Entering Link 1 = C:\G09W\l1.exe PID= 2440. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2011, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64W-G09RevC.01 23-Sep-2011 04-Dec-2012 ****************************************** %NoSave %chk=\\ic.ac.uk\homes\pm1510\Computational lab\Bearpark_Mod3\dielsalder2_ts4_631 gopt.chk ------------------------------------------------------------- # opt=(calcfc,ts) b3lyp/6-31g(d) scrf=check geom=connectivity ------------------------------------------------------------- 1/5=1,10=4,14=-1,18=20,26=3,38=1,40=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,70=2,71=2,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1,7=6,13=1/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7/10=1,18=20,25=1/1,2,3,16; 1/5=1,10=4,14=-1,18=20/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,70=5,71=1,74=-5/1,2,3; 4/5=5,16=3/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/5=1,14=-1,18=20/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Charge = 0 Multiplicity = 1 Symbolic Z-Matrix: C -0.42783 -1.41256 0.49392 H -0.12405 -1.04428 1.4524 H -0.35679 -2.47847 0.38041 C -1.29368 -0.69726 -0.29069 H -1.82907 -1.2062 -1.07097 C -1.29379 0.69724 -0.2906 C -0.42801 1.41251 0.49418 H -0.35715 2.47848 0.38121 H -1.82919 1.2062 -1.07084 H -0.12343 1.04343 1.45216 C 1.5297 0.68802 -0.23057 C 1.52973 -0.68787 -0.23011 H 1.42373 1.22264 -1.15231 H 2.0376 1.2213 0.55085 H 2.03782 -1.22044 0.55168 H 1.42379 -1.2231 -1.15145 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0708 calculate D2E/DX2 analytically ! ! R2 R(1,3) 1.0743 calculate D2E/DX2 analytically ! ! R3 R(1,4) 1.37 calculate D2E/DX2 analytically ! ! R4 R(1,12) 2.2094 calculate D2E/DX2 analytically ! ! R5 R(1,15) 2.4738 calculate D2E/DX2 analytically ! ! R6 R(1,16) 2.4843 calculate D2E/DX2 analytically ! ! R7 R(2,12) 2.386 calculate D2E/DX2 analytically ! ! R8 R(3,12) 2.6717 calculate D2E/DX2 analytically ! ! R9 R(4,5) 1.0745 calculate D2E/DX2 analytically ! ! R10 R(4,6) 1.3945 calculate D2E/DX2 analytically ! ! R11 R(4,12) 2.8241 calculate D2E/DX2 analytically ! ! R12 R(6,7) 1.3701 calculate D2E/DX2 analytically ! ! R13 R(6,9) 1.0745 calculate D2E/DX2 analytically ! ! R14 R(6,11) 2.8241 calculate D2E/DX2 analytically ! ! R15 R(7,8) 1.0743 calculate D2E/DX2 analytically ! ! R16 R(7,10) 1.0708 calculate D2E/DX2 analytically ! ! R17 R(7,11) 2.2097 calculate D2E/DX2 analytically ! ! R18 R(7,13) 2.4851 calculate D2E/DX2 analytically ! ! R19 R(7,14) 2.4737 calculate D2E/DX2 analytically ! ! R20 R(8,11) 2.6721 calculate D2E/DX2 analytically ! ! R21 R(10,11) 2.3855 calculate D2E/DX2 analytically ! ! R22 R(11,12) 1.3759 calculate D2E/DX2 analytically ! ! R23 R(11,13) 1.0708 calculate D2E/DX2 analytically ! ! R24 R(11,14) 1.0738 calculate D2E/DX2 analytically ! ! R25 R(12,15) 1.0738 calculate D2E/DX2 analytically ! ! R26 R(12,16) 1.0708 calculate D2E/DX2 analytically ! ! A1 A(2,1,3) 114.649 calculate D2E/DX2 analytically ! ! A2 A(2,1,4) 120.8214 calculate D2E/DX2 analytically ! ! A3 A(2,1,15) 70.7083 calculate D2E/DX2 analytically ! ! A4 A(2,1,16) 110.8032 calculate D2E/DX2 analytically ! ! A5 A(3,1,4) 119.9551 calculate D2E/DX2 analytically ! ! A6 A(3,1,15) 90.7795 calculate D2E/DX2 analytically ! ! A7 A(3,1,16) 87.501 calculate D2E/DX2 analytically ! ! A8 A(4,1,15) 127.0664 calculate D2E/DX2 analytically ! ! A9 A(4,1,16) 92.9766 calculate D2E/DX2 analytically ! ! A10 A(15,1,16) 42.8327 calculate D2E/DX2 analytically ! ! A11 A(1,4,5) 118.9144 calculate D2E/DX2 analytically ! ! A12 A(1,4,6) 121.4744 calculate D2E/DX2 analytically ! ! A13 A(5,4,6) 118.2729 calculate D2E/DX2 analytically ! ! A14 A(5,4,12) 121.0187 calculate D2E/DX2 analytically ! ! A15 A(6,4,12) 89.8138 calculate D2E/DX2 analytically ! ! A16 A(4,6,7) 121.4705 calculate D2E/DX2 analytically ! ! A17 A(4,6,9) 118.2733 calculate D2E/DX2 analytically ! ! A18 A(4,6,11) 89.8087 calculate D2E/DX2 analytically ! ! A19 A(7,6,9) 118.9173 calculate D2E/DX2 analytically ! ! A20 A(9,6,11) 121.0084 calculate D2E/DX2 analytically ! ! A21 A(6,7,8) 119.9654 calculate D2E/DX2 analytically ! ! A22 A(6,7,10) 120.8133 calculate D2E/DX2 analytically ! ! A23 A(6,7,13) 92.9504 calculate D2E/DX2 analytically ! ! A24 A(6,7,14) 127.059 calculate D2E/DX2 analytically ! ! A25 A(8,7,10) 114.6647 calculate D2E/DX2 analytically ! ! A26 A(8,7,13) 87.5349 calculate D2E/DX2 analytically ! ! A27 A(8,7,14) 90.7657 calculate D2E/DX2 analytically ! ! A28 A(10,7,13) 110.7586 calculate D2E/DX2 analytically ! ! A29 A(10,7,14) 70.6921 calculate D2E/DX2 analytically ! ! A30 A(13,7,14) 42.8255 calculate D2E/DX2 analytically ! ! A31 A(6,11,8) 45.309 calculate D2E/DX2 analytically ! ! A32 A(6,11,10) 47.2878 calculate D2E/DX2 analytically ! ! A33 A(6,11,12) 90.1887 calculate D2E/DX2 analytically ! ! A34 A(6,11,13) 83.1734 calculate D2E/DX2 analytically ! ! A35 A(6,11,14) 119.1268 calculate D2E/DX2 analytically ! ! A36 A(7,11,12) 109.1337 calculate D2E/DX2 analytically ! ! A37 A(8,11,10) 41.3524 calculate D2E/DX2 analytically ! ! A38 A(8,11,12) 132.0663 calculate D2E/DX2 analytically ! ! A39 A(8,11,13) 78.0336 calculate D2E/DX2 analytically ! ! A40 A(8,11,14) 80.4799 calculate D2E/DX2 analytically ! ! A41 A(10,11,12) 98.5553 calculate D2E/DX2 analytically ! ! A42 A(10,11,13) 117.66 calculate D2E/DX2 analytically ! ! A43 A(10,11,14) 74.9566 calculate D2E/DX2 analytically ! ! A44 A(12,11,13) 119.9706 calculate D2E/DX2 analytically ! ! A45 A(12,11,14) 119.7615 calculate D2E/DX2 analytically ! ! A46 A(13,11,14) 115.1682 calculate D2E/DX2 analytically ! ! A47 A(1,12,11) 109.153 calculate D2E/DX2 analytically ! ! A48 A(2,12,3) 41.3506 calculate D2E/DX2 analytically ! ! A49 A(2,12,4) 47.2865 calculate D2E/DX2 analytically ! ! A50 A(2,12,11) 98.6036 calculate D2E/DX2 analytically ! ! A51 A(2,12,15) 74.958 calculate D2E/DX2 analytically ! ! A52 A(2,12,16) 117.6143 calculate D2E/DX2 analytically ! ! A53 A(3,12,4) 45.3098 calculate D2E/DX2 analytically ! ! A54 A(3,12,11) 132.0882 calculate D2E/DX2 analytically ! ! A55 A(3,12,15) 80.5222 calculate D2E/DX2 analytically ! ! A56 A(3,12,16) 77.9807 calculate D2E/DX2 analytically ! ! A57 A(4,12,11) 90.1888 calculate D2E/DX2 analytically ! ! A58 A(4,12,15) 119.1466 calculate D2E/DX2 analytically ! ! A59 A(4,12,16) 83.1637 calculate D2E/DX2 analytically ! ! A60 A(11,12,15) 119.7514 calculate D2E/DX2 analytically ! ! A61 A(11,12,16) 119.9708 calculate D2E/DX2 analytically ! ! A62 A(15,12,16) 115.1739 calculate D2E/DX2 analytically ! ! D1 D(2,1,4,5) -160.0411 calculate D2E/DX2 analytically ! ! D2 D(2,1,4,6) 33.3975 calculate D2E/DX2 analytically ! ! D3 D(3,1,4,5) -5.3036 calculate D2E/DX2 analytically ! ! D4 D(3,1,4,6) -171.8651 calculate D2E/DX2 analytically ! ! D5 D(15,1,4,5) 111.7616 calculate D2E/DX2 analytically ! ! D6 D(15,1,4,6) -54.7999 calculate D2E/DX2 analytically ! ! D7 D(16,1,4,5) 83.526 calculate D2E/DX2 analytically ! ! D8 D(16,1,4,6) -83.0355 calculate D2E/DX2 analytically ! ! D9 D(1,4,6,7) -0.0018 calculate D2E/DX2 analytically ! ! D10 D(1,4,6,9) 166.6404 calculate D2E/DX2 analytically ! ! D11 D(1,4,6,11) 40.9675 calculate D2E/DX2 analytically ! ! D12 D(5,4,6,7) -166.6465 calculate D2E/DX2 analytically ! ! D13 D(5,4,6,9) -0.0044 calculate D2E/DX2 analytically ! ! D14 D(5,4,6,11) -125.6772 calculate D2E/DX2 analytically ! ! D15 D(12,4,6,7) -40.9581 calculate D2E/DX2 analytically ! ! D16 D(12,4,6,9) 125.684 calculate D2E/DX2 analytically ! ! D17 D(12,4,6,11) 0.0112 calculate D2E/DX2 analytically ! ! D18 D(5,4,12,2) -135.0342 calculate D2E/DX2 analytically ! ! D19 D(5,4,12,3) -76.6242 calculate D2E/DX2 analytically ! ! D20 D(5,4,12,11) 123.396 calculate D2E/DX2 analytically ! ! D21 D(5,4,12,15) -111.8521 calculate D2E/DX2 analytically ! ! D22 D(5,4,12,16) 3.2144 calculate D2E/DX2 analytically ! ! D23 D(6,4,12,2) 101.5468 calculate D2E/DX2 analytically ! ! D24 D(6,4,12,3) 159.9567 calculate D2E/DX2 analytically ! ! D25 D(6,4,12,11) -0.023 calculate D2E/DX2 analytically ! ! D26 D(6,4,12,15) 124.7289 calculate D2E/DX2 analytically ! ! D27 D(6,4,12,16) -120.2046 calculate D2E/DX2 analytically ! ! D28 D(4,6,7,8) 171.8837 calculate D2E/DX2 analytically ! ! D29 D(4,6,7,10) -33.3281 calculate D2E/DX2 analytically ! ! D30 D(4,6,7,13) 83.0296 calculate D2E/DX2 analytically ! ! D31 D(4,6,7,14) 54.8367 calculate D2E/DX2 analytically ! ! D32 D(9,6,7,8) 5.3251 calculate D2E/DX2 analytically ! ! D33 D(9,6,7,10) 160.1134 calculate D2E/DX2 analytically ! ! D34 D(9,6,7,13) -83.529 calculate D2E/DX2 analytically ! ! D35 D(9,6,7,14) -111.7218 calculate D2E/DX2 analytically ! ! D36 D(4,6,11,8) -159.9385 calculate D2E/DX2 analytically ! ! D37 D(4,6,11,10) -101.5263 calculate D2E/DX2 analytically ! ! D38 D(4,6,11,12) -0.023 calculate D2E/DX2 analytically ! ! D39 D(4,6,11,13) 120.1579 calculate D2E/DX2 analytically ! ! D40 D(4,6,11,14) -124.7793 calculate D2E/DX2 analytically ! ! D41 D(9,6,11,8) 76.6498 calculate D2E/DX2 analytically ! ! D42 D(9,6,11,10) 135.062 calculate D2E/DX2 analytically ! ! D43 D(9,6,11,12) -123.4348 calculate D2E/DX2 analytically ! ! D44 D(9,6,11,13) -3.2539 calculate D2E/DX2 analytically ! ! D45 D(9,6,11,14) 111.8089 calculate D2E/DX2 analytically ! ! D46 D(6,11,12,1) -21.5089 calculate D2E/DX2 analytically ! ! D47 D(6,11,12,2) -46.7092 calculate D2E/DX2 analytically ! ! D48 D(6,11,12,3) -19.1338 calculate D2E/DX2 analytically ! ! D49 D(6,11,12,4) 0.0114 calculate D2E/DX2 analytically ! ! D50 D(6,11,12,15) -124.2437 calculate D2E/DX2 analytically ! ! D51 D(6,11,12,16) 82.2234 calculate D2E/DX2 analytically ! ! D52 D(7,11,12,1) 0.0301 calculate D2E/DX2 analytically ! ! D53 D(7,11,12,2) -25.1701 calculate D2E/DX2 analytically ! ! D54 D(7,11,12,3) 2.4053 calculate D2E/DX2 analytically ! ! D55 D(7,11,12,4) 21.5504 calculate D2E/DX2 analytically ! ! D56 D(7,11,12,15) -102.7047 calculate D2E/DX2 analytically ! ! D57 D(7,11,12,16) 103.7625 calculate D2E/DX2 analytically ! ! D58 D(8,11,12,1) -2.3097 calculate D2E/DX2 analytically ! ! D59 D(8,11,12,2) -27.51 calculate D2E/DX2 analytically ! ! D60 D(8,11,12,3) 0.0654 calculate D2E/DX2 analytically ! ! D61 D(8,11,12,4) 19.2106 calculate D2E/DX2 analytically ! ! D62 D(8,11,12,15) -105.0445 calculate D2E/DX2 analytically ! ! D63 D(8,11,12,16) 101.4226 calculate D2E/DX2 analytically ! ! D64 D(10,11,12,1) 25.2195 calculate D2E/DX2 analytically ! ! D65 D(10,11,12,2) 0.0193 calculate D2E/DX2 analytically ! ! D66 D(10,11,12,3) 27.5947 calculate D2E/DX2 analytically ! ! D67 D(10,11,12,4) 46.7398 calculate D2E/DX2 analytically ! ! D68 D(10,11,12,15) -77.5152 calculate D2E/DX2 analytically ! ! D69 D(10,11,12,16) 128.9519 calculate D2E/DX2 analytically ! ! D70 D(13,11,12,1) -103.7321 calculate D2E/DX2 analytically ! ! D71 D(13,11,12,2) -128.9323 calculate D2E/DX2 analytically ! ! D72 D(13,11,12,3) -101.3569 calculate D2E/DX2 analytically ! ! D73 D(13,11,12,4) -82.2118 calculate D2E/DX2 analytically ! ! D74 D(13,11,12,15) 153.5331 calculate D2E/DX2 analytically ! ! D75 D(13,11,12,16) 0.0003 calculate D2E/DX2 analytically ! ! D76 D(14,11,12,1) 102.7259 calculate D2E/DX2 analytically ! ! D77 D(14,11,12,2) 77.5257 calculate D2E/DX2 analytically ! ! D78 D(14,11,12,3) 105.1011 calculate D2E/DX2 analytically ! ! D79 D(14,11,12,4) 124.2462 calculate D2E/DX2 analytically ! ! D80 D(14,11,12,15) -0.0088 calculate D2E/DX2 analytically ! ! D81 D(14,11,12,16) -153.5417 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 100 maximum allowed number of steps= 100. Search for a saddle point of order 1. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.427834 -1.412556 0.493919 2 1 0 -0.124045 -1.044280 1.452401 3 1 0 -0.356787 -2.478474 0.380412 4 6 0 -1.293680 -0.697261 -0.290689 5 1 0 -1.829070 -1.206198 -1.070966 6 6 0 -1.293786 0.697240 -0.290599 7 6 0 -0.428012 1.412505 0.494184 8 1 0 -0.357153 2.478483 0.381213 9 1 0 -1.829189 1.206200 -1.070844 10 1 0 -0.123427 1.043429 1.452160 11 6 0 1.529702 0.688020 -0.230568 12 6 0 1.529731 -0.687874 -0.230106 13 1 0 1.423732 1.222643 -1.152308 14 1 0 2.037597 1.221299 0.550854 15 1 0 2.037822 -1.220443 0.551677 16 1 0 1.423793 -1.223100 -1.151447 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.070795 0.000000 3 H 1.074296 1.805614 0.000000 4 C 1.370017 2.127635 2.121524 0.000000 5 H 2.110666 3.049706 2.427509 1.074473 0.000000 6 C 2.411759 2.727496 3.378370 1.394501 2.125695 7 C 2.825061 2.654500 3.893294 2.411746 3.357121 8 H 3.893313 3.689396 4.956957 3.378444 4.225191 9 H 3.357106 3.786679 4.225037 2.125694 2.412398 10 H 2.653818 2.087709 3.688753 2.727089 3.786318 11 C 2.961292 2.927136 3.736151 3.145489 3.946604 12 C 2.209397 2.385965 2.671691 2.824077 3.501035 13 H 3.616992 3.784054 4.383805 3.436968 4.060370 14 H 3.608155 3.258578 4.410266 3.935286 4.845013 15 H 2.473803 2.348618 2.710374 3.475947 4.193570 16 H 2.484280 3.034436 2.663273 2.898633 3.253902 6 7 8 9 10 6 C 0.000000 7 C 1.370056 0.000000 8 H 2.121660 1.074287 0.000000 9 H 1.074467 2.110728 2.427769 0.000000 10 H 2.127627 1.070844 1.805806 3.049864 0.000000 11 C 2.824141 2.209703 2.672126 3.500960 2.385524 12 C 3.145544 2.961241 3.736289 3.946733 2.925809 13 H 2.898878 2.485144 2.664652 3.253982 3.034645 14 H 3.475744 2.473661 2.710003 4.193109 2.348194 15 H 3.935295 3.607777 4.409877 4.845095 3.256836 16 H 3.437150 3.617139 4.384351 4.060774 3.782831 11 12 13 14 15 11 C 0.000000 12 C 1.375894 0.000000 13 H 1.070820 2.124092 0.000000 14 H 1.073762 2.124328 1.810412 0.000000 15 H 2.124223 1.073765 3.041273 2.441742 0.000000 16 H 2.124056 1.070775 2.445743 3.041327 1.810434 16 16 H 0.000000 Stoichiometry C6H10 Framework group C1[X(C6H10)] Deg. of freedom 42 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.427834 1.412556 0.493919 2 1 0 0.124045 1.044280 1.452401 3 1 0 0.356787 2.478474 0.380412 4 6 0 1.293680 0.697261 -0.290689 5 1 0 1.829070 1.206198 -1.070966 6 6 0 1.293786 -0.697240 -0.290599 7 6 0 0.428012 -1.412505 0.494184 8 1 0 0.357153 -2.478483 0.381213 9 1 0 1.829189 -1.206200 -1.070844 10 1 0 0.123427 -1.043429 1.452160 11 6 0 -1.529702 -0.688020 -0.230568 12 6 0 -1.529731 0.687874 -0.230106 13 1 0 -1.423732 -1.222643 -1.152308 14 1 0 -2.037597 -1.221299 0.550854 15 1 0 -2.037822 1.220443 0.551677 16 1 0 -1.423793 1.223100 -1.151447 --------------------------------------------------------------------- Rotational constants (GHZ): 4.4451886 3.6241276 2.3545401 Standard basis: 6-31G(d) (6D, 7F) There are 110 symmetry adapted basis functions of A symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 110 basis functions, 208 primitive gaussians, 110 cartesian basis functions 23 alpha electrons 23 beta electrons nuclear repulsion energy 227.5520400844 Hartrees. NAtoms= 16 NActive= 16 NUniq= 16 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 110 RedAO= T NBF= 110 NBsUse= 110 1.00D-06 NBFU= 110 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 1.61D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state of the initial guess is 1-A. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=19757421. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -234.541810776 A.U. after 13 cycles Convg = 0.3466D-08 -V/T = 2.0088 Range of M.O.s used for correlation: 1 110 NBasis= 110 NAE= 23 NBE= 23 NFC= 0 NFV= 0 NROrb= 110 NOA= 23 NOB= 23 NVA= 87 NVB= 87 Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 17 centers at a time, making 1 passes doing MaxLOS=2. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. FoFDir/FoFCou used for L=0 through L=2. End of G2Drv Frequency-dependent properties file 721 does not exist. End of G2Drv Frequency-dependent properties file 722 does not exist. IDoAtm=1111111111111111 Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=19463099. There are 51 degrees of freedom in the 1st order CPHF. IDoFFX=5. 45 vectors produced by pass 0 Test12= 3.92D-11 1.96D-07 XBig12= 1.33D-01 1.78D-01. AX will form 45 AO Fock derivatives at one time. 45 vectors produced by pass 1 Test12= 3.92D-11 1.96D-07 XBig12= 1.87D-02 5.85D-02. 45 vectors produced by pass 2 Test12= 3.92D-11 1.96D-07 XBig12= 5.56D-05 1.65D-03. 45 vectors produced by pass 3 Test12= 3.92D-11 1.96D-07 XBig12= 1.51D-07 7.55D-05. 13 vectors produced by pass 4 Test12= 3.92D-11 1.96D-07 XBig12= 5.03D-11 9.34D-07. Inverted reduced A of dimension 193 with in-core refinement. End of Minotr Frequency-dependent properties file 721 does not exist. End of Minotr Frequency-dependent properties file 722 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -10.18074 -10.18073 -10.17627 -10.17563 -10.16902 Alpha occ. eigenvalues -- -10.16846 -0.80730 -0.74323 -0.71519 -0.61982 Alpha occ. eigenvalues -- -0.57897 -0.51665 -0.49067 -0.46346 -0.42389 Alpha occ. eigenvalues -- -0.40332 -0.40161 -0.36372 -0.35179 -0.33963 Alpha occ. eigenvalues -- -0.33773 -0.22350 -0.21707 Alpha virt. eigenvalues -- -0.00174 0.02414 0.09852 0.11368 0.13413 Alpha virt. eigenvalues -- 0.14705 0.14957 0.15639 0.17866 0.20861 Alpha virt. eigenvalues -- 0.21010 0.24407 0.25670 0.29871 0.32887 Alpha virt. eigenvalues -- 0.36931 0.43755 0.46843 0.50453 0.51891 Alpha virt. eigenvalues -- 0.55748 0.57413 0.58052 0.61528 0.63536 Alpha virt. eigenvalues -- 0.64403 0.66054 0.68460 0.68689 0.74343 Alpha virt. eigenvalues -- 0.75699 0.82610 0.86001 0.87130 0.87373 Alpha virt. eigenvalues -- 0.87826 0.89468 0.90267 0.94888 0.96970 Alpha virt. eigenvalues -- 0.97346 1.00160 1.01670 1.07245 1.08591 Alpha virt. eigenvalues -- 1.13576 1.17068 1.25145 1.29561 1.40138 Alpha virt. eigenvalues -- 1.41242 1.49526 1.54273 1.62271 1.62527 Alpha virt. eigenvalues -- 1.74231 1.77844 1.82423 1.94719 1.95035 Alpha virt. eigenvalues -- 1.97538 1.99791 2.01561 2.05903 2.07011 Alpha virt. eigenvalues -- 2.10679 2.15526 2.21658 2.22348 2.26463 Alpha virt. eigenvalues -- 2.29186 2.29592 2.45491 2.55645 2.59642 Alpha virt. eigenvalues -- 2.62020 2.63209 2.69926 2.71700 2.88780 Alpha virt. eigenvalues -- 3.08388 4.14083 4.25027 4.28584 4.30657 Alpha virt. eigenvalues -- 4.44026 4.54824 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.097511 0.371863 0.364081 0.562430 -0.062759 -0.043287 2 H 0.371863 0.565398 -0.043857 -0.028872 0.005892 -0.015157 3 H 0.364081 -0.043857 0.573257 -0.027384 -0.007864 0.006042 4 C 0.562430 -0.028872 -0.027384 4.780292 0.372352 0.562764 5 H -0.062759 0.005892 -0.007864 0.372352 0.620865 -0.046949 6 C -0.043287 -0.015157 0.006042 0.562764 -0.046949 4.780178 7 C -0.033840 0.006599 0.000483 -0.043279 0.007345 0.562456 8 H 0.000482 -0.000089 -0.000010 0.006042 -0.000177 -0.027381 9 H 0.007346 -0.000023 -0.000177 -0.046955 -0.008760 0.372350 10 H 0.006620 0.005672 -0.000090 -0.015175 -0.000023 -0.028873 11 C -0.017228 -0.007530 0.001220 -0.026832 -0.000097 -0.017276 12 C 0.105391 -0.015823 -0.006013 -0.017303 0.000707 -0.026824 13 H 0.000815 -0.000005 -0.000032 0.000495 -0.000010 -0.003027 14 H 0.001051 0.000591 -0.000035 0.000737 0.000008 0.000330 15 H -0.010142 -0.003349 0.000418 0.000331 -0.000063 0.000738 16 H -0.009179 0.001273 -0.001056 -0.003034 0.000571 0.000496 7 8 9 10 11 12 1 C -0.033840 0.000482 0.007346 0.006620 -0.017228 0.105391 2 H 0.006599 -0.000089 -0.000023 0.005672 -0.007530 -0.015823 3 H 0.000483 -0.000010 -0.000177 -0.000090 0.001220 -0.006013 4 C -0.043279 0.006042 -0.046955 -0.015175 -0.026832 -0.017303 5 H 0.007345 -0.000177 -0.008760 -0.000023 -0.000097 0.000707 6 C 0.562456 -0.027381 0.372350 -0.028873 -0.017276 -0.026824 7 C 5.097456 0.364085 -0.062753 0.371849 0.105359 -0.017225 8 H 0.364085 0.573213 -0.007857 -0.043845 -0.006002 0.001219 9 H -0.062753 -0.007857 0.620863 0.005892 0.000704 -0.000097 10 H 0.371849 -0.043845 0.005892 0.565429 -0.015825 -0.007541 11 C 0.105359 -0.006002 0.000704 -0.015825 5.025676 0.567633 12 C -0.017225 0.001219 -0.000097 -0.007541 0.567633 5.025647 13 H -0.009157 -0.001052 0.000571 0.001273 0.384783 -0.034897 14 H -0.010148 0.000417 -0.000063 -0.003349 0.378502 -0.038688 15 H 0.001050 -0.000035 0.000008 0.000593 -0.038693 0.378502 16 H 0.000816 -0.000032 -0.000010 -0.000005 -0.034894 0.384792 13 14 15 16 1 C 0.000815 0.001051 -0.010142 -0.009179 2 H -0.000005 0.000591 -0.003349 0.001273 3 H -0.000032 -0.000035 0.000418 -0.001056 4 C 0.000495 0.000737 0.000331 -0.003034 5 H -0.000010 0.000008 -0.000063 0.000571 6 C -0.003027 0.000330 0.000738 0.000496 7 C -0.009157 -0.010148 0.001050 0.000816 8 H -0.001052 0.000417 -0.000035 -0.000032 9 H 0.000571 -0.000063 0.000008 -0.000010 10 H 0.001273 -0.003349 0.000593 -0.000005 11 C 0.384783 0.378502 -0.038693 -0.034894 12 C -0.034897 -0.038688 0.378502 0.384792 13 H 0.553331 -0.042910 0.005168 -0.008615 14 H -0.042910 0.570731 -0.008886 0.005167 15 H 0.005168 -0.008886 0.570737 -0.042904 16 H -0.008615 0.005167 -0.042904 0.553316 Mulliken atomic charges: 1 1 C -0.341155 2 H 0.157417 3 H 0.141017 4 C -0.076610 5 H 0.118962 6 C -0.076578 7 C -0.341095 8 H 0.141022 9 H 0.118961 10 H 0.157397 11 C -0.299501 12 C -0.299480 13 H 0.153269 14 H 0.146546 15 H 0.146529 16 H 0.153299 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.042721 4 C 0.042352 6 C 0.042382 7 C -0.042675 11 C 0.000315 12 C 0.000348 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 APT atomic charges: 1 1 C -0.816409 2 H 0.328425 3 H 0.515273 4 C -0.484532 5 H 0.476774 6 C -0.484520 7 C -0.816085 8 H 0.515373 9 H 0.476746 10 H 0.328080 11 C -0.877691 12 C -0.877682 13 H 0.400410 14 H 0.457741 15 H 0.457758 16 H 0.400341 Sum of APT charges= 0.00000 APT Atomic charges with hydrogens summed into heavy atoms: 1 1 C 0.027289 2 H 0.000000 3 H 0.000000 4 C -0.007758 5 H 0.000000 6 C -0.007775 7 C 0.027368 8 H 0.000000 9 H 0.000000 10 H 0.000000 11 C -0.019541 12 C -0.019583 13 H 0.000000 14 H 0.000000 15 H 0.000000 16 H 0.000000 Sum of APT charges= 0.00000 Electronic spatial extent (au): = 595.0941 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.4275 Y= 0.0000 Z= 0.0097 Tot= 0.4276 Quadrupole moment (field-independent basis, Debye-Ang): XX= -40.6242 YY= -35.6335 ZZ= -36.6148 XY= -0.0001 XZ= -2.5158 YZ= -0.0001 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -3.0000 YY= 1.9906 ZZ= 1.0094 XY= -0.0001 XZ= -2.5158 YZ= -0.0001 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.3885 YYY= -0.0029 ZZZ= 0.1840 XYY= -1.0916 XXY= -0.0016 XXZ= -1.6200 XZZ= -1.0676 YZZ= 0.0018 YYZ= -1.2588 XYZ= 0.0005 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -407.5977 YYYY= -305.5728 ZZZZ= -101.9750 XXXY= 0.0008 XXXZ= -15.7477 YYYX= -0.0035 YYYZ= -0.0078 ZZZX= -2.6974 ZZZY= 0.0066 XXYY= -117.7098 XXZZ= -79.6133 YYZZ= -70.3927 XXYZ= 0.0012 YYXZ= -4.0601 ZZXY= 0.0014 N-N= 2.275520400844D+02 E-N=-9.974858965219D+02 KE= 2.325058267780D+02 Exact polarizability: 0.000 0.000 0.000 0.000 0.000 0.000 Approx polarizability: 127.272 0.003 131.420 -10.285 -0.003 72.718 Calling FoFJK, ICntrl= 100147 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.010653775 -0.003348104 -0.000898610 2 1 0.001803873 0.002573584 0.009262759 3 1 -0.000071479 -0.009505128 0.000133647 4 6 -0.008132112 0.006316216 -0.001425200 5 1 -0.005150522 -0.004826564 -0.007586306 6 6 -0.008092708 -0.006288211 -0.001384304 7 6 0.010653244 0.003273115 -0.000918171 8 1 -0.000069295 0.009504089 0.000139181 9 1 -0.005165921 0.004834227 -0.007573990 10 1 0.001768756 -0.002529759 0.009237213 11 6 -0.004863062 0.008303589 0.003190658 12 6 -0.004861262 -0.008281375 0.003220818 13 1 0.000290428 0.004966442 -0.008491750 14 1 0.005466161 0.004641487 0.005804979 15 1 0.005452658 -0.004651696 0.005808113 16 1 0.000317466 -0.004981913 -0.008519037 ------------------------------------------------------------------- Cartesian Forces: Max 0.010653775 RMS 0.005812288 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.018652095 RMS 0.003153831 Search for a saddle point. Step number 1 out of a maximum of 100 All quantities printed in internal units (Hartrees-Bohrs-Radians) Swaping is turned off. Second derivative matrix not updated -- analytic derivatives used. ITU= 0 Eigenvalues --- -0.01533 0.00026 0.00290 0.00560 0.00753 Eigenvalues --- 0.00783 0.00931 0.01006 0.01031 0.01210 Eigenvalues --- 0.01379 0.01398 0.01614 0.01722 0.01784 Eigenvalues --- 0.02265 0.02575 0.02779 0.03089 0.04216 Eigenvalues --- 0.04222 0.05232 0.05382 0.05697 0.07596 Eigenvalues --- 0.07716 0.09520 0.10806 0.26980 0.27493 Eigenvalues --- 0.30065 0.30213 0.30860 0.31215 0.32080 Eigenvalues --- 0.32306 0.34810 0.37721 0.38369 0.39213 Eigenvalues --- 0.40692 0.53099 Eigenvectors required to have negative eigenvalues: R4 R17 R8 R20 R14 1 0.33701 0.33697 0.23487 0.23486 0.17389 R11 D2 D29 R5 R19 1 0.17388 -0.17152 0.17145 0.17108 0.17100 RFO step: Lambda0=1.359386388D-03 Lambda=-5.15501668D-03. Linear search not attempted -- option 19 set. Maximum step size ( 0.300) exceeded in Quadratic search. -- Step size scaled by 0.849 Iteration 1 RMS(Cart)= 0.01620095 RMS(Int)= 0.00009347 Iteration 2 RMS(Cart)= 0.00006361 RMS(Int)= 0.00005297 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00005297 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.02351 0.00660 0.00000 0.01989 0.01995 2.04346 R2 2.03013 0.00650 0.00000 0.01951 0.01942 2.04954 R3 2.58896 0.01332 0.00000 0.01950 0.01936 2.60832 R4 4.17516 -0.00273 0.00000 0.08700 0.08712 4.26227 R5 4.67481 0.00047 0.00000 0.07276 0.07275 4.74756 R6 4.69461 0.00078 0.00000 0.06748 0.06745 4.76206 R7 4.50882 0.00104 0.00000 0.05096 0.05081 4.55963 R8 5.04876 0.00281 0.00000 0.10429 0.10441 5.15318 R9 2.03046 0.01036 0.00000 0.02218 0.02218 2.05264 R10 2.63522 0.00805 0.00000 0.01931 0.01925 2.65447 R11 5.33673 0.00403 0.00000 0.09794 0.09798 5.43471 R12 2.58903 0.01327 0.00000 0.01944 0.01930 2.60833 R13 2.03045 0.01036 0.00000 0.02219 0.02219 2.05264 R14 5.33685 0.00401 0.00000 0.09779 0.09783 5.43469 R15 2.03011 0.00650 0.00000 0.01953 0.01943 2.04954 R16 2.02360 0.00657 0.00000 0.01982 0.01987 2.04347 R17 4.17573 -0.00273 0.00000 0.08675 0.08687 4.26260 R18 4.69624 0.00077 0.00000 0.06684 0.06680 4.76304 R19 4.67454 0.00048 0.00000 0.07281 0.07280 4.74734 R20 5.04959 0.00280 0.00000 0.10399 0.10411 5.15370 R21 4.50799 0.00105 0.00000 0.05155 0.05140 4.55939 R22 2.60006 0.01865 0.00000 0.01538 0.01543 2.61550 R23 2.02356 0.00800 0.00000 0.02015 0.02013 2.04369 R24 2.02912 0.00816 0.00000 0.01890 0.01891 2.04802 R25 2.02912 0.00816 0.00000 0.01890 0.01891 2.04803 R26 2.02347 0.00802 0.00000 0.02021 0.02019 2.04366 A1 2.00100 0.00014 0.00000 -0.00110 -0.00106 1.99994 A2 2.10873 -0.00146 0.00000 -0.00055 -0.00055 2.10818 A3 1.23409 -0.00020 0.00000 -0.01732 -0.01728 1.21682 A4 1.93388 0.00231 0.00000 -0.02073 -0.02064 1.91324 A5 2.09361 0.00112 0.00000 0.00359 0.00352 2.09713 A6 1.58440 -0.00042 0.00000 0.00854 0.00850 1.59290 A7 1.52718 -0.00028 0.00000 0.00850 0.00844 1.53562 A8 2.21773 0.00077 0.00000 0.00094 0.00089 2.21862 A9 1.62275 -0.00121 0.00000 0.00843 0.00836 1.63111 A10 0.74757 0.00287 0.00000 -0.00404 -0.00400 0.74357 A11 2.07545 -0.00008 0.00000 -0.00290 -0.00288 2.07257 A12 2.12013 0.00072 0.00000 0.00712 0.00711 2.12723 A13 2.06425 -0.00073 0.00000 -0.00506 -0.00508 2.05917 A14 2.11217 0.00052 0.00000 0.00030 0.00030 2.11247 A15 1.56755 0.00100 0.00000 -0.00032 -0.00031 1.56724 A16 2.12006 0.00071 0.00000 0.00716 0.00715 2.12721 A17 2.06426 -0.00073 0.00000 -0.00506 -0.00508 2.05917 A18 1.56746 0.00100 0.00000 -0.00029 -0.00028 1.56718 A19 2.07550 -0.00008 0.00000 -0.00294 -0.00292 2.07258 A20 2.11199 0.00052 0.00000 0.00038 0.00038 2.11238 A21 2.09379 0.00111 0.00000 0.00348 0.00341 2.09720 A22 2.10859 -0.00144 0.00000 -0.00042 -0.00042 2.10817 A23 1.62229 -0.00120 0.00000 0.00849 0.00843 1.63072 A24 2.21760 0.00078 0.00000 0.00099 0.00094 2.21853 A25 2.00128 0.00013 0.00000 -0.00132 -0.00128 2.00000 A26 1.52777 -0.00028 0.00000 0.00835 0.00829 1.53606 A27 1.58416 -0.00042 0.00000 0.00860 0.00856 1.59272 A28 1.93310 0.00231 0.00000 -0.02025 -0.02016 1.91294 A29 1.23381 -0.00019 0.00000 -0.01703 -0.01699 1.21682 A30 0.74745 0.00287 0.00000 -0.00398 -0.00394 0.74351 A31 0.79079 0.00332 0.00000 -0.00828 -0.00818 0.78261 A32 0.82533 0.00303 0.00000 -0.00756 -0.00750 0.81783 A33 1.57409 -0.00099 0.00000 0.00035 0.00033 1.57442 A34 1.45165 -0.00046 0.00000 -0.00424 -0.00427 1.44738 A35 2.07915 0.00202 0.00000 -0.01452 -0.01444 2.06472 A36 1.90474 0.00104 0.00000 -0.00008 -0.00010 1.90464 A37 0.72174 0.00217 0.00000 -0.00679 -0.00675 0.71498 A38 2.30499 0.00209 0.00000 -0.00558 -0.00553 2.29946 A39 1.36194 -0.00080 0.00000 -0.00780 -0.00779 1.35415 A40 1.40464 -0.00110 0.00000 -0.00475 -0.00476 1.39988 A41 1.72011 0.00001 0.00000 0.00359 0.00358 1.72370 A42 2.05355 0.00128 0.00000 -0.01346 -0.01343 2.04012 A43 1.30824 -0.00088 0.00000 -0.00819 -0.00819 1.30005 A44 2.09388 0.00010 0.00000 0.00265 0.00261 2.09650 A45 2.09023 0.00028 0.00000 0.00503 0.00496 2.09520 A46 2.01006 -0.00063 0.00000 0.00059 0.00049 2.01055 A47 1.90508 0.00104 0.00000 -0.00022 -0.00024 1.90483 A48 0.72170 0.00218 0.00000 -0.00672 -0.00669 0.71501 A49 0.82531 0.00304 0.00000 -0.00755 -0.00749 0.81781 A50 1.72096 0.00000 0.00000 0.00328 0.00328 1.72424 A51 1.30826 -0.00089 0.00000 -0.00824 -0.00823 1.30004 A52 2.05276 0.00129 0.00000 -0.01313 -0.01310 2.03965 A53 0.79081 0.00333 0.00000 -0.00828 -0.00818 0.78263 A54 2.30537 0.00209 0.00000 -0.00575 -0.00570 2.29967 A55 1.40538 -0.00111 0.00000 -0.00498 -0.00499 1.40039 A56 1.36102 -0.00080 0.00000 -0.00750 -0.00750 1.35352 A57 1.57409 -0.00100 0.00000 0.00027 0.00025 1.57434 A58 2.07950 0.00203 0.00000 -0.01467 -0.01458 2.06492 A59 1.45148 -0.00045 0.00000 -0.00408 -0.00411 1.44737 A60 2.09006 0.00029 0.00000 0.00515 0.00508 2.09514 A61 2.09388 0.00010 0.00000 0.00265 0.00261 2.09650 A62 2.01016 -0.00064 0.00000 0.00050 0.00040 2.01056 D1 -2.79324 -0.00006 0.00000 -0.01627 -0.01622 -2.80947 D2 0.58290 0.00054 0.00000 -0.01140 -0.01130 0.57159 D3 -0.09257 -0.00055 0.00000 -0.01148 -0.01146 -0.10402 D4 -2.99961 0.00005 0.00000 -0.00661 -0.00654 -3.00615 D5 1.95061 0.00084 0.00000 0.00746 0.00743 1.95803 D6 -0.95644 0.00144 0.00000 0.01233 0.01235 -0.94409 D7 1.45780 -0.00152 0.00000 0.00333 0.00331 1.46111 D8 -1.44924 -0.00092 0.00000 0.00820 0.00823 -1.44102 D9 -0.00003 0.00000 0.00000 0.00006 0.00006 0.00003 D10 2.90842 -0.00051 0.00000 -0.00448 -0.00452 2.90390 D11 0.71502 -0.00152 0.00000 -0.00281 -0.00287 0.71215 D12 -2.90853 0.00052 0.00000 0.00463 0.00467 -2.90386 D13 -0.00008 0.00000 0.00000 0.00009 0.00009 0.00002 D14 -2.19348 -0.00100 0.00000 0.00176 0.00175 -2.19174 D15 -0.71485 0.00152 0.00000 0.00285 0.00291 -0.71195 D16 2.19360 0.00100 0.00000 -0.00169 -0.00168 2.19192 D17 0.00020 0.00000 0.00000 -0.00002 -0.00002 0.00017 D18 -2.35679 0.00040 0.00000 -0.00064 -0.00060 -2.35740 D19 -1.33735 0.00024 0.00000 -0.00220 -0.00219 -1.33953 D20 2.15367 0.00001 0.00000 -0.00630 -0.00631 2.14736 D21 -1.95219 0.00047 0.00000 -0.00562 -0.00564 -1.95783 D22 0.05610 -0.00025 0.00000 -0.00920 -0.00919 0.04691 D23 1.77233 0.00038 0.00000 0.00570 0.00575 1.77807 D24 2.79177 0.00022 0.00000 0.00414 0.00417 2.79594 D25 -0.00040 0.00000 0.00000 0.00004 0.00004 -0.00036 D26 2.17693 0.00046 0.00000 0.00072 0.00071 2.17764 D27 -2.09797 -0.00027 0.00000 -0.00286 -0.00284 -2.10080 D28 2.99994 -0.00005 0.00000 0.00646 0.00639 3.00632 D29 -0.58169 -0.00056 0.00000 0.01071 0.01061 -0.57107 D30 1.44914 0.00092 0.00000 -0.00821 -0.00824 1.44090 D31 0.95708 -0.00144 0.00000 -0.01250 -0.01252 0.94457 D32 0.09294 0.00055 0.00000 0.01129 0.01127 0.10421 D33 2.79451 0.00004 0.00000 0.01554 0.01549 2.81000 D34 -1.45786 0.00152 0.00000 -0.00337 -0.00335 -1.46121 D35 -1.94991 -0.00084 0.00000 -0.00767 -0.00763 -1.95755 D36 -2.79145 -0.00023 0.00000 -0.00430 -0.00433 -2.79578 D37 -1.77197 -0.00039 0.00000 -0.00596 -0.00600 -1.77797 D38 -0.00040 0.00000 0.00000 0.00004 0.00004 -0.00036 D39 2.09715 0.00027 0.00000 0.00295 0.00292 2.10007 D40 -2.17781 -0.00045 0.00000 -0.00061 -0.00060 -2.17841 D41 1.33779 -0.00024 0.00000 0.00199 0.00197 1.33976 D42 2.35728 -0.00040 0.00000 0.00034 0.00030 2.35758 D43 -2.15434 -0.00002 0.00000 0.00633 0.00635 -2.14800 D44 -0.05679 0.00025 0.00000 0.00924 0.00923 -0.04757 D45 1.95143 -0.00047 0.00000 0.00568 0.00570 1.95714 D46 -0.37540 -0.00156 0.00000 0.00823 0.00813 -0.36727 D47 -0.81523 -0.00290 0.00000 0.00809 0.00804 -0.80719 D48 -0.33395 -0.00158 0.00000 0.00853 0.00842 -0.32552 D49 0.00020 0.00000 0.00000 -0.00002 -0.00002 0.00018 D50 -2.16846 -0.00188 0.00000 0.01562 0.01558 -2.15289 D51 1.43507 -0.00111 0.00000 -0.00479 -0.00483 1.43024 D52 0.00053 0.00000 0.00000 -0.00007 -0.00007 0.00046 D53 -0.43930 -0.00133 0.00000 -0.00021 -0.00016 -0.43946 D54 0.04198 -0.00002 0.00000 0.00023 0.00022 0.04220 D55 0.37613 0.00157 0.00000 -0.00832 -0.00822 0.36790 D56 -1.79253 -0.00032 0.00000 0.00732 0.00738 -1.78516 D57 1.81100 0.00045 0.00000 -0.01308 -0.01303 1.79796 D58 -0.04031 0.00002 0.00000 -0.00052 -0.00051 -0.04082 D59 -0.48014 -0.00131 0.00000 -0.00066 -0.00060 -0.48074 D60 0.00114 0.00000 0.00000 -0.00022 -0.00022 0.00092 D61 0.33529 0.00159 0.00000 -0.00877 -0.00866 0.32662 D62 -1.83337 -0.00030 0.00000 0.00687 0.00693 -1.82644 D63 1.77016 0.00047 0.00000 -0.01353 -0.01348 1.75668 D64 0.44016 0.00132 0.00000 0.00009 0.00004 0.44020 D65 0.00034 -0.00001 0.00000 -0.00005 -0.00005 0.00028 D66 0.48162 0.00131 0.00000 0.00039 0.00033 0.48195 D67 0.81576 0.00289 0.00000 -0.00816 -0.00812 0.80765 D68 -1.35290 0.00100 0.00000 0.00748 0.00748 -1.34541 D69 2.25064 0.00178 0.00000 -0.01293 -0.01293 2.23771 D70 -1.81047 -0.00045 0.00000 0.01313 0.01308 -1.79739 D71 -2.25029 -0.00178 0.00000 0.01299 0.01299 -2.23730 D72 -1.76901 -0.00047 0.00000 0.01343 0.01337 -1.75564 D73 -1.43487 0.00111 0.00000 0.00488 0.00493 -1.42994 D74 2.67966 -0.00077 0.00000 0.02052 0.02053 2.70018 D75 0.00001 0.00000 0.00000 0.00012 0.00012 0.00012 D76 1.79291 0.00032 0.00000 -0.00723 -0.00729 1.78562 D77 1.35308 -0.00101 0.00000 -0.00737 -0.00738 1.34570 D78 1.83436 0.00030 0.00000 -0.00693 -0.00699 1.82737 D79 2.16851 0.00189 0.00000 -0.01548 -0.01544 2.15307 D80 -0.00015 0.00000 0.00000 0.00016 0.00016 0.00001 D81 -2.67981 0.00078 0.00000 -0.02024 -0.02025 -2.70006 Item Value Threshold Converged? Maximum Force 0.018652 0.000450 NO RMS Force 0.003154 0.000300 NO Maximum Displacement 0.059451 0.001800 NO RMS Displacement 0.016192 0.001200 NO Predicted change in Energy=-1.908931D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.441500 -1.431395 0.494806 2 1 0 -0.119789 -1.060406 1.458233 3 1 0 -0.377831 -2.508170 0.381664 4 6 0 -1.314197 -0.702372 -0.287534 5 1 0 -1.857500 -1.211976 -1.078090 6 6 0 -1.314282 0.702315 -0.287410 7 6 0 -0.441637 1.431282 0.495046 8 1 0 -0.378148 2.508104 0.382276 9 1 0 -1.857658 1.211995 -1.077864 10 1 0 -0.119492 1.059913 1.458187 11 6 0 1.561105 0.692082 -0.233422 12 6 0 1.561191 -0.691980 -0.233046 13 1 0 1.447314 1.234527 -1.162073 14 1 0 2.062034 1.234964 0.559611 15 1 0 2.062202 -1.234314 0.560314 16 1 0 1.447582 -1.234935 -1.161404 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.081352 0.000000 3 H 1.084572 1.822527 0.000000 4 C 1.380264 2.145343 2.141380 0.000000 5 H 2.127722 3.078237 2.449575 1.086210 0.000000 6 C 2.434406 2.753410 3.410544 1.404688 2.141208 7 C 2.862678 2.690692 3.941599 2.434393 3.386183 8 H 3.941615 3.736133 5.016273 3.410570 4.261472 9 H 3.386193 3.823058 4.261424 2.141208 2.423971 10 H 2.690429 2.120318 3.735887 2.753272 3.822937 11 C 3.008305 2.959445 3.792020 3.196058 4.003218 12 C 2.255499 2.412852 2.726943 2.875923 3.559767 13 H 3.663333 3.819494 4.440952 3.484586 4.112691 14 H 3.658053 3.291898 4.471650 3.983699 4.902277 15 H 2.512301 2.365922 2.758330 3.521630 4.248403 16 H 2.519972 3.057713 2.708194 2.945283 3.306211 6 7 8 9 10 6 C 0.000000 7 C 1.380267 0.000000 8 H 2.141424 1.084570 0.000000 9 H 1.086208 2.127733 2.449665 0.000000 10 H 2.145345 1.081357 1.822565 3.078295 0.000000 11 C 2.875912 2.255673 2.727218 3.559681 2.412725 12 C 3.196148 3.008269 3.792122 4.003419 2.958731 13 H 2.945284 2.520495 2.709119 3.306122 3.057962 14 H 3.521458 2.512186 2.758046 4.248039 2.365826 15 H 3.983693 3.657714 4.471319 4.902382 3.290811 16 H 3.484924 3.663563 4.441461 4.113278 3.818940 11 12 13 14 15 11 C 0.000000 12 C 1.384062 0.000000 13 H 1.081475 2.141842 0.000000 14 H 1.083767 2.142956 1.828134 0.000000 15 H 2.142922 1.083770 3.072438 2.469278 0.000000 16 H 2.141829 1.081460 2.469462 3.072433 1.828133 16 16 H 0.000000 Stoichiometry C6H10 Framework group C1[X(C6H10)] Deg. of freedom 42 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.442081 1.431394 0.493468 2 1 0 0.122817 1.060371 1.457696 3 1 0 0.378073 2.508167 0.380506 4 6 0 1.312841 0.702428 -0.291080 5 1 0 1.854125 1.212072 -1.082993 6 6 0 1.312997 -0.702260 -0.290980 7 6 0 0.442363 -1.431284 0.493658 8 1 0 0.378643 -2.508107 0.381031 9 1 0 1.854405 -1.211898 -1.082810 10 1 0 0.122626 -1.059947 1.457614 11 6 0 -1.562245 -0.692172 -0.229749 12 6 0 -1.562400 0.691890 -0.229349 13 1 0 -1.450767 -1.234595 -1.158693 14 1 0 -2.061147 -1.235092 0.564534 15 1 0 -2.061438 1.234185 0.565280 16 1 0 -1.451157 1.234867 -1.157981 --------------------------------------------------------------------- Rotational constants (GHZ): 4.3592906 3.5079662 2.2842770 Standard basis: 6-31G(d) (6D, 7F) There are 110 symmetry adapted basis functions of A symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 110 basis functions, 208 primitive gaussians, 110 cartesian basis functions 23 alpha electrons 23 beta electrons nuclear repulsion energy 224.9026069665 Hartrees. NAtoms= 16 NActive= 16 NUniq= 16 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 110 RedAO= T NBF= 110 NBsUse= 110 1.00D-06 NBFU= 110 Initial guess read from the read-write file. B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 1.61D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=19757727. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -234.543753527 A.U. after 12 cycles Convg = 0.7386D-08 -V/T = 2.0100