272,-0.69160017,-0.2520802|C,1.45604795,0.69131 915,-0.25206428|H,-1.84321088,-1.22248581,-1.0572344|H,-1.84293184,1.2 2286468,-1.05724022|H,2.00064098,-1.24166606,0.52972311|H,1.30060585,- 1.24153362,-1.19157299|H,2.00094009,1.24121511,0.529721|H,1.30086079,1 .2412543,-1.19158622|C,-0.38389341,-1.41424823,0.51228162|H,-0.0894859 5,-1.04732549,1.50746123|H,-0.27251475,-2.49821077,0.37025487|C,-0.383 56269,1.4143118,0.51227709|H,-0.27197161,2.49825184,0.37023502|H,-0.08 924015,1.04740213,1.50748456||Version=EM64W-G09RevD.01|State=1-A|HF=0. 1116546|RMSD=5.027e-009|RMSF=4.167e-006|Dipole=0.2148339,-0.0000139,0. 0497961|Polar=0.,0.,0.,0.,0.,0.|PG=C01 [X(C6H10)]||@ IT IS THE BEHAVIOR AND DISTRIBUTION OF THE ELECTRONS AROUND THE NUCLEUS THAT GIVES THE FUNDAMENTAL CHARACTER OF AN ATOM: IT MUST BE THE SAME FOR MOLECULES. -- C. A. COULSON, 1951 Job cpu time: 0 days 0 hours 0 minutes 44.0 seconds. File lengths (MBytes): RWF= 11 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Thu Dec 05 11:44:23 2013.