Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 7912. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 01-Dec-2016 ****************************************** %chk=\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk Default route: MaxDisk=10GB -------------------------------------------------------------------- # opt pm6 geom=connectivity gfprint integral=grid=ultrafine pop=full -------------------------------------------------------------------- 1/14=-1,18=20,19=15,26=1,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=2,16=1,24=100,25=1,41=3900000,71=1,75=-5/1,2,3; 4/35=1/1; 5/5=2,35=1,38=5/2; 6/7=3,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=1/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=2,16=1,25=1,41=3900000,71=1,75=-5,135=20/1,2,3; 4/5=5,16=3,35=1/1; 5/5=2,35=1,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=1/3(-5); 2/9=110/2; 6/7=3,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C -3.94699 -0.39611 0.10855 C -2.20158 -0.27738 0.06128 H -4.54086 -1.18137 -0.57142 H -5.34408 0.59605 0.12535 H -1.42515 0.61685 0.82476 H -0.95503 -1.0482 0.12236 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.7501 estimate D2E/DX2 ! ! R2 R(1,3) 1.1965 estimate D2E/DX2 ! ! R3 R(1,4) 1.7136 estimate D2E/DX2 ! ! R4 R(2,5) 1.409 estimate D2E/DX2 ! ! R5 R(2,6) 1.4669 estimate D2E/DX2 ! ! A1 A(2,1,3) 121.6135 estimate D2E/DX2 ! ! A2 A(2,1,4) 140.7224 estimate D2E/DX2 ! ! A3 A(3,1,4) 88.9056 estimate D2E/DX2 ! ! A4 A(1,2,5) 125.3094 estimate D2E/DX2 ! ! A5 A(1,2,6) 144.1687 estimate D2E/DX2 ! ! A6 A(5,2,6) 80.9477 estimate D2E/DX2 ! ! D1 D(3,1,2,5) 179.9355 estimate D2E/DX2 ! ! D2 D(3,1,2,6) -49.4039 estimate D2E/DX2 ! ! D3 D(4,1,2,5) 44.1117 estimate D2E/DX2 ! ! D4 D(4,1,2,6) 174.7723 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 25 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.946991 -0.396115 0.108547 2 6 0 -2.201579 -0.277377 0.061285 3 1 0 -4.540862 -1.181371 -0.571416 4 1 0 -5.344082 0.596046 0.125353 5 1 0 -1.425148 0.616853 0.824757 6 1 0 -0.955026 -1.048195 0.122359 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.750085 0.000000 3 H 1.196519 2.586457 0.000000 4 H 1.713630 3.262254 2.071198 0.000000 5 H 2.810472 1.409035 3.858831 3.980910 0.000000 6 H 3.062230 1.466896 3.654760 4.686934 1.867288 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.870163 -0.040371 -0.113520 2 6 0 -0.864659 -0.005418 0.114451 3 1 0 1.515549 -1.017365 0.132684 4 1 0 2.265099 0.913041 0.172287 5 1 0 -1.698495 1.099605 -0.148267 6 1 0 -2.115175 -0.720545 -0.162296 --------------------------------------------------------------------- Rotational constants (GHZ): 126.1257004 15.1451087 13.7912495 Standard basis: VSTO-6G (5D, 7F) AO basis set (Overlap normalization): Atom C1 Shell 1 SP 6 bf 1 - 4 1.644369008438 -0.076289899127 -0.214520828715 0.1144763441D+02 -0.9737395526D-02 -0.8104943356D-02 0.3296335880D+01 -0.7265876782D-01 -0.1715478915D-01 0.1296531432D+01 -0.1716155198D+00 0.7369785762D-01 0.5925589305D+00 0.1289776243D+00 0.3965149986D+00 0.2948964381D+00 0.7288614510D+00 0.4978084880D+00 0.1514476222D+00 0.3013317422D+00 0.1174825823D+00 Atom C2 Shell 2 SP 6 bf 5 - 8 -1.633968919613 -0.010239480722 0.216281831854 0.1144763441D+02 -0.9737395526D-02 -0.8104943356D-02 0.3296335880D+01 -0.7265876782D-01 -0.1715478915D-01 0.1296531432D+01 -0.1716155198D+00 0.7369785762D-01 0.5925589305D+00 0.1289776243D+00 0.3965149986D+00 0.2948964381D+00 0.7288614510D+00 0.4978084880D+00 0.1514476222D+00 0.3013317422D+00 0.1174825823D+00 Atom H3 Shell 3 S 6 bf 9 - 9 2.863973273969 -1.922541847667 0.250736366534 0.4394614777D+01 -0.9737395526D-02 0.1265425314D+01 -0.7265876782D-01 0.4977234584D+00 -0.1716155198D+00 0.2274765370D+00 0.1289776243D+00 0.1132073403D+00 0.7288614510D+00 0.5813899490D-01 0.3013317422D+00 Atom H4 Shell 4 S 6 bf 10 - 10 4.280417709095 1.725397173725 0.325575886514 0.4394614777D+01 -0.9737395526D-02 0.1265425314D+01 -0.7265876782D-01 0.4977234584D+00 -0.1716155198D+00 0.2274765370D+00 0.1289776243D+00 0.1132073403D+00 0.7288614510D+00 0.5813899490D-01 0.3013317422D+00 Atom H5 Shell 5 S 6 bf 11 - 11 -3.209690608399 2.077952879823 -0.280183730233 0.4394614777D+01 -0.9737395526D-02 0.1265425314D+01 -0.7265876782D-01 0.4977234584D+00 -0.1716155198D+00 0.2274765370D+00 0.1289776243D+00 0.1132073403D+00 0.7288614510D+00 0.5813899490D-01 0.3013317422D+00 Atom H6 Shell 6 S 6 bf 12 - 12 -3.997100907617 -1.361631926788 -0.306694541644 0.4394614777D+01 -0.9737395526D-02 0.1265425314D+01 -0.7265876782D-01 0.4977234584D+00 -0.1716155198D+00 0.2274765370D+00 0.1289776243D+00 0.1132073403D+00 0.7288614510D+00 0.5813899490D-01 0.3013317422D+00 There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 24.0234204412 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Simple Huckel Guess. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.426362464486 A.U. after 15 cycles NFock= 14 Conv=0.86D-08 -V/T= 1.0699 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -0.73083 -0.64402 -0.46050 -0.40375 -0.35356 Alpha occ. eigenvalues -- -0.30135 Alpha virt. eigenvalues -- 0.00894 0.04587 0.11379 0.13749 0.17440 Alpha virt. eigenvalues -- 0.21142 Molecular Orbital Coefficients: 1 2 3 4 5 O O O O O Eigenvalues -- -0.73083 -0.64402 -0.46050 -0.40375 -0.35356 1 1 C 1S 0.67770 -0.39321 0.10756 0.12967 -0.13422 2 1PX -0.07799 -0.26121 -0.54312 0.21148 -0.10459 3 1PY -0.08510 0.12311 0.23993 0.47365 -0.47886 4 1PZ 0.03677 -0.01901 -0.03430 -0.04162 0.06624 5 2 C 1S 0.55338 0.57644 0.08888 -0.08988 -0.01699 6 1PX 0.13327 -0.24403 0.59471 -0.07035 0.07352 7 1PY 0.00236 0.05845 0.03990 0.55701 0.48690 8 1PZ -0.02831 -0.02632 0.02700 -0.04676 0.04696 9 3 H 1S 0.34920 -0.34616 -0.33153 -0.17058 0.26763 10 4 H 1S 0.14179 -0.16291 -0.12078 0.39233 -0.42385 11 5 H 1S 0.18315 0.34238 -0.19510 0.38081 0.34156 12 6 H 1S 0.16021 0.31954 -0.32901 -0.24264 -0.35277 6 7 8 9 10 O V V V V Eigenvalues -- -0.30135 0.00894 0.04587 0.11379 0.13749 1 1 C 1S -0.17849 0.14816 -0.35694 0.04844 0.17920 2 1PX 0.12117 0.14246 0.00839 -0.47059 -0.17599 3 1PY 0.04752 0.05717 -0.37457 -0.27600 -0.05516 4 1PZ 0.65409 -0.63471 -0.34437 -0.05912 0.08503 5 2 C 1S 0.19269 0.09094 0.28858 -0.39581 -0.22307 6 1PX 0.08396 -0.13935 0.13031 0.05118 -0.16089 7 1PY -0.01214 0.01004 -0.11955 0.23539 -0.58880 8 1PZ 0.65176 0.68317 -0.06851 0.28718 0.10174 9 3 H 1S 0.04211 -0.05673 0.03904 -0.06581 -0.16491 10 4 H 1S 0.18980 -0.20952 0.62116 0.35861 0.02480 11 5 H 1S -0.07727 -0.06374 -0.02646 0.11095 0.60525 12 6 H 1S -0.10239 -0.07703 -0.32608 0.50411 -0.31596 11 12 V V Eigenvalues -- 0.17440 0.21142 1 1 C 1S -0.19935 -0.29036 2 1PX 0.39813 -0.35926 3 1PY 0.07454 0.48558 4 1PZ -0.12310 -0.12584 5 2 C 1S -0.07402 -0.06807 6 1PX 0.69549 -0.05476 7 1PY -0.14475 -0.10038 8 1PZ 0.04093 0.05175 9 3 H 1S 0.04857 0.71217 10 4 H 1S -0.09599 0.03178 11 5 H 1S 0.39340 0.07316 12 6 H 1S 0.32077 -0.03261 Density Matrix: 1 2 3 4 5 1 1 C 1S 1.38428 2 1PX 0.02254 0.87927 3 1PY 0.07387 0.00036 1.07174 4 1PZ -0.20466 0.16851 -0.06810 0.87368 5 2 C 1S 0.22831 -0.47177 0.03983 0.26999 1.38383 6 1PX 0.43252 -0.56408 0.07354 0.10371 0.01437 7 1PY -0.01610 0.05656 0.09333 -0.00253 -0.04427 8 1PZ -0.26926 0.11719 -0.01604 0.85980 0.20111 9 3 H 1S 0.54310 0.36857 -0.71766 0.16633 -0.03374 10 4 H 1S 0.44207 0.49479 0.67342 0.18440 -0.03534 11 5 H 1S -0.02833 0.07539 -0.01422 -0.07369 0.45292 12 6 H 1S -0.03660 0.11182 -0.00821 -0.13827 0.50336 6 7 8 9 10 6 1PX 0.89678 7 1PY 0.01075 1.10499 8 1PZ 0.16034 -0.02325 0.86281 9 3 H 1S -0.06188 0.00430 0.07654 0.90836 10 4 H 1S -0.11201 -0.00830 0.16493 -0.05284 0.86165 11 5 H 1S -0.36667 0.78403 -0.14318 0.06664 -0.03256 12 6 H 1S -0.53951 -0.59949 -0.18756 -0.00585 0.09058 11 12 11 5 H 1S 0.91297 12 6 H 1S -0.00409 0.85964 Full Mulliken population analysis: 1 2 3 4 5 1 1 C 1S 1.38428 2 1PX 0.00000 0.87927 3 1PY 0.00000 0.00000 1.07174 4 1PZ 0.00000 0.00000 0.00000 0.87368 5 2 C 1S 0.00000 0.00000 0.00000 0.00000 1.38383 6 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 7 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 8 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 9 3 H 1S 0.00000 0.00000 0.00000 0.00000 0.00000 10 4 H 1S 0.00000 0.00000 0.00000 0.00000 0.00000 11 5 H 1S 0.00000 0.00000 0.00000 0.00000 0.00000 12 6 H 1S 0.00000 0.00000 0.00000 0.00000 0.00000 6 7 8 9 10 6 1PX 0.89678 7 1PY 0.00000 1.10499 8 1PZ 0.00000 0.00000 0.86281 9 3 H 1S 0.00000 0.00000 0.00000 0.90836 10 4 H 1S 0.00000 0.00000 0.00000 0.00000 0.86165 11 5 H 1S 0.00000 0.00000 0.00000 0.00000 0.00000 12 6 H 1S 0.00000 0.00000 0.00000 0.00000 0.00000 11 12 11 5 H 1S 0.91297 12 6 H 1S 0.00000 0.85964 Gross orbital populations: 1 1 1 C 1S 1.38428 2 1PX 0.87927 3 1PY 1.07174 4 1PZ 0.87368 5 2 C 1S 1.38383 6 1PX 0.89678 7 1PY 1.10499 8 1PZ 0.86281 9 3 H 1S 0.90836 10 4 H 1S 0.86165 11 5 H 1S 0.91297 12 6 H 1S 0.85964 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.208971 0.000000 0.000000 0.000000 0.000000 0.000000 2 C 0.000000 4.248406 0.000000 0.000000 0.000000 0.000000 3 H 0.000000 0.000000 0.908361 0.000000 0.000000 0.000000 4 H 0.000000 0.000000 0.000000 0.861651 0.000000 0.000000 5 H 0.000000 0.000000 0.000000 0.000000 0.912968 0.000000 6 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.859643 Mulliken charges: 1 1 C -0.208971 2 C -0.248406 3 H 0.091639 4 H 0.138349 5 H 0.087032 6 H 0.140357 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.021017 2 C -0.021017 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0531 Y= 0.0664 Z= -0.0075 Tot= 0.0854 N-N= 2.402342044118D+01 E-N=-3.530630754565D+01 KE=-6.099791993189D+00 Orbital energies and kinetic energies (alpha): 1 2 1 O -0.730826 -0.747823 2 O -0.644017 -0.672504 3 O -0.460504 -0.461846 4 O -0.403754 -0.434453 5 O -0.353555 -0.406781 6 O -0.301352 -0.326489 7 V 0.008941 -0.260035 8 V 0.045873 -0.322096 9 V 0.113788 -0.256243 10 V 0.137487 -0.248005 11 V 0.174398 -0.184281 12 V 0.211419 -0.200409 Total kinetic energy from orbitals=-6.099791993189D+00 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.067259546 0.020119871 -0.041001812 2 6 -0.030543995 0.016643419 0.071793071 3 1 0.042721299 0.032513203 0.034085232 4 1 0.106040820 -0.053772362 0.004180358 5 1 -0.074608931 -0.055892901 -0.056580008 6 1 -0.110868738 0.040388770 -0.012476842 ------------------------------------------------------------------- Cartesian Forces: Max 0.110868738 RMS 0.056343300 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.215441519 RMS 0.079068651 Search for a local minimum. Step number 1 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 R4 R5 R1 0.15802 R2 0.00000 0.24921 R3 0.00000 0.00000 0.07212 R4 0.00000 0.00000 0.00000 0.14055 R5 0.00000 0.00000 0.00000 0.00000 0.12234 A1 0.00000 0.00000 0.00000 0.00000 0.00000 A2 0.00000 0.00000 0.00000 0.00000 0.00000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 A4 0.00000 0.00000 0.00000 0.00000 0.00000 A5 0.00000 0.00000 0.00000 0.00000 0.00000 A6 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 A1 A2 A3 A4 A5 A1 0.16000 A2 0.00000 0.16000 A3 0.00000 0.00000 0.16000 A4 0.00000 0.00000 0.00000 0.16000 A5 0.00000 0.00000 0.00000 0.00000 0.16000 A6 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 A6 D1 D2 D3 D4 A6 0.16000 D1 0.00000 0.00230 D2 0.00000 0.00000 0.00230 D3 0.00000 0.00000 0.00000 0.00230 D4 0.00000 0.00000 0.00000 0.00000 0.00230 ITU= 0 Eigenvalues --- 0.00230 0.01066 0.01088 0.07212 0.12234 Eigenvalues --- 0.14055 0.15802 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.24921 RFO step: Lambda=-2.44822824D-01 EMin= 2.30000000D-03 Linear search not attempted -- first point. Maximum step size ( 0.300) exceeded in Quadratic search. -- Step size scaled by 0.373 Iteration 1 RMS(Cart)= 0.11591842 RMS(Int)= 0.00079876 Iteration 2 RMS(Cart)= 0.00105822 RMS(Int)= 0.00000392 Iteration 3 RMS(Cart)= 0.00000072 RMS(Int)= 0.00000388 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.30718 -0.21544 0.00000 -0.19970 -0.19970 3.10748 R2 2.26109 -0.06191 0.00000 -0.04679 -0.04679 2.21430 R3 3.23829 -0.11755 0.00000 -0.13849 -0.13849 3.09980 R4 2.66269 -0.10724 0.00000 -0.10391 -0.10391 2.55878 R5 2.77203 -0.11596 0.00000 -0.11793 -0.11793 2.65410 A1 2.12256 -0.00380 0.00000 -0.00349 -0.00350 2.11906 A2 2.45607 -0.03247 0.00000 -0.02993 -0.02994 2.42613 A3 1.55170 0.02961 0.00000 0.02733 0.02732 1.57902 A4 2.18706 -0.01317 0.00000 -0.01194 -0.01194 2.17512 A5 2.51622 -0.03353 0.00000 -0.03074 -0.03075 2.48547 A6 1.41280 0.03892 0.00000 0.03613 0.03612 1.44893 D1 3.14047 -0.00165 0.00000 -0.00243 -0.00243 3.13803 D2 -0.86226 0.00116 0.00000 0.00168 0.00168 -0.86058 D3 0.76989 -0.00186 0.00000 -0.00273 -0.00274 0.76716 D4 3.05035 0.00095 0.00000 0.00138 0.00138 3.05173 Item Value Threshold Converged? Maximum Force 0.215442 0.000450 NO RMS Force 0.079069 0.000300 NO Maximum Displacement 0.255619 0.001800 NO RMS Displacement 0.115575 0.001200 NO Predicted change in Energy=-8.536902D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.890526 -0.397858 0.113069 2 6 0 -2.251978 -0.269277 0.060986 3 1 0 -4.464009 -1.170956 -0.555100 4 1 0 -5.208815 0.577933 0.139167 5 1 0 -1.524722 0.601779 0.799773 6 1 0 -1.073639 -1.031779 0.112989 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.644410 0.000000 3 H 1.171757 2.466915 0.000000 4 H 1.640346 3.076810 2.023699 0.000000 5 H 2.658546 1.354048 3.690214 3.742928 0.000000 6 H 2.887336 1.404492 3.458370 4.437515 1.828568 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.815919 -0.041379 -0.111726 2 6 0 -0.812647 -0.001644 0.112497 3 1 0 1.443058 -1.000139 0.134222 4 1 0 2.127347 0.904097 0.165709 5 1 0 -1.598908 1.070068 -0.145713 6 1 0 -1.991129 -0.715891 -0.158848 --------------------------------------------------------------------- Rotational constants (GHZ): 130.5054938 17.1077440 15.4516696 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 24.5742421623 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999998 0.002013 -0.000201 -0.000805 Ang= 0.25 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.333947737290 A.U. after 14 cycles NFock= 13 Conv=0.29D-08 -V/T= 1.0536 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.084181993 0.035462715 -0.051636619 2 6 -0.055041955 0.007697408 0.083032257 3 1 0.035648978 0.024888737 0.032504217 4 1 0.108166968 -0.058243728 0.006444164 5 1 -0.067667030 -0.049906387 -0.054637228 6 1 -0.105288954 0.040101256 -0.015706791 ------------------------------------------------------------------- Cartesian Forces: Max 0.108166968 RMS 0.058722430 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.227751807 RMS 0.079805719 Search for a local minimum. Step number 2 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -9.24D-02 DEPred=-8.54D-02 R= 1.08D+00 TightC=F SS= 1.41D+00 RLast= 3.00D-01 DXNew= 5.0454D-01 9.0009D-01 Trust test= 1.08D+00 RLast= 3.00D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 -0.13586 R2 0.13299 0.11175 R3 -0.09358 0.04254 0.04231 R4 0.11627 -0.13331 0.03722 0.01028 R5 0.05293 -0.08387 0.01700 -0.08350 0.06637 A1 0.07647 -0.06073 0.02441 -0.05754 -0.03403 A2 0.00418 -0.01750 0.00137 -0.01795 -0.01285 A3 -0.02582 0.03296 -0.00827 0.03244 0.02115 A4 0.04130 -0.03760 0.01320 -0.03608 -0.02210 A5 0.03727 -0.04344 0.01193 -0.04250 -0.02732 A6 -0.02630 0.03753 -0.00844 0.03717 0.02460 D1 0.01141 -0.00883 0.00364 -0.00834 -0.00490 D2 0.11495 -0.08878 0.03669 -0.08386 -0.04920 D3 -0.10752 0.08303 -0.03432 0.07843 0.04601 D4 -0.00398 0.00308 -0.00127 0.00291 0.00171 A1 A2 A3 A4 A5 A1 0.13127 A2 -0.00637 0.15679 A3 0.01391 0.00467 0.15187 A4 -0.01714 -0.00441 0.00883 0.14957 A5 -0.01868 -0.00590 0.01059 -0.01174 0.14613 A6 0.01551 0.00555 -0.00937 0.00997 0.01215 D1 -0.00421 -0.00090 0.00201 -0.00250 -0.00271 D2 -0.04234 -0.00906 0.02022 -0.02515 -0.02722 D3 0.03960 0.00847 -0.01891 0.02352 0.02546 D4 0.00147 0.00032 -0.00070 0.00087 0.00095 A6 D1 D2 D3 D4 A6 0.14915 D1 0.00224 0.00168 D2 0.02248 -0.00621 -0.06015 D3 -0.02102 0.00581 0.05840 -0.05232 D4 -0.00078 0.00022 0.00217 -0.00203 0.00222 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- -0.56334 0.00057 0.00232 0.01146 0.04338 Eigenvalues --- 0.08496 0.12902 0.15503 0.15996 0.16000 Eigenvalues --- 0.16000 0.22376 RFO step: Lambda=-5.71553102D-01 EMin=-5.63335538D-01 I= 1 Eig= -5.63D-01 Dot1= -3.49D-02 I= 1 Stepn= -6.00D-01 RXN= 6.00D-01 EDone=F Mixed 1 eigenvectors in step. Raw Step.Grad= 3.49D-02. RFO eigenvector is Hessian eigenvector with negative curvature. Taking step of 6.00D-01 in eigenvector direction(s). Step.Grad= 3.89D-02. Skip linear search -- no minimum in search direction. Maximum step size ( 0.505) exceeded in Quadratic search. -- Step size not scaled. Iteration 1 RMS(Cart)= 0.09564036 RMS(Int)= 0.03740202 Iteration 2 RMS(Cart)= 0.03825334 RMS(Int)= 0.00414118 Iteration 3 RMS(Cart)= 0.00007824 RMS(Int)= 0.00413855 Iteration 4 RMS(Cart)= 0.00000038 RMS(Int)= 0.00413855 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.10748 -0.22775 0.00000 -0.32513 -0.32513 2.78236 R2 2.21430 -0.05240 0.00000 0.21462 0.21462 2.42892 R3 3.09980 -0.12147 0.00000 -0.11779 -0.11779 2.98202 R4 2.55878 -0.09826 0.00000 0.23307 0.23307 2.79185 R5 2.65410 -0.11069 0.00000 0.13877 0.13877 2.79288 A1 2.11906 0.00074 0.00000 0.12324 0.11646 2.23552 A2 2.42613 -0.03150 0.00000 0.02997 0.02341 2.44954 A3 1.57902 0.02745 0.00000 -0.04663 -0.05382 1.52520 A4 2.17512 -0.01048 0.00000 0.07476 0.06871 2.24383 A5 2.48547 -0.03061 0.00000 0.07894 0.07332 2.55879 A6 1.44893 0.03651 0.00000 -0.05341 -0.05985 1.38908 D1 3.13803 -0.00099 0.00000 0.02155 0.02163 -3.12352 D2 -0.86058 0.00785 0.00000 0.21594 0.21774 -0.64284 D3 0.76716 -0.00811 0.00000 -0.20173 -0.20353 0.56363 D4 3.05173 0.00072 0.00000 -0.00735 -0.00742 3.04431 Item Value Threshold Converged? Maximum Force 0.227752 0.000450 NO RMS Force 0.079806 0.000300 NO Maximum Displacement 0.208854 0.001800 NO RMS Displacement 0.108203 0.001200 NO Predicted change in Energy=-1.361988D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.824728 -0.374135 0.063099 2 6 0 -2.355174 -0.287728 0.091121 3 1 0 -4.557367 -1.217712 -0.572263 4 1 0 -5.098294 0.553066 0.155087 5 1 0 -1.502561 0.663523 0.833307 6 1 0 -1.075564 -1.027172 0.100534 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.472359 0.000000 3 H 1.285328 2.480847 0.000000 4 H 1.578015 2.869796 1.989294 0.000000 5 H 2.657520 1.477385 3.853117 3.660802 0.000000 6 H 2.825910 1.477927 3.551326 4.322324 1.891489 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.741521 -0.020636 -0.076076 2 6 0 -0.722280 -0.022709 0.082421 3 1 0 1.556019 -1.004419 0.068261 4 1 0 1.981679 0.938483 0.103449 5 1 0 -1.670034 1.095697 -0.100879 6 1 0 -1.983109 -0.769686 -0.108903 --------------------------------------------------------------------- Rotational constants (GHZ): 129.9011095 19.2753611 16.9766603 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 24.8051251026 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999888 -0.004280 -0.004622 -0.013568 Ang= -1.71 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.307640198422 A.U. after 13 cycles NFock= 13 Conv=0.54D-08 -V/T= 1.0494 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.035394970 0.011937450 -0.049978746 2 6 -0.012023894 0.018930823 0.074173334 3 1 0.061058449 0.046098104 0.043512864 4 1 0.109524831 -0.057705293 0.002598298 5 1 -0.079768308 -0.061392411 -0.057845134 6 1 -0.114186049 0.042131327 -0.012460616 ------------------------------------------------------------------- Cartesian Forces: Max 0.114186049 RMS 0.058415910 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.205531651 RMS 0.080092405 Search for a local minimum. Step number 3 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 2 3 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.05340 R2 -0.01305 0.24066 R3 -0.03448 0.00418 0.06402 R4 -0.01985 -0.02791 -0.00513 0.10820 R5 -0.02767 -0.02179 -0.00823 -0.02553 0.10070 A1 0.01145 -0.01256 0.00321 -0.01081 -0.00632 A2 -0.00336 -0.01649 -0.00314 -0.01264 -0.00961 A3 0.00595 0.00847 0.00166 0.00959 0.00762 A4 0.00508 -0.01249 0.00061 -0.01009 -0.00665 A5 0.00414 -0.02532 -0.00175 -0.01883 -0.01315 A6 0.00430 0.01742 0.00269 0.01524 0.01155 D1 0.00039 -0.00161 -0.00038 -0.00044 -0.00019 D2 0.00239 -0.01363 -0.00370 -0.00317 -0.00117 D3 -0.00239 0.01296 0.00346 0.00306 0.00115 D4 -0.00038 0.00094 0.00014 0.00034 0.00017 A1 A2 A3 A4 A5 A1 0.15386 A2 -0.00318 0.15851 A3 0.00299 0.00339 0.15721 A4 -0.00434 -0.00212 0.00275 0.15701 A5 -0.00638 -0.00237 0.00502 -0.00409 0.15535 A6 0.00456 0.00329 -0.00423 0.00349 0.00518 D1 -0.00026 -0.00008 0.00016 -0.00016 -0.00019 D2 -0.00222 -0.00110 0.00131 -0.00155 -0.00214 D3 0.00211 0.00100 -0.00124 0.00145 0.00197 D4 0.00015 -0.00002 -0.00010 0.00007 0.00002 A6 D1 D2 D3 D4 A6 0.15485 D1 0.00018 0.00243 D2 0.00175 0.00128 0.01525 D3 -0.00163 -0.00120 -0.01211 0.01362 D4 -0.00006 -0.00005 -0.00044 0.00041 0.00232 ITU= 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00026 0.00231 0.00634 0.02535 0.06518 Eigenvalues --- 0.09827 0.12903 0.15657 0.15999 0.16000 Eigenvalues --- 0.16264 0.25793 RFO could not converge Lambda in 999 iterations. Quartic linear search produced a step of 0.39796. Iteration 1 RMS(Cart)= 0.04195634 RMS(Int)= 0.00270494 Iteration 2 RMS(Cart)= 0.00135630 RMS(Int)= 0.00206272 Iteration 3 RMS(Cart)= 0.00000307 RMS(Int)= 0.00206272 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00206272 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.78236 -0.20553 -0.12939 0.00000 -0.12939 2.65297 R2 2.42892 -0.08657 0.08541 0.00000 0.08541 2.51433 R3 2.98202 -0.12215 -0.04688 0.00000 -0.04688 2.93514 R4 2.79185 -0.11462 0.09275 0.00000 0.09275 2.88461 R5 2.79288 -0.12002 0.05523 0.00000 0.05523 2.84810 A1 2.23552 -0.00479 0.04635 0.00000 0.04291 2.27842 A2 2.44954 -0.02733 0.00932 0.00000 0.00594 2.45548 A3 1.52520 0.03115 -0.02142 0.00000 -0.02500 1.50020 A4 2.24383 -0.01174 0.02734 0.00000 0.02435 2.26818 A5 2.55879 -0.02668 0.02918 0.00000 0.02635 2.58515 A6 1.38908 0.03642 -0.02382 0.00000 -0.02695 1.36213 D1 -3.12352 -0.00093 0.00861 0.00000 0.00863 -3.11489 D2 -0.64284 0.00692 0.08665 0.00000 0.08739 -0.55545 D3 0.56363 -0.00738 -0.08100 0.00000 -0.08173 0.48189 D4 3.04431 0.00048 -0.00295 0.00000 -0.00298 3.04133 Item Value Threshold Converged? Maximum Force 0.205532 0.000450 NO RMS Force 0.080092 0.000300 NO Maximum Displacement 0.085274 0.001800 NO RMS Displacement 0.042448 0.001200 NO Predicted change in Energy=-4.113645D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.797630 -0.367059 0.044731 2 6 0 -2.396697 -0.294967 0.100353 3 1 0 -4.595156 -1.231073 -0.577947 4 1 0 -5.053169 0.540012 0.160082 5 1 0 -1.494329 0.685309 0.845268 6 1 0 -1.076708 -1.022381 0.098397 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.403889 0.000000 3 H 1.330524 2.483869 0.000000 4 H 1.553210 2.785247 1.972614 0.000000 5 H 2.655849 1.526469 3.913207 3.627110 0.000000 6 H 2.799240 1.507151 3.588936 4.272834 1.910086 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.711569 -0.013172 -0.062201 2 6 0 -0.685896 -0.031002 0.070757 3 1 0 1.603236 -0.994776 0.045873 4 1 0 1.920134 0.951903 0.080832 5 1 0 -1.700122 1.098890 -0.086721 6 1 0 -1.977282 -0.790975 -0.091320 --------------------------------------------------------------------- Rotational constants (GHZ): 129.9927620 20.2059228 17.6325806 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 24.9360058566 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999978 -0.000869 -0.001472 -0.006362 Ang= -0.75 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.304771176983 A.U. after 13 cycles NFock= 12 Conv=0.33D-08 -V/T= 1.0488 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.008883792 0.004320504 -0.046726535 2 6 0.029258453 0.022627946 0.069618732 3 1 0.069372884 0.051322234 0.044669609 4 1 0.108703143 -0.056870924 0.000764803 5 1 -0.082241352 -0.063291752 -0.057136480 6 1 -0.116209336 0.041891993 -0.011190129 ------------------------------------------------------------------- Cartesian Forces: Max 0.116209336 RMS 0.058882105 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.168721725 RMS 0.075169385 Search for a local minimum. Step number 4 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 4 DE= -2.87D-03 DEPred=-4.11D-03 R= 6.97D-01 TightC=F SS= 1.41D+00 RLast= 2.38D-01 DXNew= 8.4853D-01 7.1500D-01 Trust test= 6.97D-01 RLast= 2.38D-01 DXMaxT set to 7.15D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.24995 R2 -0.03111 0.19714 R3 -0.02705 0.00143 0.06420 R4 -0.01697 -0.05174 -0.00610 0.09594 R5 -0.02915 -0.03461 -0.00888 -0.03231 0.09699 A1 0.00281 -0.01630 0.00268 -0.01331 -0.00756 A2 0.00250 -0.01027 -0.00261 -0.00903 -0.00771 A3 0.00430 0.01614 0.00194 0.01348 0.00978 A4 0.00266 -0.01204 0.00053 -0.01000 -0.00656 A5 0.00791 -0.01926 -0.00131 -0.01544 -0.01134 A6 0.00003 0.02020 0.00263 0.01642 0.01226 D1 -0.00032 -0.00136 -0.00040 -0.00036 -0.00014 D2 -0.00135 -0.01409 -0.00387 -0.00364 -0.00138 D3 0.00094 0.01326 0.00361 0.00342 0.00130 D4 -0.00010 0.00053 0.00013 0.00014 0.00006 A1 A2 A3 A4 A5 A1 0.15378 A2 -0.00276 0.15768 A3 0.00382 0.00222 0.15597 A4 -0.00421 -0.00222 0.00273 0.15703 A5 -0.00590 -0.00321 0.00392 -0.00417 0.15452 A6 0.00499 0.00281 -0.00459 0.00353 0.00476 D1 -0.00021 -0.00013 0.00013 -0.00016 -0.00023 D2 -0.00214 -0.00109 0.00147 -0.00149 -0.00209 D3 0.00203 0.00101 -0.00137 0.00141 0.00195 D4 0.00010 0.00005 -0.00004 0.00007 0.00008 A6 D1 D2 D3 D4 A6 0.15482 D1 0.00018 0.00243 D2 0.00187 0.00130 0.01531 D3 -0.00174 -0.00121 -0.01216 0.01367 D4 -0.00005 -0.00004 -0.00045 0.00042 0.00232 ITU= 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00010 0.00231 0.00504 0.03611 0.06364 Eigenvalues --- 0.12608 0.15355 0.15945 0.16000 0.16000 Eigenvalues --- 0.21901 0.27207 RFO step: Lambda=-2.73230136D-01 EMin= 9.71015873D-05 Quartic linear search produced a step of -0.05331. Maximum step size ( 0.715) exceeded in Quadratic search. -- Step size scaled by 0.749 Iteration 1 RMS(Cart)= 0.18217221 RMS(Int)= 0.06761082 Iteration 2 RMS(Cart)= 0.08174578 RMS(Int)= 0.00020422 Iteration 3 RMS(Cart)= 0.00023983 RMS(Int)= 0.00011200 Iteration 4 RMS(Cart)= 0.00000003 RMS(Int)= 0.00011200 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.65297 -0.16872 0.00690 -0.30435 -0.29745 2.35552 R2 2.51433 -0.09582 -0.00455 -0.24786 -0.25242 2.26191 R3 2.93514 -0.12103 0.00250 -0.30941 -0.30691 2.62823 R4 2.88461 -0.11714 -0.00494 -0.33626 -0.34121 2.54340 R5 2.84810 -0.12198 -0.00294 -0.34148 -0.34443 2.50368 A1 2.27842 -0.00700 -0.00229 -0.03612 -0.03859 2.23983 A2 2.45548 -0.02536 -0.00032 -0.06382 -0.06431 2.39117 A3 1.50020 0.03181 0.00133 0.09224 0.09338 1.59358 A4 2.26818 -0.01216 -0.00130 -0.04013 -0.04159 2.22659 A5 2.58515 -0.02515 -0.00140 -0.07379 -0.07535 2.50980 A6 1.36213 0.03593 0.00144 0.10391 0.10518 1.46730 D1 -3.11489 -0.00104 -0.00046 -0.00561 -0.00607 -3.12097 D2 -0.55545 0.00612 -0.00466 -0.01000 -0.01462 -0.57007 D3 0.48189 -0.00668 0.00436 0.00652 0.01084 0.49273 D4 3.04133 0.00048 0.00016 0.00214 0.00229 3.04363 Item Value Threshold Converged? Maximum Force 0.168722 0.000450 NO RMS Force 0.075169 0.000300 NO Maximum Displacement 0.503796 0.001800 NO RMS Displacement 0.255134 0.001200 NO Predicted change in Energy=-1.979448D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.708229 -0.367238 0.059863 2 6 0 -2.465327 -0.280381 0.096978 3 1 0 -4.379249 -1.171558 -0.519356 4 1 0 -4.792356 0.495094 0.183839 5 1 0 -1.725222 0.618597 0.771928 6 1 0 -1.343306 -0.984671 0.077632 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.246485 0.000000 3 H 1.196952 2.199354 0.000000 4 H 1.390798 2.454377 1.855497 0.000000 5 H 2.326204 1.345911 3.451946 3.125447 0.000000 6 H 2.444259 1.324889 3.099721 3.754588 1.788400 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.628417 -0.018395 -0.061505 2 6 0 -0.611169 -0.019594 0.069456 3 1 0 1.388039 -0.936160 0.054144 4 1 0 1.665056 0.898399 0.077010 5 1 0 -1.453848 1.018337 -0.085680 6 1 0 -1.702736 -0.752644 -0.093178 --------------------------------------------------------------------- Rotational constants (GHZ): 147.1048970 26.4082330 22.6213465 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 26.4094824968 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999996 0.002471 0.000917 0.000858 Ang= 0.32 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.147145797277 A.U. after 12 cycles NFock= 11 Conv=0.22D-08 -V/T= 1.0222 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.188949609 0.011658006 -0.050226413 2 6 0.211726236 0.029846769 0.080877475 3 1 0.034614994 0.023738063 0.027570528 4 1 0.089109962 -0.051828532 0.002010823 5 1 -0.058703044 -0.047382452 -0.047388077 6 1 -0.087798539 0.033968146 -0.012844337 ------------------------------------------------------------------- Cartesian Forces: Max 0.211726236 RMS 0.081900133 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.101417082 RMS 0.048885864 Search for a local minimum. Step number 5 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 4 5 DE= -1.58D-01 DEPred=-1.98D-01 R= 7.96D-01 TightC=F SS= 1.41D+00 RLast= 7.17D-01 DXNew= 1.2025D+00 2.1521D+00 Trust test= 7.96D-01 RLast= 7.17D-01 DXMaxT set to 1.20D+00 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.60626 R2 0.05494 0.21578 R3 -0.00606 0.00776 0.06470 R4 0.05913 -0.03794 0.00107 0.10242 R5 0.04021 -0.02139 -0.00272 -0.02504 0.10467 A1 0.03850 -0.01102 0.00674 -0.01281 -0.00611 A2 0.00639 -0.00923 -0.00244 -0.00797 -0.00678 A3 -0.01832 0.01181 -0.00006 0.01107 0.00725 A4 0.02605 -0.00822 0.00298 -0.00893 -0.00503 A5 0.02060 -0.01741 0.00014 -0.01530 -0.01086 A6 -0.01976 0.01652 0.00082 0.01454 0.01022 D1 0.00228 -0.00110 -0.00003 -0.00059 -0.00023 D2 0.03304 -0.00969 0.00045 -0.00464 -0.00112 D3 -0.03107 0.00915 -0.00040 0.00433 0.00105 D4 -0.00031 0.00056 0.00007 0.00028 0.00016 A1 A2 A3 A4 A5 A1 0.15215 A2 -0.00220 0.15772 A3 0.00332 0.00192 0.15681 A4 -0.00473 -0.00188 0.00222 0.15700 A5 -0.00651 -0.00302 0.00375 -0.00437 0.15429 A6 0.00472 0.00254 -0.00391 0.00318 0.00468 D1 -0.00052 -0.00008 0.00016 -0.00030 -0.00034 D2 -0.00478 -0.00052 0.00136 -0.00258 -0.00307 D3 0.00447 0.00048 -0.00126 0.00241 0.00285 D4 0.00021 0.00004 -0.00007 0.00013 0.00012 A6 D1 D2 D3 D4 A6 0.15535 D1 0.00023 0.00239 D2 0.00197 0.00088 0.01150 D3 -0.00182 -0.00082 -0.00864 0.01041 D4 -0.00008 -0.00003 -0.00031 0.00030 0.00231 ITU= 1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00039 0.00231 0.00595 0.04652 0.06395 Eigenvalues --- 0.12674 0.15363 0.15870 0.16000 0.16046 Eigenvalues --- 0.23301 0.62942 RFO step: Lambda=-1.31875086D-01 EMin= 3.94738976D-04 Quartic linear search produced a step of 0.46434. Iteration 1 RMS(Cart)= 0.10906173 RMS(Int)= 0.14235131 Iteration 2 RMS(Cart)= 0.08984580 RMS(Int)= 0.05233348 Iteration 3 RMS(Cart)= 0.04960225 RMS(Int)= 0.00049848 Iteration 4 RMS(Cart)= 0.00005584 RMS(Int)= 0.00049145 Iteration 5 RMS(Cart)= 0.00000002 RMS(Int)= 0.00049145 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.35552 0.06680 -0.13812 0.34230 0.20418 2.55969 R2 2.26191 -0.04870 -0.11721 -0.14741 -0.26462 1.99729 R3 2.62823 -0.10142 -0.14251 -0.32946 -0.47198 2.15625 R4 2.54340 -0.08769 -0.15844 -0.37117 -0.52960 2.01380 R5 2.50368 -0.09222 -0.15993 -0.34666 -0.50659 1.99708 A1 2.23983 0.00138 -0.01792 -0.03475 -0.05353 2.18630 A2 2.39117 -0.02230 -0.02986 -0.07960 -0.11031 2.28086 A3 1.59358 0.02203 0.04336 0.10204 0.14448 1.73806 A4 2.22659 -0.00506 -0.01931 -0.03719 -0.05712 2.16947 A5 2.50980 -0.02225 -0.03499 -0.11298 -0.14856 2.36124 A6 1.46730 0.02787 0.04884 0.13608 0.18425 1.65155 D1 -3.12097 -0.00099 -0.00282 -0.01339 -0.01618 -3.13715 D2 -0.57007 0.01104 -0.00679 -0.01438 -0.02092 -0.59099 D3 0.49273 -0.01132 0.00503 0.00861 0.01340 0.50613 D4 3.04363 0.00072 0.00107 0.00762 0.00866 3.05229 Item Value Threshold Converged? Maximum Force 0.101417 0.000450 NO RMS Force 0.048886 0.000300 NO Maximum Displacement 0.428753 0.001800 NO RMS Displacement 0.212780 0.001200 NO Predicted change in Energy=-1.600736D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.739496 -0.369192 0.072570 2 6 0 -2.392390 -0.235039 0.118014 3 1 0 -4.261258 -1.104561 -0.478866 4 1 0 -4.568515 0.406486 0.186669 5 1 0 -1.881837 0.510537 0.682883 6 1 0 -1.570192 -0.898390 0.089614 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.354531 0.000000 3 H 1.056922 2.145927 0.000000 4 H 1.141038 2.269755 1.679465 0.000000 5 H 2.144131 1.065657 3.101587 2.734099 0.000000 6 H 2.232985 1.056812 2.758172 3.271401 1.560181 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.674264 -0.010858 -0.061870 2 6 0 -0.674128 -0.008317 0.066920 3 1 0 1.299994 -0.849392 0.087824 4 1 0 1.437242 0.824456 0.086735 5 1 0 -1.290945 0.846093 -0.091650 6 1 0 -1.447107 -0.706103 -0.113214 --------------------------------------------------------------------- Rotational constants (GHZ): 183.1269381 27.1410273 23.9102020 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.3339938289 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999918 0.004110 0.007955 -0.009156 Ang= 1.47 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.485373424196E-01 A.U. after 12 cycles NFock= 11 Conv=0.87D-08 -V/T= 1.0070 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.022133806 0.030111465 -0.029449046 2 6 -0.046157686 -0.001490497 0.039049494 3 1 0.000808972 -0.021040433 -0.000019553 4 1 0.030941951 -0.010175686 0.011154221 5 1 -0.004323946 0.025108200 0.000309307 6 1 -0.003403096 -0.022513049 -0.021044424 ------------------------------------------------------------------- Cartesian Forces: Max 0.046157686 RMS 0.022559414 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.052865462 RMS 0.020632676 Search for a local minimum. Step number 6 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 5 6 DE= -9.86D-02 DEPred=-1.60D-01 R= 6.16D-01 TightC=F SS= 1.41D+00 RLast= 9.84D-01 DXNew= 2.0223D+00 2.9512D+00 Trust test= 6.16D-01 RLast= 9.84D-01 DXMaxT set to 2.02D+00 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.63478 R2 0.02376 0.23532 R3 -0.01789 0.02573 0.06786 R4 0.00433 -0.00516 0.03319 0.15713 R5 -0.00718 0.01016 0.02396 0.02822 0.15518 A1 0.02595 -0.00879 0.01592 -0.01012 -0.00126 A2 0.00599 -0.00781 -0.00262 -0.00537 -0.00475 A3 -0.02095 0.01162 0.00210 0.01041 0.00735 A4 0.01744 -0.00599 0.00904 -0.00578 -0.00074 A5 0.01692 -0.01613 0.00262 -0.01336 -0.00858 A6 -0.02348 0.01674 0.00370 0.01452 0.01105 D1 0.00107 -0.00093 0.00088 -0.00040 0.00018 D2 0.01527 -0.00503 0.01293 0.00197 0.00784 D3 -0.01474 0.00496 -0.01191 -0.00156 -0.00705 D4 -0.00054 0.00086 0.00014 0.00080 0.00060 A1 A2 A3 A4 A5 A1 0.14861 A2 -0.00125 0.15766 A3 0.00206 0.00216 0.15640 A4 -0.00661 -0.00127 0.00150 0.15605 A5 -0.00706 -0.00278 0.00352 -0.00461 0.15425 A6 0.00332 0.00285 -0.00438 0.00240 0.00443 D1 -0.00090 0.00001 0.00003 -0.00050 -0.00040 D2 -0.00862 0.00072 -0.00011 -0.00451 -0.00356 D3 0.00807 -0.00067 0.00011 0.00423 0.00332 D4 0.00035 0.00004 -0.00003 0.00022 0.00016 A6 D1 D2 D3 D4 A6 0.15482 D1 0.00008 0.00235 D2 0.00038 0.00047 0.00759 D3 -0.00034 -0.00044 -0.00494 0.00692 D4 -0.00004 -0.00002 -0.00012 0.00012 0.00231 ITU= 1 1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00114 0.00232 0.00803 0.05490 0.12005 Eigenvalues --- 0.13248 0.15612 0.15999 0.16016 0.20039 Eigenvalues --- 0.25206 0.64159 RFO step: Lambda=-4.38962057D-02 EMin= 1.14349423D-03 Quartic linear search produced a step of -0.01591. Iteration 1 RMS(Cart)= 0.10911623 RMS(Int)= 0.11173631 Iteration 2 RMS(Cart)= 0.05191223 RMS(Int)= 0.02630124 Iteration 3 RMS(Cart)= 0.02050093 RMS(Int)= 0.01103675 Iteration 4 RMS(Cart)= 0.00006943 RMS(Int)= 0.01103581 Iteration 5 RMS(Cart)= 0.00000056 RMS(Int)= 0.01103581 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.55969 -0.05287 -0.00325 -0.10792 -0.11116 2.44853 R2 1.99729 0.01425 0.00421 0.10588 0.11009 2.10738 R3 2.15625 -0.02828 0.00751 -0.47794 -0.47043 1.68582 R4 2.01380 0.01566 0.00842 0.12811 0.13654 2.15034 R5 1.99708 0.01205 0.00806 0.03509 0.04315 2.04023 A1 2.18630 0.00045 0.00085 0.11118 0.09529 2.28159 A2 2.28086 -0.01605 0.00175 -0.07220 -0.08719 2.19367 A3 1.73806 0.01878 -0.00230 0.08629 0.06720 1.80526 A4 2.16947 -0.00246 0.00091 0.06065 0.04350 2.21297 A5 2.36124 -0.01964 0.00236 -0.03486 -0.05054 2.31070 A6 1.65155 0.02553 -0.00293 0.12302 0.10193 1.75348 D1 -3.13715 -0.00126 0.00026 -0.01236 -0.01239 3.13365 D2 -0.59099 0.01672 0.00033 0.43974 0.44133 -0.14966 D3 0.50613 -0.01608 -0.00021 -0.42086 -0.42233 0.08379 D4 3.05229 0.00190 -0.00014 0.03124 0.03138 3.08367 Item Value Threshold Converged? Maximum Force 0.052865 0.000450 NO RMS Force 0.020633 0.000300 NO Maximum Displacement 0.435828 0.001800 NO RMS Displacement 0.161499 0.001200 NO Predicted change in Energy=-3.688523D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.733703 -0.328527 0.005677 2 6 0 -2.455857 -0.231569 0.196885 3 1 0 -4.337293 -1.126979 -0.486028 4 1 0 -4.337886 0.298804 0.198699 5 1 0 -1.905891 0.624995 0.705485 6 1 0 -1.643058 -0.926883 0.050167 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.295706 0.000000 3 H 1.115178 2.192700 0.000000 4 H 0.892097 1.955334 1.581679 0.000000 5 H 2.177116 1.137910 3.225033 2.505560 0.000000 6 H 2.175042 1.079644 2.754351 2.964197 1.704948 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.657131 0.030795 -0.011320 2 6 0 -0.636876 -0.029413 0.016528 3 1 0 1.424035 -0.778108 0.022677 4 1 0 1.143729 0.778389 0.001364 5 1 0 -1.360811 0.847944 -0.015116 6 1 0 -1.328482 -0.856514 -0.040173 --------------------------------------------------------------------- Rotational constants (GHZ): 186.5343163 29.6121193 25.5720136 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.7802344653 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999463 -0.000383 -0.000122 -0.032759 Ang= -3.75 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.542138608255E-01 A.U. after 11 cycles NFock= 11 Conv=0.27D-08 -V/T= 1.0077 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.018138713 -0.076600039 -0.039179267 2 6 0.070007957 0.010923065 0.025608605 3 1 0.018614177 -0.003813119 0.003483437 4 1 -0.079453721 0.087942442 0.029692056 5 1 -0.020107999 -0.010146340 -0.010690714 6 1 -0.007199128 -0.008306010 -0.008914116 ------------------------------------------------------------------- Cartesian Forces: Max 0.087942442 RMS 0.040504608 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.122077210 RMS 0.035066671 Search for a local minimum. Step number 7 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 7 6 DE= 5.68D-03 DEPred=-3.69D-02 R=-1.54D-01 Trust test=-1.54D-01 RLast= 8.23D-01 DXMaxT set to 1.01D+00 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.55290 R2 0.03597 0.23386 R3 0.08816 -0.00133 0.27555 R4 0.00399 -0.00354 -0.01449 0.16384 R5 0.01758 0.00573 0.01446 0.02518 0.14917 A1 -0.01117 -0.00059 -0.01754 0.00110 0.00464 A2 -0.02215 -0.00320 0.02110 -0.00371 0.00293 A3 0.02457 0.00283 0.00460 0.00203 -0.00239 A4 -0.00241 -0.00191 0.00010 -0.00103 0.00300 A5 -0.03612 -0.00608 0.00562 -0.00441 0.00317 A6 0.04153 0.00428 0.00431 0.00295 -0.00306 D1 0.00061 -0.00088 0.00208 -0.00048 0.00036 D2 -0.00685 -0.00016 -0.00653 0.00859 0.01138 D3 0.00725 0.00010 0.00821 -0.00825 -0.01052 D4 -0.00021 0.00082 -0.00040 0.00082 0.00049 A1 A2 A3 A4 A5 A1 0.15105 A2 -0.01100 0.14845 A3 0.00817 0.01554 0.14204 A4 -0.00742 -0.00682 0.00636 0.15472 A5 -0.01558 -0.01859 0.02130 -0.01087 0.13239 A6 0.01275 0.02206 -0.02541 0.00964 0.03040 D1 -0.00125 -0.00017 0.00040 -0.00067 -0.00081 D2 -0.00727 -0.00511 0.00361 -0.00504 -0.00873 D3 0.00656 0.00510 -0.00346 0.00468 0.00832 D4 0.00053 0.00016 -0.00024 0.00031 0.00039 A6 D1 D2 D3 D4 A6 0.12405 D1 0.00059 0.00234 D2 0.00612 0.00026 0.00832 D3 -0.00585 -0.00023 -0.00578 0.00786 D4 -0.00032 -0.00002 -0.00002 0.00001 0.00231 ITU= -1 1 1 1 0 1 0 Use linear search instead of GDIIS. Energy rises -- skip Quadratic/GDIIS search. Quartic linear search produced a step of -0.53666. Iteration 1 RMS(Cart)= 0.07545461 RMS(Int)= 0.01814349 Iteration 2 RMS(Cart)= 0.01205993 RMS(Int)= 0.00277654 Iteration 3 RMS(Cart)= 0.00010714 RMS(Int)= 0.00277346 Iteration 4 RMS(Cart)= 0.00000009 RMS(Int)= 0.00277346 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.44853 0.04243 0.05966 0.00000 0.05966 2.50819 R2 2.10738 -0.00888 -0.05908 0.00000 -0.05908 2.04830 R3 1.68582 0.12208 0.25246 0.00000 0.25246 1.93828 R4 2.15034 -0.02213 -0.07327 0.00000 -0.07327 2.07706 R5 2.04023 0.00114 -0.02315 0.00000 -0.02315 2.01708 A1 2.28159 -0.02105 -0.05114 0.00000 -0.04701 2.23458 A2 2.19367 0.00660 0.04679 0.00000 0.05092 2.24460 A3 1.80526 0.01457 -0.03607 0.00000 -0.03180 1.77346 A4 2.21297 -0.00685 -0.02335 0.00000 -0.01887 2.19410 A5 2.31070 -0.01003 0.02712 0.00000 0.03155 2.34225 A6 1.75348 0.01717 -0.05470 0.00000 -0.05005 1.70343 D1 3.13365 -0.00025 0.00665 0.00000 0.00675 3.14040 D2 -0.14966 0.00429 -0.23685 0.00000 -0.23777 -0.38743 D3 0.08379 -0.00311 0.22665 0.00000 0.22758 0.31137 D4 3.08367 0.00143 -0.01684 0.00000 -0.01695 3.06673 Item Value Threshold Converged? Maximum Force 0.122077 0.000450 NO RMS Force 0.035067 0.000300 NO Maximum Displacement 0.232893 0.001800 NO RMS Displacement 0.086507 0.001200 NO Predicted change in Energy=-1.253878D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.738262 -0.351511 0.039281 2 6 0 -2.421314 -0.232249 0.153674 3 1 0 -4.296320 -1.119590 -0.483687 4 1 0 -4.461127 0.359450 0.194360 5 1 0 -1.893979 0.566145 0.694582 6 1 0 -1.602687 -0.912403 0.072674 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.327275 0.000000 3 H 1.083914 2.170080 0.000000 4 H 1.025695 2.124288 1.635380 0.000000 5 H 2.161686 1.099134 3.162476 2.623584 0.000000 6 H 2.208256 1.067390 2.758282 3.130990 1.630253 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.667430 0.007629 -0.037748 2 6 0 -0.657070 -0.018070 0.044106 3 1 0 1.358540 -0.822073 0.056233 4 1 0 1.298262 0.812157 0.044923 5 1 0 -1.323078 0.850489 -0.056567 6 1 0 -1.395886 -0.777928 -0.082736 --------------------------------------------------------------------- Rotational constants (GHZ): 184.5506619 28.2817611 24.6428719 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.5188663383 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Lowest energy guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999889 -0.000332 -0.000011 -0.014922 Ang= -1.71 deg. B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999840 -0.000152 0.000113 0.017900 Ang= -2.05 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.380339206922E-01 A.U. after 10 cycles NFock= 9 Conv=0.89D-08 -V/T= 1.0054 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.020075817 -0.013356651 -0.028146601 2 6 0.002275767 0.004837950 0.032329406 3 1 0.009469294 -0.012252366 0.002481601 4 1 -0.013860350 0.027974378 0.015303435 5 1 -0.012132623 0.007980248 -0.006174741 6 1 -0.005827903 -0.015183559 -0.015793100 ------------------------------------------------------------------- Cartesian Forces: Max 0.032329406 RMS 0.016099001 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.031472426 RMS 0.013393255 Search for a local minimum. Step number 8 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 7 6 8 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.53856 R2 0.03489 0.23551 R3 0.06540 -0.00295 0.23941 R4 0.00280 -0.00102 -0.01627 0.16769 R5 0.01683 0.00659 0.01331 0.02650 0.14961 A1 -0.00884 0.00009 -0.01381 0.00207 0.00503 A2 -0.02431 -0.00365 0.01766 -0.00434 0.00266 A3 0.02758 0.00235 0.00935 0.00121 -0.00261 A4 -0.00122 -0.00183 0.00199 -0.00095 0.00306 A5 -0.03595 -0.00650 0.00588 -0.00505 0.00295 A6 0.04386 0.00427 0.00800 0.00287 -0.00304 D1 0.00093 -0.00103 0.00257 -0.00073 0.00028 D2 -0.00641 0.00039 -0.00581 0.00941 0.01168 D3 0.00680 -0.00049 0.00747 -0.00912 -0.01084 D4 -0.00053 0.00094 -0.00090 0.00102 0.00056 A1 A2 A3 A4 A5 A1 0.15081 A2 -0.01074 0.14817 A3 0.00747 0.01610 0.14169 A4 -0.00763 -0.00664 0.00610 0.15461 A5 -0.01575 -0.01850 0.02143 -0.01090 0.13249 A6 0.01231 0.02244 -0.02584 0.00944 0.03040 D1 -0.00135 -0.00009 0.00040 -0.00070 -0.00077 D2 -0.00719 -0.00513 0.00331 -0.00508 -0.00887 D3 0.00646 0.00512 -0.00314 0.00472 0.00846 D4 0.00063 0.00008 -0.00023 0.00034 0.00036 A6 D1 D2 D3 D4 A6 0.12368 D1 0.00056 0.00236 D2 0.00600 0.00020 0.00846 D3 -0.00572 -0.00016 -0.00593 0.00802 D4 -0.00029 -0.00002 0.00004 -0.00004 0.00232 ITU= 0 -1 1 1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00136 0.00231 0.00487 0.05675 0.12736 Eigenvalues --- 0.15437 0.15995 0.16015 0.18716 0.22545 Eigenvalues --- 0.24583 0.56569 RFO step: Lambda=-2.43949141D-02 EMin= 1.36318240D-03 Quartic linear search produced a step of -0.00028. Iteration 1 RMS(Cart)= 0.13614945 RMS(Int)= 0.02541797 Iteration 2 RMS(Cart)= 0.02797725 RMS(Int)= 0.00057924 Iteration 3 RMS(Cart)= 0.00054816 RMS(Int)= 0.00008750 Iteration 4 RMS(Cart)= 0.00000021 RMS(Int)= 0.00008750 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.50819 -0.01488 0.00001 -0.09608 -0.09607 2.41212 R2 2.04830 0.00261 -0.00001 0.00800 0.00798 2.05628 R3 1.93828 0.03147 0.00006 0.13845 0.13851 2.07679 R4 2.07706 -0.00306 -0.00002 -0.03403 -0.03405 2.04302 R5 2.01708 0.00640 -0.00001 0.04314 0.04313 2.06021 A1 2.23458 -0.00923 -0.00001 -0.08274 -0.08259 2.15199 A2 2.24460 -0.00703 0.00001 -0.13547 -0.13531 2.10929 A3 1.77346 0.01762 -0.00001 0.22118 0.22133 1.99479 A4 2.19410 -0.00465 -0.00001 -0.05294 -0.05306 2.14104 A5 2.34225 -0.01564 0.00001 -0.21481 -0.21492 2.12733 A6 1.70343 0.02193 -0.00001 0.29401 0.29387 1.99731 D1 3.14040 -0.00060 0.00000 -0.05589 -0.05591 3.08449 D2 -0.38743 0.01109 -0.00006 0.11924 0.11917 -0.26826 D3 0.31137 -0.01019 0.00006 -0.10613 -0.10607 0.20530 D4 3.06673 0.00150 0.00000 0.06900 0.06902 3.13574 Item Value Threshold Converged? Maximum Force 0.031472 0.000450 NO RMS Force 0.013393 0.000300 NO Maximum Displacement 0.294943 0.001800 NO RMS Displacement 0.159795 0.001200 NO Predicted change in Energy=-1.554319D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.697976 -0.364143 0.043885 2 6 0 -2.439063 -0.213301 0.191116 3 1 0 -4.140243 -1.194113 -0.503466 4 1 0 -4.392707 0.461580 0.251995 5 1 0 -2.008470 0.642201 0.692636 6 1 0 -1.735229 -1.022383 -0.005281 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.276438 0.000000 3 H 1.088138 2.082895 0.000000 4 H 1.098990 2.067824 1.837330 0.000000 5 H 2.070757 1.081118 3.057313 2.431331 0.000000 6 H 2.070766 1.090215 2.462066 3.054591 1.825538 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.637201 -0.003648 -0.034322 2 6 0 -0.637692 0.000507 0.028324 3 1 0 1.237622 -0.904888 0.072002 4 1 0 1.208383 0.931993 0.043826 5 1 0 -1.221797 0.908554 -0.027243 6 1 0 -1.221260 -0.916808 -0.052599 --------------------------------------------------------------------- Rotational constants (GHZ): 148.1773191 31.9668559 26.3789012 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.7124931991 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999986 0.004467 0.001464 -0.002342 Ang= 0.60 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.320461271523E-01 A.U. after 11 cycles NFock= 10 Conv=0.83D-08 -V/T= 1.0046 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.081414493 0.005822187 -0.028892230 2 6 0.077928906 -0.003788309 0.025297347 3 1 -0.003915301 -0.001134971 0.006984932 4 1 -0.002581469 -0.008566655 0.002289653 5 1 0.005848909 0.002547145 -0.002382871 6 1 0.004133448 0.005120603 -0.003296830 ------------------------------------------------------------------- Cartesian Forces: Max 0.081414493 RMS 0.028358275 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.089425567 RMS 0.023678762 Search for a local minimum. Step number 9 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 8 9 DE= -5.99D-03 DEPred=-1.55D-02 R= 3.85D-01 Trust test= 3.85D-01 RLast= 5.24D-01 DXMaxT set to 1.01D+00 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.82050 R2 0.02638 0.23554 R3 -0.01464 -0.00327 0.22917 R4 0.01879 -0.00133 -0.01877 0.16847 R5 0.00127 0.00654 0.01147 0.02600 0.14929 A1 0.02130 -0.00049 -0.01841 0.00353 0.00412 A2 0.01362 -0.00490 0.00571 -0.00211 0.00034 A3 -0.02974 0.00266 0.00857 -0.00098 -0.00268 A4 0.02071 -0.00252 -0.00459 0.00031 0.00178 A5 0.01525 -0.00744 -0.00125 -0.00261 0.00153 A6 -0.02314 0.00467 0.00750 0.00028 -0.00305 D1 0.00912 -0.00141 -0.00130 -0.00017 -0.00046 D2 -0.00228 -0.00060 -0.01741 0.01029 0.00947 D3 0.00413 0.00039 0.01780 -0.00987 -0.00887 D4 -0.00727 0.00120 0.00168 0.00060 0.00106 A1 A2 A3 A4 A5 A1 0.15356 A2 -0.00655 0.15323 A3 0.00339 0.00778 0.14452 A4 -0.00524 -0.00371 0.00146 0.15631 A5 -0.01116 -0.01134 0.01485 -0.00683 0.14013 A6 0.00749 0.01272 -0.02231 0.00402 0.02262 D1 -0.00029 0.00096 -0.00206 -0.00008 0.00106 D2 -0.00550 -0.00495 -0.00293 -0.00487 -0.00578 D3 0.00503 0.00511 0.00235 0.00462 0.00582 D4 -0.00018 -0.00080 0.00149 -0.00018 -0.00101 A6 D1 D2 D3 D4 A6 0.12804 D1 -0.00230 0.00252 D2 -0.00117 -0.00017 0.00522 D3 0.00058 0.00021 -0.00294 0.00527 D4 0.00171 -0.00019 0.00015 -0.00018 0.00247 ITU= 0 0 -1 1 1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00130 0.00231 0.00418 0.08152 0.12791 Eigenvalues --- 0.15615 0.15995 0.16026 0.18601 0.23547 Eigenvalues --- 0.24257 0.82649 RFO step: Lambda=-1.68229080D-02 EMin= 1.29974315D-03 Quartic linear search produced a step of -0.33720. Iteration 1 RMS(Cart)= 0.08215203 RMS(Int)= 0.12158224 Iteration 2 RMS(Cart)= 0.03014796 RMS(Int)= 0.05099336 Iteration 3 RMS(Cart)= 0.01912247 RMS(Int)= 0.02388739 Iteration 4 RMS(Cart)= 0.00092844 RMS(Int)= 0.02384720 Iteration 5 RMS(Cart)= 0.00002114 RMS(Int)= 0.02384717 Iteration 6 RMS(Cart)= 0.00000070 RMS(Int)= 0.02384717 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.41212 0.08943 0.03239 0.07129 0.10369 2.51580 R2 2.05628 -0.00106 -0.00269 -0.00081 -0.00350 2.05278 R3 2.07679 -0.00437 -0.04671 0.11805 0.07134 2.14813 R4 2.04302 0.00324 0.01148 -0.04430 -0.03282 2.01020 R5 2.06021 -0.00054 -0.01454 -0.05418 -0.06872 1.99148 A1 2.15199 0.00267 0.02785 0.04060 0.02650 2.17849 A2 2.10929 0.00677 0.04563 0.03991 0.04353 2.15282 A3 1.99479 -0.00681 -0.07463 0.04225 -0.07587 1.91892 A4 2.14104 0.00340 0.01789 0.03501 0.02165 2.16269 A5 2.12733 0.00470 0.07247 0.02160 0.06286 2.19019 A6 1.99731 -0.00655 -0.09909 0.03616 -0.09511 1.90219 D1 3.08449 0.00214 0.01885 0.04581 0.06315 -3.13555 D2 -0.26826 0.01064 -0.04019 0.60307 0.55500 0.28674 D3 0.20530 -0.00937 0.03577 -0.54368 -0.50003 -0.29473 D4 3.13574 -0.00087 -0.02327 0.01359 -0.00817 3.12757 Item Value Threshold Converged? Maximum Force 0.089426 0.000450 NO RMS Force 0.023679 0.000300 NO Maximum Displacement 0.217933 0.001800 NO RMS Displacement 0.109885 0.001200 NO Predicted change in Energy=-1.558278D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.701054 -0.318740 -0.071440 2 6 0 -2.417715 -0.263915 0.278432 3 1 0 -4.198974 -1.199366 -0.467155 4 1 0 -4.472960 0.446083 0.262314 5 1 0 -1.945840 0.605451 0.669717 6 1 0 -1.677145 -0.959671 -0.000984 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.331306 0.000000 3 H 1.086286 2.145660 0.000000 4 H 1.136743 2.174486 1.820630 0.000000 5 H 2.117597 1.063751 3.102653 2.564705 0.000000 6 H 2.124138 1.053847 2.575731 3.140390 1.723846 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.661953 -0.009862 0.039210 2 6 0 -0.667222 -0.000178 -0.035465 3 1 0 1.282275 -0.896136 -0.059468 4 1 0 1.300655 0.924383 -0.067703 5 1 0 -1.260539 0.877768 0.058097 6 1 0 -1.290778 -0.845775 0.046610 --------------------------------------------------------------------- Rotational constants (GHZ): 157.3843068 29.2289916 24.7528567 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.4487183413 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999988 -0.000189 0.000019 0.004866 Ang= -0.56 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.305759079035E-01 A.U. after 13 cycles NFock= 12 Conv=0.17D-08 -V/T= 1.0044 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.017968119 0.003163500 0.028331219 2 6 -0.013711361 0.012709744 -0.021023530 3 1 0.004680675 0.004026112 -0.004749364 4 1 0.020104041 -0.012627235 -0.011982779 5 1 0.000614271 0.008524354 0.010235273 6 1 0.006280494 -0.015796475 -0.000810819 ------------------------------------------------------------------- Cartesian Forces: Max 0.028331219 RMS 0.013254688 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.025665725 RMS 0.009598841 Search for a local minimum. Step number 10 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 9 10 DE= -1.47D-03 DEPred=-1.56D-02 R= 9.43D-02 Trust test= 9.43D-02 RLast= 7.78D-01 DXMaxT set to 5.06D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.43136 R2 0.03878 0.23568 R3 0.08375 -0.00216 0.23836 R4 -0.02980 -0.00163 -0.02128 0.16883 R5 -0.04114 0.00547 0.00278 0.02914 0.15572 A1 0.05138 -0.00049 -0.01835 0.00396 0.00303 A2 0.02959 -0.00433 0.01030 -0.00387 -0.00284 A3 0.03734 0.00116 -0.00332 0.00519 0.00174 A4 0.03968 -0.00232 -0.00291 -0.00013 0.00016 A5 0.03557 -0.00688 0.00322 -0.00425 -0.00174 A6 0.02632 0.00313 -0.00474 0.00634 0.00219 D1 0.00555 -0.00116 0.00070 -0.00109 -0.00148 D2 0.04210 0.00094 -0.00495 0.00555 0.00081 D3 -0.04058 -0.00107 0.00601 -0.00542 -0.00059 D4 -0.00403 0.00103 0.00036 0.00122 0.00170 A1 A2 A3 A4 A5 A1 0.15296 A2 -0.00584 0.15476 A3 -0.00066 0.00631 0.13372 A4 -0.00525 -0.00284 -0.00084 0.15662 A5 -0.01057 -0.00974 0.01278 -0.00600 0.14178 A6 0.00372 0.01076 -0.03080 0.00165 0.02011 D1 0.00023 0.00138 -0.00128 0.00031 0.00156 D2 -0.00360 -0.00077 -0.00705 -0.00253 -0.00141 D3 0.00329 0.00109 0.00662 0.00241 0.00164 D4 -0.00054 -0.00106 0.00085 -0.00043 -0.00133 A6 D1 D2 D3 D4 A6 0.12176 D1 -0.00184 0.00253 D2 -0.00662 0.00100 0.01663 D3 0.00608 -0.00095 -0.01390 0.01578 D4 0.00130 -0.00018 -0.00057 0.00054 0.00245 ITU= -1 0 0 -1 1 1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00230 0.00460 0.02610 0.08329 0.12559 Eigenvalues --- 0.15116 0.15995 0.16005 0.18481 0.21453 Eigenvalues --- 0.24255 0.48130 RFO step: Lambda=-9.75112806D-03 EMin= 2.29684690D-03 Quartic linear search produced a step of -0.47603. Iteration 1 RMS(Cart)= 0.06400916 RMS(Int)= 0.08919176 Iteration 2 RMS(Cart)= 0.03090418 RMS(Int)= 0.01660265 Iteration 3 RMS(Cart)= 0.00714269 RMS(Int)= 0.00480981 Iteration 4 RMS(Cart)= 0.00010762 RMS(Int)= 0.00480794 Iteration 5 RMS(Cart)= 0.00000032 RMS(Int)= 0.00480794 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.51580 -0.00940 -0.04936 0.15134 0.10198 2.61779 R2 2.05278 -0.00368 0.00167 -0.03277 -0.03111 2.02168 R3 2.14813 -0.02567 -0.03396 -0.12270 -0.15666 1.99147 R4 2.01020 0.01100 0.01562 0.05235 0.06797 2.07817 R5 1.99148 0.01506 0.03271 0.08204 0.11476 2.10624 A1 2.17849 -0.00011 -0.01261 -0.00482 -0.02299 2.15549 A2 2.15282 -0.00090 -0.02072 0.05383 0.02755 2.18038 A3 1.91892 0.00333 0.03611 -0.00950 0.02102 1.93994 A4 2.16269 -0.00058 -0.01031 0.01520 -0.00425 2.15844 A5 2.19019 -0.00320 -0.02992 0.02614 -0.01292 2.17727 A6 1.90219 0.00565 0.04528 0.00027 0.03632 1.93852 D1 -3.13555 -0.00026 -0.03006 0.04156 0.01126 -3.12429 D2 0.28674 -0.01027 -0.26419 -0.16245 -0.42582 -0.13908 D3 -0.29473 0.01065 0.23803 0.21669 0.45389 0.15917 D4 3.12757 0.00064 0.00389 0.01269 0.01681 -3.13880 Item Value Threshold Converged? Maximum Force 0.025666 0.000450 NO RMS Force 0.009599 0.000300 NO Maximum Displacement 0.159581 0.001800 NO RMS Displacement 0.086774 0.001200 NO Predicted change in Energy=-8.782222D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.760809 -0.338471 0.013007 2 6 0 -2.394705 -0.214831 0.206539 3 1 0 -4.214636 -1.174949 -0.475738 4 1 0 -4.468972 0.416485 0.210809 5 1 0 -1.926551 0.636137 0.722361 6 1 0 -1.648015 -1.014529 -0.006094 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.385273 0.000000 3 H 1.069825 2.167828 0.000000 4 H 1.053840 2.168217 1.751769 0.000000 5 H 2.194892 1.099721 3.154490 2.602660 0.000000 6 H 2.218404 1.114575 2.614162 3.170591 1.825631 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.695596 0.001954 -0.018157 2 6 0 -0.689143 0.001783 0.020320 3 1 0 1.287566 -0.888215 0.023043 4 1 0 1.300456 0.863485 0.031723 5 1 0 -1.300792 0.913876 -0.037625 6 1 0 -1.325952 -0.911566 -0.030119 --------------------------------------------------------------------- Rotational constants (GHZ): 156.1165093 27.5104669 23.4136878 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.2085936178 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000454 -0.000191 -0.000712 Ang= 0.10 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.318165453761E-01 A.U. after 12 cycles NFock= 12 Conv=0.10D-08 -V/T= 1.0046 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.079029700 0.003635851 -0.001569225 2 6 -0.052357849 -0.013214929 0.003617842 3 1 0.001698449 -0.006482310 0.000110079 4 1 -0.004207810 0.010030409 0.006999998 5 1 -0.007854177 -0.006360785 -0.008472786 6 1 -0.016308313 0.012391763 -0.000685908 ------------------------------------------------------------------- Cartesian Forces: Max 0.079029700 RMS 0.023566216 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.076876752 RMS 0.021224880 Search for a local minimum. Step number 11 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 11 10 DE= 1.24D-03 DEPred=-8.78D-03 R=-1.41D-01 Trust test=-1.41D-01 RLast= 6.67D-01 DXMaxT set to 2.53D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.56058 R2 0.01876 0.23682 R3 -0.01844 0.00073 0.23366 R4 0.02955 -0.00470 -0.02775 0.17694 R5 0.04623 0.00054 -0.00945 0.04236 0.17698 A1 0.06387 0.00116 -0.00451 -0.00152 -0.00430 A2 0.04262 -0.00332 0.02003 -0.00736 -0.00735 A3 0.04338 0.00515 0.02444 -0.00743 -0.01581 A4 0.04689 -0.00083 0.00858 -0.00495 -0.00640 A5 0.04092 -0.00626 0.00858 -0.00633 -0.00449 A6 0.03931 0.00657 0.02104 -0.00475 -0.01300 D1 0.00533 -0.00138 -0.00082 -0.00039 -0.00050 D2 0.00219 0.00260 -0.00327 0.00136 -0.00631 D3 0.00064 -0.00299 0.00289 -0.00043 0.00768 D4 -0.00249 0.00099 0.00044 0.00131 0.00188 A1 A2 A3 A4 A5 A1 0.14759 A2 -0.01014 0.15138 A3 -0.00909 -0.00070 0.12162 A4 -0.00932 -0.00614 -0.00705 0.15356 A5 -0.01271 -0.01145 0.00938 -0.00762 0.14093 A6 -0.00501 0.00362 -0.04391 -0.00487 0.01661 D1 0.00068 0.00176 -0.00064 0.00064 0.00174 D2 0.00083 0.00221 0.00245 0.00125 0.00029 D3 -0.00090 -0.00166 -0.00266 -0.00122 0.00004 D4 -0.00075 -0.00121 0.00043 -0.00061 -0.00141 A6 D1 D2 D3 D4 A6 0.10787 D1 -0.00114 0.00249 D2 0.00196 0.00048 0.01851 D3 -0.00220 -0.00044 -0.01633 0.01878 D4 0.00091 -0.00015 -0.00059 0.00058 0.00245 ITU= -1 -1 0 0 -1 1 1 1 0 1 0 Use linear search instead of GDIIS. Energy rises -- skip Quadratic/GDIIS search. Quartic linear search produced a step of -0.54399. Iteration 1 RMS(Cart)= 0.04135346 RMS(Int)= 0.01556908 Iteration 2 RMS(Cart)= 0.00738558 RMS(Int)= 0.00366041 Iteration 3 RMS(Cart)= 0.00010923 RMS(Int)= 0.00365888 Iteration 4 RMS(Cart)= 0.00000010 RMS(Int)= 0.00365888 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.61779 -0.07688 -0.05548 0.00000 -0.05548 2.56231 R2 2.02168 0.00430 0.01692 0.00000 0.01692 2.03860 R3 1.99147 0.01133 0.08522 0.00000 0.08522 2.07669 R4 2.07817 -0.01224 -0.03698 0.00000 -0.03698 2.04120 R5 2.10624 -0.01969 -0.06243 0.00000 -0.06243 2.04381 A1 2.15549 -0.00209 0.01251 0.00000 0.01840 2.17390 A2 2.18038 -0.00387 -0.01499 0.00000 -0.00910 2.17128 A3 1.93994 0.00641 -0.01143 0.00000 -0.00552 1.93442 A4 2.15844 -0.00105 0.00231 0.00000 0.00797 2.16641 A5 2.17727 -0.00416 0.00703 0.00000 0.01268 2.18995 A6 1.93852 0.00577 -0.01976 0.00000 -0.01409 1.92442 D1 -3.12429 -0.00047 -0.00613 0.00000 -0.00608 -3.13037 D2 -0.13908 0.00486 0.23164 0.00000 0.23202 0.09294 D3 0.15917 -0.00523 -0.24691 0.00000 -0.24729 -0.08812 D4 -3.13880 0.00009 -0.00915 0.00000 -0.00919 3.13519 Item Value Threshold Converged? Maximum Force 0.076877 0.000450 NO RMS Force 0.021225 0.000300 NO Maximum Displacement 0.086827 0.001800 NO RMS Displacement 0.046801 0.001200 NO Predicted change in Energy=-3.228809D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.729801 -0.328264 -0.032940 2 6 0 -2.405952 -0.242434 0.247353 3 1 0 -4.207850 -1.190415 -0.471038 4 1 0 -4.472504 0.435309 0.237273 5 1 0 -1.936117 0.620854 0.695375 6 1 0 -1.661464 -0.985208 -0.005138 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.355916 0.000000 3 H 1.078780 2.159072 0.000000 4 H 1.098938 2.174873 1.792965 0.000000 5 H 2.156054 1.080154 3.130812 2.584094 0.000000 6 H 2.170338 1.081540 2.596778 3.158888 1.773580 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.677880 -0.004507 0.012648 2 6 0 -0.677827 0.000535 -0.010569 3 1 0 1.287141 -0.894093 -0.022052 4 1 0 1.302851 0.898802 -0.020640 5 1 0 -1.281003 0.896239 0.014500 6 1 0 -1.309307 -0.877115 0.015716 --------------------------------------------------------------------- Rotational constants (GHZ): 157.4857365 28.4012916 24.0714099 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.3288076386 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Lowest energy guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000465 -0.000193 -0.000344 Ang= 0.07 deg. B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000069 -0.000023 0.000368 Ang= 0.04 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.271563312305E-01 A.U. after 8 cycles NFock= 8 Conv=0.51D-08 -V/T= 1.0039 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.029146771 0.004111502 0.016213847 2 6 -0.033804441 0.001615514 -0.012832214 3 1 0.003512181 -0.000337082 -0.002106228 4 1 0.009906239 -0.003769355 -0.002816319 5 1 -0.003663678 0.000879499 0.001619658 6 1 -0.005097072 -0.002500077 -0.000078745 ------------------------------------------------------------------- Cartesian Forces: Max 0.033804441 RMS 0.012077431 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.043892992 RMS 0.011958771 Search for a local minimum. Step number 12 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 7 9 11 10 12 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.81349 R2 0.02206 0.23540 R3 0.05985 -0.00174 0.29155 R4 0.03753 -0.00613 -0.02167 0.17561 R5 0.06878 -0.00069 0.01114 0.04435 0.18640 A1 0.02438 0.00296 -0.02167 -0.00233 -0.00889 A2 0.01631 -0.00055 0.01415 -0.00588 -0.00759 A3 -0.03775 0.00978 0.00413 -0.00476 -0.01869 A4 0.01504 0.00144 -0.00470 -0.00427 -0.00900 A5 0.02568 -0.00493 0.00205 -0.00697 -0.00697 A6 -0.03884 0.01117 0.00309 -0.00179 -0.01502 D1 0.01024 -0.00139 -0.00059 -0.00025 -0.00031 D2 0.00977 0.00274 -0.00419 -0.00022 -0.00904 D3 -0.00213 -0.00331 0.00557 0.00122 0.01101 D4 -0.00260 0.00082 0.00198 0.00124 0.00228 A1 A2 A3 A4 A5 A1 0.14719 A2 -0.01572 0.14147 A3 -0.01052 -0.01136 0.11727 A4 -0.01102 -0.01274 -0.01198 0.15043 A5 -0.01512 -0.01651 0.00472 -0.01043 0.13846 A6 -0.00661 -0.00675 -0.04846 -0.00986 0.01196 D1 0.00029 0.00151 -0.00184 0.00033 0.00169 D2 -0.00240 -0.00132 -0.00314 -0.00156 -0.00129 D3 0.00187 0.00191 0.00232 0.00135 0.00153 D4 -0.00082 -0.00091 0.00102 -0.00054 -0.00145 A6 D1 D2 D3 D4 A6 0.10316 D1 -0.00230 0.00259 D2 -0.00351 0.00066 0.01910 D3 0.00274 -0.00056 -0.01686 0.01931 D4 0.00153 -0.00019 -0.00072 0.00071 0.00248 ITU= 0 -1 -1 0 0 -1 1 1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00231 0.00256 0.03495 0.07280 0.13427 Eigenvalues --- 0.15483 0.15998 0.16011 0.21255 0.23874 Eigenvalues --- 0.29686 0.83716 RFO step: Lambda=-3.48874736D-03 EMin= 2.30883698D-03 Quartic linear search produced a step of -0.00093. Iteration 1 RMS(Cart)= 0.04136052 RMS(Int)= 0.00107205 Iteration 2 RMS(Cart)= 0.00094548 RMS(Int)= 0.00049185 Iteration 3 RMS(Cart)= 0.00000079 RMS(Int)= 0.00049185 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.56231 -0.04389 -0.00004 -0.04538 -0.04543 2.51688 R2 2.03860 -0.00043 0.00001 -0.00026 -0.00024 2.03835 R3 2.07669 -0.01001 0.00007 -0.02849 -0.02842 2.04827 R4 2.04120 -0.00022 -0.00003 0.00189 0.00186 2.04305 R5 2.04381 -0.00177 -0.00005 0.00512 0.00507 2.04888 A1 2.17390 -0.00174 0.00000 -0.01589 -0.01613 2.15777 A2 2.17128 -0.00304 -0.00002 -0.02079 -0.02105 2.15023 A3 1.93442 0.00503 -0.00001 0.04005 0.03979 1.97421 A4 2.16641 -0.00155 0.00000 -0.00972 -0.01080 2.15561 A5 2.18995 -0.00434 0.00000 -0.03785 -0.03892 2.15103 A6 1.92442 0.00602 -0.00002 0.05313 0.05203 1.97646 D1 -3.13037 -0.00049 0.00000 0.05560 0.05559 -3.07478 D2 0.09294 -0.00317 0.00018 -0.04119 -0.04101 0.05193 D3 -0.08812 0.00310 -0.00019 0.10435 0.10416 0.01603 D4 3.13519 0.00042 -0.00001 0.00755 0.00756 -3.14044 Item Value Threshold Converged? Maximum Force 0.043893 0.000450 NO RMS Force 0.011959 0.000300 NO Maximum Displacement 0.071025 0.001800 NO RMS Displacement 0.041538 0.001200 NO Predicted change in Energy=-1.786225D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.719476 -0.329080 -0.023145 2 6 0 -2.415554 -0.227386 0.228529 3 1 0 -4.177724 -1.203889 -0.456971 4 1 0 -4.434981 0.444580 0.230502 5 1 0 -1.966903 0.625966 0.717774 6 1 0 -1.699049 -1.000350 -0.025804 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.331876 0.000000 3 H 1.078650 2.128076 0.000000 4 H 1.083897 2.128293 1.804508 0.000000 5 H 2.128987 1.081137 3.100987 2.522250 0.000000 6 H 2.129022 1.084222 2.524116 3.104648 1.808191 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.665941 -0.001317 0.006012 2 6 0 -0.665925 0.000802 0.001366 3 1 0 1.262043 -0.899564 -0.030062 4 1 0 1.260893 0.904684 0.000580 5 1 0 -1.261250 0.902950 -0.022626 6 1 0 -1.261782 -0.904984 0.007841 --------------------------------------------------------------------- Rotational constants (GHZ): 153.6392260 29.6230134 24.8392001 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.4756821558 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999997 -0.000031 -0.000047 -0.002613 Ang= -0.30 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.252674010555E-01 A.U. after 11 cycles NFock= 10 Conv=0.46D-08 -V/T= 1.0036 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.005278112 0.001191222 0.005335833 2 6 -0.005321666 -0.002049672 -0.001161918 3 1 -0.000005631 -0.000077048 -0.002518145 4 1 0.000797037 -0.000617092 -0.000842866 5 1 0.000136324 0.000511553 -0.001377969 6 1 -0.000884175 0.001041038 0.000565065 ------------------------------------------------------------------- Cartesian Forces: Max 0.005335833 RMS 0.002404363 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.006353247 RMS 0.001903381 Search for a local minimum. Step number 13 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 7 9 11 10 12 13 DE= -1.89D-03 DEPred=-1.79D-03 R= 1.06D+00 TightC=F SS= 1.41D+00 RLast= 1.59D-01 DXNew= 4.2514D-01 4.7627D-01 Trust test= 1.06D+00 RLast= 1.59D-01 DXMaxT set to 4.25D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.70360 R2 0.02814 0.23714 R3 0.03112 0.00262 0.29570 R4 0.03728 -0.00766 -0.01783 0.17333 R5 0.05530 -0.00334 0.01305 0.04312 0.18677 A1 0.01651 0.00204 -0.02016 -0.00364 -0.00958 A2 0.01130 -0.00078 0.01884 -0.00655 -0.00726 A3 -0.03302 0.00645 0.00906 -0.00353 -0.01278 A4 0.00792 0.00076 -0.00312 -0.00496 -0.00900 A5 0.01823 -0.00413 0.00243 -0.00767 -0.00856 A6 -0.03402 0.00717 0.00752 -0.00029 -0.00823 D1 -0.01336 -0.00392 -0.00995 0.00116 0.00164 D2 -0.00496 0.00275 -0.00859 0.00046 -0.00890 D3 -0.00157 -0.00495 0.00461 0.00139 0.01221 D4 0.00684 0.00172 0.00597 0.00069 0.00167 A1 A2 A3 A4 A5 A1 0.14244 A2 -0.01806 0.14123 A3 -0.01072 -0.01047 0.12162 A4 -0.01408 -0.01405 -0.01140 0.14853 A5 -0.01884 -0.01809 0.00310 -0.01303 0.13620 A6 -0.00598 -0.00556 -0.04292 -0.00866 0.01053 D1 -0.00195 -0.00064 0.00280 -0.00114 -0.00296 D2 -0.00513 -0.00317 -0.00275 -0.00353 -0.00444 D3 0.00339 0.00259 0.00500 0.00256 0.00194 D4 0.00021 0.00006 -0.00056 0.00017 0.00046 A6 D1 D2 D3 D4 A6 0.11002 D1 0.00403 0.00412 D2 -0.00244 -0.00159 0.01621 D3 0.00576 0.00287 -0.01519 0.01974 D4 -0.00071 -0.00054 0.00031 -0.00062 0.00253 ITU= 1 0 -1 -1 0 0 -1 1 1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00230 0.00287 0.03186 0.07986 0.13452 Eigenvalues --- 0.15445 0.15999 0.16009 0.21161 0.24137 Eigenvalues --- 0.30381 0.72133 RFO step: Lambda=-2.02612352D-03 EMin= 2.29787969D-03 Quartic linear search produced a step of 0.06579. Iteration 1 RMS(Cart)= 0.06243224 RMS(Int)= 0.08128959 Iteration 2 RMS(Cart)= 0.04938344 RMS(Int)= 0.02036489 Iteration 3 RMS(Cart)= 0.01254019 RMS(Int)= 0.01355245 Iteration 4 RMS(Cart)= 0.00021905 RMS(Int)= 0.01354926 Iteration 5 RMS(Cart)= 0.00000412 RMS(Int)= 0.01354926 Iteration 6 RMS(Cart)= 0.00000009 RMS(Int)= 0.01354926 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.51688 -0.00635 -0.00299 -0.01555 -0.01854 2.49835 R2 2.03835 0.00108 -0.00002 -0.00419 -0.00420 2.03415 R3 2.04827 -0.00116 -0.00187 -0.02990 -0.03177 2.01650 R4 2.04305 -0.00016 0.00012 0.00325 0.00337 2.04643 R5 2.04888 -0.00146 0.00033 -0.00244 -0.00210 2.04678 A1 2.15777 -0.00020 -0.00106 -0.01019 -0.03714 2.12063 A2 2.15023 0.00022 -0.00138 0.00650 -0.02075 2.12947 A3 1.97421 0.00007 0.00262 0.02122 -0.00389 1.97032 A4 2.15561 -0.00009 -0.00071 -0.00540 -0.01961 2.13601 A5 2.15103 0.00020 -0.00256 -0.01406 -0.03014 2.12089 A6 1.97646 -0.00010 0.00342 0.02320 0.01255 1.98901 D1 -3.07478 -0.00247 0.00366 -0.53857 -0.52901 2.67940 D2 0.05193 -0.00138 -0.00270 -0.20646 -0.20660 -0.15467 D3 0.01603 -0.00003 0.00685 -0.08274 -0.07844 -0.06241 D4 -3.14044 0.00106 0.00050 0.24937 0.24396 -2.89648 Item Value Threshold Converged? Maximum Force 0.006353 0.000450 NO RMS Force 0.001903 0.000300 NO Maximum Displacement 0.224190 0.001800 NO RMS Displacement 0.121992 0.001200 NO Predicted change in Energy=-1.362421D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.734021 -0.380981 0.095491 2 6 0 -2.436677 -0.266305 0.322668 3 1 0 -4.125336 -1.139661 -0.560229 4 1 0 -4.406762 0.435772 0.233353 5 1 0 -1.978142 0.673174 0.605241 6 1 0 -1.732751 -1.012157 -0.025640 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.322067 0.000000 3 H 1.076425 2.096146 0.000000 4 H 1.067086 2.093353 1.786326 0.000000 5 H 2.110497 1.082923 3.042225 2.468371 0.000000 6 H 2.101936 1.083109 2.454894 3.051870 1.816196 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.661792 -0.001237 -0.045908 2 6 0 -0.660217 0.003413 -0.034439 3 1 0 1.223119 -0.891670 0.179330 4 1 0 1.231687 0.891934 0.081123 5 1 0 -1.235406 0.900092 0.160103 6 1 0 -1.228850 -0.913414 0.061522 --------------------------------------------------------------------- Rotational constants (GHZ): 150.3888020 30.2929522 25.4680044 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.5847640277 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 -0.000213 0.000109 0.000141 Ang= -0.03 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.331634894809E-01 A.U. after 12 cycles NFock= 11 Conv=0.21D-08 -V/T= 1.0047 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000875784 0.009366463 -0.023221671 2 6 0.011850925 0.006002234 -0.015977020 3 1 -0.006873961 -0.010715725 0.009719744 4 1 -0.009625942 0.001957376 0.009422058 5 1 0.001333013 -0.004657337 0.012278135 6 1 0.002440180 -0.001953010 0.007778754 ------------------------------------------------------------------- Cartesian Forces: Max 0.023221671 RMS 0.009848279 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.022451892 RMS 0.009351116 Search for a local minimum. Step number 14 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 7 9 11 10 12 14 13 DE= 7.90D-03 DEPred=-1.36D-03 R=-5.80D+00 Trust test=-5.80D+00 RLast= 6.27D-01 DXMaxT set to 2.13D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.68185 R2 0.04221 0.23526 R3 0.03497 0.00519 0.29727 R4 0.04055 -0.00837 -0.01706 0.17301 R5 0.05944 -0.00380 0.01380 0.04293 0.18637 A1 0.02689 0.00184 -0.01643 -0.00405 -0.01028 A2 0.00839 0.00149 0.02064 -0.00613 -0.00661 A3 -0.04953 0.00873 0.00699 -0.00277 -0.01225 A4 0.01433 0.00065 -0.00050 -0.00522 -0.00918 A5 0.03252 -0.00608 0.00631 -0.00851 -0.00944 A6 -0.05031 0.00918 0.00569 0.00039 -0.00730 D1 0.00723 0.00065 0.00035 0.00143 0.00348 D2 -0.00683 0.00505 -0.00678 0.00085 -0.00803 D3 0.00182 -0.00566 0.00443 0.00128 0.01168 D4 -0.01224 -0.00125 -0.00271 0.00070 0.00017 A1 A2 A3 A4 A5 A1 0.14006 A2 -0.01692 0.14091 A3 -0.01096 -0.01307 0.11893 A4 -0.01501 -0.01330 -0.01146 0.14833 A5 -0.02154 -0.01620 0.00511 -0.01427 0.13236 A6 -0.00518 -0.00806 -0.04515 -0.00810 0.01323 D1 0.00368 0.00257 -0.00260 0.00316 0.00132 D2 -0.00334 -0.00366 -0.00560 -0.00211 -0.00211 D3 0.00232 0.00310 0.00578 0.00199 0.00062 D4 -0.00471 -0.00313 0.00278 -0.00328 -0.00281 A6 D1 D2 D3 D4 A6 0.10806 D1 -0.00044 0.03322 D2 -0.00474 0.00489 0.01712 D3 0.00675 0.00270 -0.01482 0.01921 D4 0.00245 -0.02333 -0.00489 -0.00061 0.02012 ITU= -1 1 0 -1 -1 0 0 -1 1 1 1 0 1 0 Use linear search instead of GDIIS. Energy rises -- skip Quadratic/GDIIS search. Quartic linear search produced a step of -0.89421. Iteration 1 RMS(Cart)= 0.06725838 RMS(Int)= 0.06358225 Iteration 2 RMS(Cart)= 0.04517936 RMS(Int)= 0.00414991 Iteration 3 RMS(Cart)= 0.00340020 RMS(Int)= 0.00125985 Iteration 4 RMS(Cart)= 0.00000943 RMS(Int)= 0.00125980 Iteration 5 RMS(Cart)= 0.00000000 RMS(Int)= 0.00125980 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.49835 0.01598 0.01658 0.00000 0.01658 2.51492 R2 2.03415 0.00413 0.00376 0.00000 0.00376 2.03791 R3 2.01650 0.00878 0.02841 0.00000 0.02841 2.04491 R4 2.04643 -0.00027 -0.00302 0.00000 -0.00302 2.04341 R5 2.04678 0.00043 0.00188 0.00000 0.00188 2.04866 A1 2.12063 0.00629 0.03321 0.00000 0.03571 2.15634 A2 2.12947 0.00426 0.01856 0.00000 0.02106 2.15054 A3 1.97032 -0.00309 0.00348 0.00000 0.00598 1.97631 A4 2.13601 0.00405 0.01753 0.00000 0.01883 2.15483 A5 2.12089 0.00441 0.02695 0.00000 0.02824 2.14913 A6 1.98901 -0.00376 -0.01122 0.00000 -0.00993 1.97908 D1 2.67940 0.02245 0.47304 0.00000 0.47303 -3.13076 D2 -0.15467 0.00416 0.18475 0.00000 0.18476 0.03008 D3 -0.06241 0.00031 0.07014 0.00000 0.07013 0.00772 D4 -2.89648 -0.01797 -0.21815 0.00000 -0.21814 -3.11462 Item Value Threshold Converged? Maximum Force 0.022452 0.000450 NO RMS Force 0.009351 0.000300 NO Maximum Displacement 0.200373 0.001800 NO RMS Displacement 0.109667 0.001200 NO Predicted change in Energy=-3.573284D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.720943 -0.333991 -0.010542 2 6 0 -2.417607 -0.231744 0.238443 3 1 0 -4.174106 -1.198546 -0.468981 4 1 0 -4.433339 0.444047 0.230559 5 1 0 -1.966052 0.631851 0.707023 6 1 0 -1.701643 -1.001776 -0.025619 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.330839 0.000000 3 H 1.078415 2.126133 0.000000 4 H 1.082119 2.126013 1.804070 0.000000 5 H 2.127767 1.081326 3.099813 2.519880 0.000000 6 H 2.126907 1.084104 2.519595 3.101321 1.809810 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.665423 -0.000784 0.000533 2 6 0 -0.665411 0.000656 -0.002373 3 1 0 1.260460 -0.900137 -0.008113 4 1 0 1.259177 0.903851 0.009029 5 1 0 -1.260672 0.903391 -0.003466 6 1 0 -1.259035 -0.906338 0.013594 --------------------------------------------------------------------- Rotational constants (GHZ): 153.5770100 29.6835353 24.8765533 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.4844995159 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Lowest energy guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 -0.000001 -0.000003 -0.000140 Ang= -0.02 deg. B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000178 -0.000122 -0.000284 Ang= 0.04 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.251605179244E-01 A.U. after 8 cycles NFock= 7 Conv=0.81D-08 -V/T= 1.0036 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.004901683 0.001839940 0.002072710 2 6 -0.003716508 -0.000973275 -0.002666022 3 1 -0.000493035 -0.000879747 -0.000976320 4 1 -0.000058345 -0.000478222 0.000296412 5 1 0.000067352 -0.000269238 -0.000067864 6 1 -0.000701147 0.000760541 0.001341084 ------------------------------------------------------------------- Cartesian Forces: Max 0.004901683 RMS 0.001807634 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.004558007 RMS 0.001323334 Search for a local minimum. Step number 15 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 7 9 11 10 12 14 13 15 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.71190 R2 0.03080 0.23810 R3 0.03830 0.00265 0.29365 R4 0.03640 -0.00818 -0.01858 0.17285 R5 0.05549 -0.00497 0.00962 0.04234 0.18422 A1 0.01550 0.00305 -0.02058 -0.00309 -0.01070 A2 0.01046 0.00041 0.02140 -0.00622 -0.00636 A3 -0.03331 0.00657 0.01248 -0.00266 -0.01004 A4 0.00712 0.00067 -0.00382 -0.00483 -0.00970 A5 0.02318 -0.00382 0.00219 -0.00804 -0.01111 A6 -0.03730 0.00572 0.00915 0.00025 -0.00532 D1 -0.00002 0.00037 -0.00035 0.00045 0.00165 D2 -0.00133 0.00323 -0.00529 0.00055 -0.00762 D3 -0.00104 -0.00493 0.00317 0.00138 0.01109 D4 -0.00235 -0.00207 -0.00178 0.00148 0.00181 A1 A2 A3 A4 A5 A1 0.13748 A2 -0.01849 0.14102 A3 -0.01215 -0.01178 0.11955 A4 -0.01653 -0.01414 -0.01107 0.14734 A5 -0.02260 -0.01748 0.00328 -0.01533 0.13275 A6 -0.00566 -0.00664 -0.04257 -0.00748 0.01087 D1 -0.00078 0.00085 0.00053 -0.00035 0.00023 D2 -0.00599 -0.00385 -0.00336 -0.00344 -0.00355 D3 0.00270 0.00308 0.00499 0.00217 0.00059 D4 -0.00250 -0.00162 0.00110 -0.00092 -0.00319 A6 D1 D2 D3 D4 A6 0.11237 D1 0.00033 0.03252 D2 -0.00251 0.00410 0.01798 D3 0.00616 0.00350 -0.01504 0.01912 D4 0.00333 -0.02262 -0.00346 -0.00171 0.01974 ITU= 0 -1 1 0 -1 -1 0 0 -1 1 1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00230 0.03212 0.05035 0.07700 0.13388 Eigenvalues --- 0.15170 0.15988 0.16004 0.20907 0.24256 Eigenvalues --- 0.30169 0.73056 RFO step: Lambda=-3.36052394D-04 EMin= 2.29959061D-03 Quartic linear search produced a step of 0.00477. Iteration 1 RMS(Cart)= 0.06839380 RMS(Int)= 0.00308181 Iteration 2 RMS(Cart)= 0.00295755 RMS(Int)= 0.00028506 Iteration 3 RMS(Cart)= 0.00000474 RMS(Int)= 0.00028502 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00028502 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.51492 -0.00456 -0.00001 -0.00660 -0.00661 2.50831 R2 2.03791 0.00133 0.00000 0.00426 0.00426 2.04217 R3 2.04491 -0.00024 -0.00002 -0.00378 -0.00380 2.04111 R4 2.04341 -0.00022 0.00000 0.00383 0.00383 2.04724 R5 2.04866 -0.00133 0.00000 -0.00234 -0.00234 2.04632 A1 2.15634 -0.00014 -0.00001 -0.00717 -0.00729 2.14905 A2 2.15054 0.00028 0.00000 0.00157 0.00146 2.15199 A3 1.97631 -0.00014 0.00001 0.00554 0.00544 1.98174 A4 2.15483 -0.00003 0.00000 -0.00245 -0.00308 2.15176 A5 2.14913 0.00045 -0.00001 -0.00434 -0.00498 2.14415 A6 1.97908 -0.00040 0.00001 0.00782 0.00720 1.98628 D1 -3.13076 0.00005 -0.00027 -0.10211 -0.10239 3.05004 D2 0.03008 -0.00082 -0.00010 -0.17245 -0.17255 -0.14246 D3 0.00772 0.00003 -0.00004 -0.13152 -0.13157 -0.12384 D4 -3.11462 -0.00084 0.00012 -0.20186 -0.20173 2.96684 Item Value Threshold Converged? Maximum Force 0.004558 0.000450 NO RMS Force 0.001323 0.000300 NO Maximum Displacement 0.128898 0.001800 NO RMS Displacement 0.068655 0.001200 NO Predicted change in Energy=-1.850633D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.717868 -0.327267 -0.018839 2 6 0 -2.416392 -0.224097 0.220642 3 1 0 -4.160051 -1.173540 -0.524940 4 1 0 -4.439528 0.411224 0.298142 5 1 0 -1.959523 0.657797 0.653288 6 1 0 -1.720327 -1.034275 0.042591 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.327342 0.000000 3 H 1.080667 2.120774 0.000000 4 H 1.080110 2.121961 1.807498 0.000000 5 H 2.124590 1.083351 3.095859 2.517410 0.000000 6 H 2.119860 1.082865 2.508734 3.090118 1.814738 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.663572 0.000985 0.003491 2 6 0 -0.663766 -0.000339 0.005928 3 1 0 1.255213 -0.902228 0.048322 4 1 0 1.255542 0.901228 -0.072487 5 1 0 -1.259172 0.903926 0.043951 6 1 0 -1.250419 -0.906802 -0.076299 --------------------------------------------------------------------- Rotational constants (GHZ): 152.8174525 29.8383969 25.0033470 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.5020836044 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000024 0.000020 -0.000336 Ang= 0.04 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.259782864515E-01 A.U. after 11 cycles NFock= 10 Conv=0.31D-08 -V/T= 1.0037 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000104535 -0.000924842 0.001587375 2 6 0.000208697 -0.001123543 0.003351164 3 1 -0.001140203 -0.001183224 0.001669347 4 1 -0.000468056 0.002307266 -0.003820726 5 1 -0.000032204 -0.001791097 0.001147764 6 1 0.001327231 0.002715439 -0.003934924 ------------------------------------------------------------------- Cartesian Forces: Max 0.003934924 RMS 0.001981788 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.005071694 RMS 0.001849132 Search for a local minimum. Step number 16 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 7 9 11 10 12 14 13 16 15 DE= 8.18D-04 DEPred=-1.85D-04 R=-4.42D+00 Trust test=-4.42D+00 RLast= 3.14D-01 DXMaxT set to 1.06D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.65322 R2 0.04966 0.23232 R3 0.04302 0.00257 0.29441 R4 0.03185 -0.00682 -0.01853 0.17299 R5 0.04303 0.00050 0.01039 0.04138 0.17976 A1 0.02799 0.00102 -0.02015 -0.00305 -0.01005 A2 0.02131 -0.00285 0.02185 -0.00591 -0.00388 A3 -0.03424 0.00534 0.01059 -0.00248 -0.01036 A4 0.01270 0.00000 -0.00356 -0.00489 -0.00993 A5 0.03773 -0.00723 0.00192 -0.00740 -0.00790 A6 -0.04643 0.00749 0.00805 -0.00026 -0.00847 D1 0.00236 -0.00011 -0.00033 0.00030 0.00190 D2 -0.00511 0.00557 -0.00417 -0.00158 -0.00988 D3 0.00929 -0.00625 0.00404 0.00081 0.01236 D4 0.00182 -0.00056 0.00020 -0.00107 0.00059 A1 A2 A3 A4 A5 A1 0.13491 A2 -0.01885 0.14018 A3 -0.01269 -0.01199 0.12101 A4 -0.01749 -0.01384 -0.01102 0.14706 A5 -0.02479 -0.01942 0.00166 -0.01622 0.13038 A6 -0.00459 -0.00488 -0.04025 -0.00688 0.01146 D1 -0.00101 0.00068 0.00051 -0.00053 0.00017 D2 -0.00287 -0.00127 -0.00332 -0.00216 0.00004 D3 0.00177 0.00250 0.00368 0.00139 0.00067 D4 -0.00009 0.00056 -0.00015 -0.00023 0.00054 A6 D1 D2 D3 D4 A6 0.11348 D1 0.00031 0.03260 D2 -0.00439 0.00517 0.02283 D3 0.00498 0.00387 -0.01056 0.02127 D4 0.00028 -0.02126 0.00480 0.00455 0.03290 ITU= -1 0 -1 1 0 -1 -1 0 0 -1 1 1 1 0 1 0 Use linear search instead of GDIIS. Energy rises -- skip Quadratic/GDIIS search. Quartic linear search produced a step of -0.85406. Iteration 1 RMS(Cart)= 0.05867338 RMS(Int)= 0.00221633 Iteration 2 RMS(Cart)= 0.00215081 RMS(Int)= 0.00003555 Iteration 3 RMS(Cart)= 0.00000228 RMS(Int)= 0.00003550 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00003550 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.50831 0.00156 0.00564 0.00000 0.00564 2.51396 R2 2.04217 0.00061 -0.00364 0.00000 -0.00364 2.03853 R3 2.04111 0.00077 0.00324 0.00000 0.00324 2.04435 R4 2.04724 -0.00101 -0.00327 0.00000 -0.00327 2.04397 R5 2.04632 -0.00053 0.00200 0.00000 0.00200 2.04832 A1 2.14905 0.00051 0.00622 0.00000 0.00624 2.15529 A2 2.15199 0.00044 -0.00124 0.00000 -0.00123 2.15076 A3 1.98174 -0.00090 -0.00464 0.00000 -0.00463 1.97711 A4 2.15176 0.00012 0.00263 0.00000 0.00271 2.15446 A5 2.14415 0.00132 0.00425 0.00000 0.00433 2.14848 A6 1.98628 -0.00134 -0.00615 0.00000 -0.00607 1.98021 D1 3.05004 0.00050 0.08745 0.00000 0.08745 3.13749 D2 -0.14246 0.00316 0.14737 0.00000 0.14737 0.00490 D3 -0.12384 0.00241 0.11237 0.00000 0.11237 -0.01148 D4 2.96684 0.00507 0.17229 0.00000 0.17229 3.13913 Item Value Threshold Converged? Maximum Force 0.005072 0.000450 NO RMS Force 0.001849 0.000300 NO Maximum Displacement 0.110412 0.001800 NO RMS Displacement 0.058648 0.001200 NO Predicted change in Energy=-2.604417D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.720498 -0.333007 -0.011782 2 6 0 -2.417453 -0.230512 0.235891 3 1 0 -4.171905 -1.195146 -0.477223 4 1 0 -4.434477 0.439594 0.240542 5 1 0 -1.965132 0.635843 0.699292 6 1 0 -1.704224 -1.006931 -0.015837 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.330328 0.000000 3 H 1.078743 2.125360 0.000000 4 H 1.081826 2.125429 1.804579 0.000000 5 H 2.127348 1.081622 3.099445 2.519252 0.000000 6 H 2.125923 1.083923 2.517490 3.100395 1.810577 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.665158 -0.000589 0.000972 2 6 0 -0.665168 0.000619 -0.001158 3 1 0 1.259570 -0.900790 0.000073 4 1 0 1.258822 0.903787 -0.002888 5 1 0 -1.260423 0.903700 0.003451 6 1 0 -1.257912 -0.906873 0.000480 --------------------------------------------------------------------- Rotational constants (GHZ): 153.4724493 29.7099314 24.8914531 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.4870231864 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Lowest energy guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 -0.000001 -0.000021 Ang= 0.00 deg. B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 -0.000022 -0.000020 0.000316 Ang= -0.04 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.251359847888E-01 A.U. after 8 cycles NFock= 7 Conv=0.18D-08 -V/T= 1.0036 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.004252136 0.001469721 0.002043002 2 6 -0.003187596 -0.001062123 -0.001811620 3 1 -0.000591825 -0.000896988 -0.000587625 4 1 -0.000097283 -0.000113367 -0.000330954 5 1 0.000053588 -0.000506793 0.000096694 6 1 -0.000429020 0.001109550 0.000590502 ------------------------------------------------------------------- Cartesian Forces: Max 0.004252136 RMS 0.001539306 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.003734685 RMS 0.001094423 Search for a local minimum. Step number 17 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 7 9 11 10 12 14 13 16 15 17 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.70956 R2 0.03271 0.23500 R3 0.04142 0.00329 0.29578 R4 0.03580 -0.00813 -0.01878 0.17325 R5 0.05561 -0.00157 0.01036 0.04221 0.18137 A1 0.02305 0.00308 -0.02124 -0.00337 -0.01219 A2 0.01555 -0.00367 0.02061 -0.00629 -0.00404 A3 -0.03298 0.00421 0.00849 -0.00216 -0.01031 A4 0.01329 0.00045 -0.00413 -0.00498 -0.01067 A5 0.02558 -0.00515 0.00133 -0.00804 -0.00975 A6 -0.03544 0.00495 0.00642 0.00055 -0.00719 D1 0.00157 0.00079 0.00033 0.00022 0.00166 D2 -0.00006 0.00474 -0.00417 -0.00128 -0.00921 D3 0.00112 -0.00493 0.00419 0.00017 0.01130 D4 -0.00051 -0.00099 -0.00031 -0.00133 0.00043 A1 A2 A3 A4 A5 A1 0.13530 A2 -0.01757 0.13887 A3 -0.01286 -0.01205 0.12185 A4 -0.01718 -0.01314 -0.01093 0.14733 A5 -0.02426 -0.01995 0.00079 -0.01614 0.13095 A6 -0.00509 -0.00437 -0.03873 -0.00684 0.01014 D1 0.00019 0.00135 -0.00036 0.00049 0.00067 D2 -0.00262 -0.00072 -0.00277 -0.00141 -0.00068 D3 0.00211 0.00182 0.00285 0.00133 0.00116 D4 -0.00070 -0.00025 0.00043 -0.00057 -0.00019 A6 D1 D2 D3 D4 A6 0.11584 D1 -0.00030 0.03238 D2 -0.00323 0.00496 0.02298 D3 0.00365 0.00402 -0.01097 0.02196 D4 0.00071 -0.02111 0.00476 0.00468 0.03284 ITU= 0 -1 0 -1 1 0 -1 -1 0 0 -1 1 1 1 0 1 Use linear search instead of GDIIS. Eigenvalues --- 0.02057 0.03159 0.05360 0.07946 0.13286 Eigenvalues --- 0.14818 0.16000 0.16016 0.20888 0.23854 Eigenvalues --- 0.30275 0.72992 RFO step: Lambda=-6.20577383D-05 EMin= 2.05689187D-02 Quartic linear search produced a step of 0.00030. Iteration 1 RMS(Cart)= 0.00479072 RMS(Int)= 0.00003711 Iteration 2 RMS(Cart)= 0.00003148 RMS(Int)= 0.00001459 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00001459 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.51396 -0.00373 0.00000 -0.00649 -0.00649 2.50747 R2 2.03853 0.00122 0.00000 0.00717 0.00717 2.04570 R3 2.04435 -0.00009 0.00000 0.00071 0.00071 2.04507 R4 2.04397 -0.00034 0.00000 0.00191 0.00191 2.04588 R5 2.04832 -0.00121 0.00000 -0.00672 -0.00672 2.04160 A1 2.15529 -0.00004 0.00000 0.00212 0.00210 2.15739 A2 2.15076 0.00028 0.00000 0.00423 0.00421 2.15497 A3 1.97711 -0.00025 0.00000 -0.00628 -0.00630 1.97081 A4 2.15446 0.00000 0.00000 0.00148 0.00146 2.15592 A5 2.14848 0.00054 0.00000 0.00808 0.00805 2.15654 A6 1.98021 -0.00054 0.00000 -0.00946 -0.00949 1.97072 D1 3.13749 0.00011 0.00000 0.00489 0.00488 -3.14082 D2 0.00490 -0.00024 -0.00001 -0.00925 -0.00926 -0.00435 D3 -0.01148 0.00038 -0.00001 0.01757 0.01757 0.00609 D4 3.13913 0.00002 -0.00001 0.00344 0.00343 -3.14063 Item Value Threshold Converged? Maximum Force 0.003735 0.000450 NO RMS Force 0.001094 0.000300 NO Maximum Displacement 0.009662 0.001800 NO RMS Displacement 0.004798 0.001200 NO Predicted change in Energy=-3.107315D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.719114 -0.333454 -0.008906 2 6 0 -2.418336 -0.230968 0.232187 3 1 0 -4.175642 -1.196264 -0.476915 4 1 0 -4.434636 0.440022 0.237929 5 1 0 -1.963297 0.632324 0.700977 6 1 0 -1.702664 -1.001818 -0.014387 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.326895 0.000000 3 H 1.082540 2.126675 0.000000 4 H 1.082204 2.125023 1.804304 0.000000 5 H 2.125924 1.082635 3.102521 2.521688 0.000000 6 H 2.124337 1.080368 2.523363 3.099392 1.802802 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.663392 0.000113 -0.000687 2 6 0 -0.663502 -0.000541 0.000666 3 1 0 1.263058 -0.901158 0.000705 4 1 0 1.259797 0.903142 0.001495 5 1 0 -1.261889 0.901693 -0.001431 6 1 0 -1.260304 -0.901108 -0.000641 --------------------------------------------------------------------- Rotational constants (GHZ): 154.1603391 29.7687347 24.9507309 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.4969388854 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 -0.000095 Ang= 0.01 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.251148317151E-01 A.U. after 10 cycles NFock= 9 Conv=0.31D-08 -V/T= 1.0036 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.000911972 0.000149669 -0.000565305 2 6 0.000320224 0.000499314 0.000761710 3 1 0.000334550 0.000261631 0.000279922 4 1 0.000129496 -0.000204472 0.000081869 5 1 -0.000274083 -0.000224933 -0.000295273 6 1 0.000401785 -0.000481209 -0.000262923 ------------------------------------------------------------------- Cartesian Forces: Max 0.000911972 RMS 0.000415315 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000669509 RMS 0.000293486 Search for a local minimum. Step number 18 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 7 9 11 10 12 14 13 16 15 17 18 DE= -2.12D-05 DEPred=-3.11D-05 R= 6.81D-01 TightC=F SS= 1.41D+00 RLast= 2.81D-02 DXNew= 1.7875D-01 8.4407D-02 Trust test= 6.81D-01 RLast= 2.81D-02 DXMaxT set to 1.06D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.68714 R2 0.01585 0.24493 R3 0.02333 0.00626 0.29217 R4 0.00750 -0.00027 -0.02072 0.17281 R5 0.08831 -0.01560 0.00937 0.03324 0.20221 A1 0.02059 0.00516 -0.02215 -0.00307 -0.01439 A2 0.03495 -0.00861 0.02201 -0.00467 0.00130 A3 -0.01743 -0.00059 0.00805 -0.00212 -0.00586 A4 0.01492 0.00048 -0.00453 -0.00455 -0.01098 A5 0.04114 -0.00674 0.00369 -0.00550 -0.00799 A6 -0.02271 -0.00039 0.00537 -0.00106 -0.00198 D1 -0.00166 0.00046 -0.00096 -0.00145 0.00377 D2 0.00488 0.00038 -0.00621 -0.00486 -0.00278 D3 -0.00602 -0.00006 0.00558 0.00313 0.00558 D4 0.00053 -0.00014 0.00033 -0.00028 -0.00097 A1 A2 A3 A4 A5 A1 0.13539 A2 -0.01619 0.13687 A3 -0.01304 -0.01278 0.12243 A4 -0.01686 -0.01287 -0.01081 0.14752 A5 -0.02391 -0.02168 -0.00105 -0.01641 0.12934 A6 -0.00523 -0.00398 -0.03684 -0.00657 0.00911 D1 0.00123 0.00323 -0.00011 0.00141 0.00248 D2 -0.00244 0.00186 -0.00049 -0.00092 0.00100 D3 0.00275 0.00066 0.00038 0.00131 0.00112 D4 -0.00092 -0.00071 0.00000 -0.00102 -0.00036 A6 D1 D2 D3 D4 A6 0.11854 D1 0.00011 0.03188 D2 -0.00074 0.00483 0.02471 D3 0.00090 0.00367 -0.01304 0.02399 D4 0.00005 -0.02108 0.00453 0.00497 0.03288 ITU= 1 0 -1 0 -1 1 0 -1 -1 0 0 -1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.02008 0.03622 0.05317 0.08421 0.14223 Eigenvalues --- 0.14491 0.15980 0.16015 0.20870 0.25279 Eigenvalues --- 0.30176 0.71036 RFO step: Lambda=-3.14170118D-06 EMin= 2.00826947D-02 Quartic linear search produced a step of -0.24158. Iteration 1 RMS(Cart)= 0.00174163 RMS(Int)= 0.00000371 Iteration 2 RMS(Cart)= 0.00000332 RMS(Int)= 0.00000144 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000144 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.50747 0.00046 0.00157 -0.00117 0.00040 2.50787 R2 2.04570 -0.00047 -0.00173 0.00006 -0.00167 2.04404 R3 2.04507 -0.00021 -0.00017 -0.00089 -0.00106 2.04401 R4 2.04588 -0.00042 -0.00046 -0.00267 -0.00314 2.04275 R5 2.04160 0.00067 0.00162 0.00207 0.00369 2.04529 A1 2.15739 -0.00022 -0.00051 -0.00097 -0.00148 2.15592 A2 2.15497 0.00010 -0.00102 0.00119 0.00018 2.15515 A3 1.97081 0.00012 0.00152 -0.00021 0.00131 1.97212 A4 2.15592 -0.00012 -0.00035 -0.00049 -0.00084 2.15508 A5 2.15654 -0.00001 -0.00195 0.00121 -0.00073 2.15581 A6 1.97072 0.00014 0.00229 -0.00071 0.00158 1.97230 D1 -3.14082 -0.00001 -0.00118 -0.00028 -0.00146 3.14091 D2 -0.00435 0.00018 0.00224 0.00153 0.00376 -0.00059 D3 0.00609 -0.00022 -0.00424 -0.00216 -0.00641 -0.00032 D4 -3.14063 -0.00002 -0.00083 -0.00036 -0.00118 3.14137 Item Value Threshold Converged? Maximum Force 0.000670 0.000450 NO RMS Force 0.000293 0.000300 YES Maximum Displacement 0.002803 0.001800 NO RMS Displacement 0.001741 0.001200 NO Predicted change in Energy=-3.969679D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.719291 -0.332461 -0.009607 2 6 0 -2.418581 -0.230905 0.233402 3 1 0 -4.174159 -1.195523 -0.476728 4 1 0 -4.434790 0.439766 0.238741 5 1 0 -1.964732 0.632265 0.699734 6 1 0 -1.702135 -1.003299 -0.014658 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.327107 0.000000 3 H 1.081657 2.125282 0.000000 4 H 1.081642 2.124836 1.803883 0.000000 5 H 2.124227 1.080976 3.099426 2.520071 0.000000 6 H 2.125786 1.082322 2.522173 3.100653 1.803991 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.663543 -0.000148 -0.000044 2 6 0 -0.663564 0.000178 -0.000008 3 1 0 1.260722 -0.902012 0.000310 4 1 0 1.260462 0.901870 -0.000098 5 1 0 -1.259609 0.901976 0.000254 6 1 0 -1.261451 -0.902014 -0.000154 --------------------------------------------------------------------- Rotational constants (GHZ): 154.0953391 29.7753274 24.9536229 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.4984703674 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\mp3214\3rdyearcomp\Exercise 1\Ethylene.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000389 Ang= 0.04 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = 0.251119433959E-01 A.U. after 8 cycles NFock= 8 Conv=0.68D-08 -V/T= 1.0036 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.000325219 -0.000059310 -0.000105393 2 6 0.000387354 -0.000409347 -0.000133851 3 1 0.000020219 -0.000033109 0.000011605 4 1 -0.000035912 0.000030489 0.000007794 5 1 0.000192466 0.000271675 0.000171401 6 1 -0.000238908 0.000199602 0.000048445 ------------------------------------------------------------------- Cartesian Forces: Max 0.000409347 RMS 0.000197108 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000371684 RMS 0.000160000 Search for a local minimum. Step number 19 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 7 9 11 10 12 14 13 16 15 17 18 19 DE= -2.89D-06 DEPred=-3.97D-06 R= 7.28D-01 TightC=F SS= 1.41D+00 RLast= 9.69D-03 DXNew= 1.7875D-01 2.9079D-02 Trust test= 7.28D-01 RLast= 9.69D-03 DXMaxT set to 1.06D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.74956 R2 0.02646 0.24086 R3 0.04086 0.00489 0.29386 R4 0.05331 0.00976 -0.00825 0.22070 R5 0.04841 -0.02237 0.00032 -0.00995 0.24120 A1 0.01617 -0.00050 -0.02875 -0.00387 -0.01244 A2 0.02989 -0.01039 0.02224 -0.00367 0.00251 A3 -0.02536 -0.00061 0.00704 -0.00461 -0.00373 A4 0.02090 0.00071 -0.00402 0.00694 -0.02062 A5 0.02730 -0.01274 -0.00167 -0.01500 0.00262 A6 -0.03005 -0.00064 0.00386 -0.00454 0.00084 D1 0.00271 0.00052 -0.00011 0.00244 0.00042 D2 0.00409 0.00213 -0.00490 -0.00587 -0.00277 D3 -0.00105 -0.00197 0.00494 0.00796 0.00269 D4 0.00033 -0.00036 0.00015 -0.00035 -0.00050 A1 A2 A3 A4 A5 A1 0.12876 A2 -0.01349 0.13027 A3 -0.01042 -0.01389 0.12284 A4 -0.01787 -0.01392 -0.01058 0.14974 A5 -0.02611 -0.02517 -0.00031 -0.02044 0.12773 A6 -0.00299 -0.00387 -0.03590 -0.00639 0.01053 D1 -0.00011 0.00232 -0.00055 0.00150 0.00059 D2 -0.00053 0.00124 -0.00102 -0.00085 0.00185 D3 -0.00030 0.00111 0.00060 0.00177 -0.00119 D4 -0.00071 0.00003 0.00014 -0.00058 0.00007 A6 D1 D2 D3 D4 A6 0.11963 D1 -0.00039 0.03217 D2 -0.00111 0.00501 0.02408 D3 0.00097 0.00374 -0.01221 0.02313 D4 0.00025 -0.02112 0.00456 0.00488 0.03285 ITU= 1 1 0 -1 0 -1 1 0 -1 -1 0 0 -1 1 1 1 Eigenvalues --- 0.02035 0.03475 0.05357 0.08002 0.13311 Eigenvalues --- 0.15851 0.16006 0.20845 0.21968 0.27279 Eigenvalues --- 0.30127 0.76892 En-DIIS/RFO-DIIS IScMMF= 0 using points: 19 18 RFO step: Lambda=-6.75676042D-07. DidBck=T Rises=F RFO-DIIS coefs: 0.78638 0.21362 Iteration 1 RMS(Cart)= 0.00069500 RMS(Int)= 0.00000052 Iteration 2 RMS(Cart)= 0.00000030 RMS(Int)= 0.00000043 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.50787 0.00035 -0.00009 0.00060 0.00051 2.50838 R2 2.04404 0.00001 0.00036 -0.00059 -0.00023 2.04381 R3 2.04401 0.00005 0.00023 -0.00015 0.00008 2.04408 R4 2.04275 0.00037 0.00067 0.00081 0.00148 2.04423 R5 2.04529 -0.00031 -0.00079 -0.00055 -0.00134 2.04395 A1 2.15592 -0.00005 0.00032 -0.00083 -0.00051 2.15541 A2 2.15515 0.00003 -0.00004 0.00012 0.00008 2.15523 A3 1.97212 0.00002 -0.00028 0.00071 0.00043 1.97255 A4 2.15508 0.00009 0.00018 0.00004 0.00022 2.15530 A5 2.15581 -0.00009 0.00016 -0.00085 -0.00069 2.15512 A6 1.97230 0.00000 -0.00034 0.00080 0.00047 1.97277 D1 3.14091 0.00002 0.00031 0.00023 0.00054 3.14145 D2 -0.00059 0.00001 -0.00080 0.00150 0.00070 0.00011 D3 -0.00032 0.00000 0.00137 -0.00139 -0.00002 -0.00034 D4 3.14137 0.00000 0.00025 -0.00011 0.00014 3.14151 Item Value Threshold Converged? Maximum Force 0.000372 0.000450 YES RMS Force 0.000160 0.000300 YES Maximum Displacement 0.001665 0.001800 YES RMS Displacement 0.000695 0.001200 YES Predicted change in Energy=-6.459242D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3271 -DE/DX = 0.0004 ! ! R2 R(1,3) 1.0817 -DE/DX = 0.0 ! ! R3 R(1,4) 1.0816 -DE/DX = 0.0 ! ! R4 R(2,5) 1.081 -DE/DX = 0.0004 ! ! R5 R(2,6) 1.0823 -DE/DX = -0.0003 ! ! A1 A(2,1,3) 123.525 -DE/DX = 0.0 ! ! A2 A(2,1,4) 123.4809 -DE/DX = 0.0 ! ! A3 A(3,1,4) 112.9941 -DE/DX = 0.0 ! ! A4 A(1,2,5) 123.4768 -DE/DX = 0.0001 ! ! A5 A(1,2,6) 123.5186 -DE/DX = -0.0001 ! ! A6 A(5,2,6) 113.0046 -DE/DX = 0.0 ! ! D1 D(3,1,2,5) 179.9609 -DE/DX = 0.0 ! ! D2 D(3,1,2,6) -0.0337 -DE/DX = 0.0 ! ! D3 D(4,1,2,5) -0.0182 -DE/DX = 0.0 ! ! D4 D(4,1,2,6) 179.9873 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.719291 -0.332461 -0.009607 2 6 0 -2.418581 -0.230905 0.233402 3 1 0 -4.174159 -1.195523 -0.476728 4 1 0 -4.434790 0.439766 0.238741 5 1 0 -1.964732 0.632265 0.699734 6 1 0 -1.702135 -1.003299 -0.014658 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.327107 0.000000 3 H 1.081657 2.125282 0.000000 4 H 1.081642 2.124836 1.803883 0.000000 5 H 2.124227 1.080976 3.099426 2.520071 0.000000 6 H 2.125786 1.082322 2.522173 3.100653 1.803991 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.663543 -0.000148 -0.000044 2 6 0 -0.663564 0.000178 -0.000008 3 1 0 1.260722 -0.902012 0.000310 4 1 0 1.260462 0.901870 -0.000098 5 1 0 -1.259609 0.901976 0.000254 6 1 0 -1.261451 -0.902014 -0.000154 --------------------------------------------------------------------- Rotational constants (GHZ): 154.0953391 29.7753274 24.9536229 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -0.98728 -0.75701 -0.58861 -0.53155 -0.44259 Alpha occ. eigenvalues -- -0.39233 Alpha virt. eigenvalues -- 0.04258 0.20066 0.21096 0.23166 0.23858 Alpha virt. eigenvalues -- 0.23914 Molecular Orbital Coefficients: 1 2 3 4 5 O O O O O Eigenvalues -- -0.98728 -0.75701 -0.58861 -0.53155 -0.44259 1 1 C 1S 0.60030 -0.44479 -0.00005 0.00201 0.00003 2 1PX -0.18422 -0.32494 0.00071 -0.61361 0.00017 3 1PY 0.00016 0.00024 0.56014 0.00061 0.50519 4 1PZ 0.00003 -0.00003 -0.00006 -0.00007 -0.00053 5 2 C 1S 0.60030 0.44479 -0.00055 0.00196 0.00018 6 1PX 0.18423 -0.32489 -0.00003 0.61363 -0.00053 7 1PY 0.00020 0.00051 0.56019 -0.00016 -0.50513 8 1PZ 0.00001 0.00001 0.00006 -0.00007 -0.00053 9 3 H 1S 0.22981 -0.31366 -0.30485 -0.24885 -0.34976 10 4 H 1S 0.22996 -0.31341 0.30538 -0.24806 0.35001 11 5 H 1S 0.23019 0.31383 0.30503 -0.24841 -0.34959 12 6 H 1S 0.22959 0.31319 -0.30528 -0.24853 0.35012 6 7 8 9 10 O V V V V Eigenvalues -- -0.39233 0.04258 0.20066 0.21096 0.23166 1 1 C 1S -0.00006 0.00006 0.00025 -0.05904 -0.54641 2 1PX -0.00007 0.00005 0.00197 0.59523 0.20022 3 1PY 0.00043 -0.00014 0.43156 -0.00319 0.00821 4 1PZ 0.70711 -0.70710 -0.00015 0.00005 -0.00007 5 2 C 1S -0.00001 -0.00002 -0.00200 0.05893 0.54652 6 1PX 0.00007 0.00003 0.00377 0.59531 0.20015 7 1PY -0.00043 -0.00014 0.43148 -0.00196 -0.00597 8 1PZ 0.70710 0.70711 0.00015 -0.00005 0.00002 9 3 H 1S -0.00023 -0.00010 0.39474 -0.26932 0.29000 10 4 H 1S 0.00022 0.00002 -0.39749 -0.26379 0.27768 11 5 H 1S -0.00024 0.00008 -0.39281 0.26834 -0.27999 12 6 H 1S 0.00021 -0.00004 0.39930 0.26497 -0.28793 11 12 V V Eigenvalues -- 0.23858 0.23914 1 1 C 1S 0.06880 -0.36744 2 1PX 0.04718 -0.29555 3 1PY 0.48817 0.07996 4 1PZ -0.00006 -0.00007 5 2 C 1S 0.05357 -0.36982 6 1PX -0.05116 0.29475 7 1PY -0.48791 -0.08228 8 1PZ -0.00007 -0.00002 9 3 H 1S 0.28774 0.41995 10 4 H 1S -0.41714 0.30479 11 5 H 1S 0.29625 0.42319 12 6 H 1S -0.40818 0.30411 Density Matrix: 1 2 3 4 5 1 1 C 1S 1.11641 2 1PX 0.06540 1.03207 3 1PY -0.00003 0.00001 1.13794 4 1PZ -0.00002 0.00000 0.00001 1.00001 5 2 C 1S 0.32506 -0.51264 -0.00002 -0.00001 1.11641 6 1PX 0.51267 -0.60980 0.00008 0.00005 -0.06542 7 1PY -0.00030 0.00042 0.11720 -0.00014 -0.00011 8 1PZ -0.00008 -0.00002 0.00014 1.00000 0.00000 9 3 H 1S 0.55394 0.42401 -0.69528 0.00014 -0.00388 10 4 H 1S 0.55389 0.42393 0.69537 -0.00003 -0.00389 11 5 H 1S -0.00386 0.01640 -0.01157 0.00002 0.55411 12 6 H 1S -0.00391 0.01656 0.01167 -0.00001 0.55375 6 7 8 9 10 6 1PX 1.03208 7 1PY 0.00004 1.13792 8 1PZ 0.00001 -0.00001 0.99999 9 3 H 1S -0.01653 0.01165 0.00004 0.85678 10 4 H 1S -0.01645 -0.01160 0.00000 -0.00526 0.85681 11 5 H 1S -0.42361 0.69542 0.00011 0.09113 -0.02602 12 6 H 1S -0.42428 -0.69524 -0.00007 -0.02604 0.09121 11 12 11 5 H 1S 0.85688 12 6 H 1S -0.00529 0.85670 Full Mulliken population analysis: 1 2 3 4 5 1 1 C 1S 1.11641 2 1PX 0.00000 1.03207 3 1PY 0.00000 0.00000 1.13794 4 1PZ 0.00000 0.00000 0.00000 1.00001 5 2 C 1S 0.00000 0.00000 0.00000 0.00000 1.11641 6 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 7 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 8 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 9 3 H 1S 0.00000 0.00000 0.00000 0.00000 0.00000 10 4 H 1S 0.00000 0.00000 0.00000 0.00000 0.00000 11 5 H 1S 0.00000 0.00000 0.00000 0.00000 0.00000 12 6 H 1S 0.00000 0.00000 0.00000 0.00000 0.00000 6 7 8 9 10 6 1PX 1.03208 7 1PY 0.00000 1.13792 8 1PZ 0.00000 0.00000 0.99999 9 3 H 1S 0.00000 0.00000 0.00000 0.85678 10 4 H 1S 0.00000 0.00000 0.00000 0.00000 0.85681 11 5 H 1S 0.00000 0.00000 0.00000 0.00000 0.00000 12 6 H 1S 0.00000 0.00000 0.00000 0.00000 0.00000 11 12 11 5 H 1S 0.85688 12 6 H 1S 0.00000 0.85670 Gross orbital populations: 1 1 1 C 1S 1.11641 2 1PX 1.03207 3 1PY 1.13794 4 1PZ 1.00001 5 2 C 1S 1.11641 6 1PX 1.03208 7 1PY 1.13792 8 1PZ 0.99999 9 3 H 1S 0.85678 10 4 H 1S 0.85681 11 5 H 1S 0.85688 12 6 H 1S 0.85670 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.286428 0.000000 0.000000 0.000000 0.000000 0.000000 2 C 0.000000 4.286402 0.000000 0.000000 0.000000 0.000000 3 H 0.000000 0.000000 0.856780 0.000000 0.000000 0.000000 4 H 0.000000 0.000000 0.000000 0.856808 0.000000 0.000000 5 H 0.000000 0.000000 0.000000 0.000000 0.856884 0.000000 6 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.856698 Mulliken charges: 1 1 C -0.286428 2 C -0.286402 3 H 0.143220 4 H 0.143192 5 H 0.143116 6 H 0.143302 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.000016 2 C 0.000016 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0001 Y= -0.0005 Z= 0.0004 Tot= 0.0007 N-N= 2.749847036738D+01 E-N=-4.056245752368D+01 KE=-6.985511182756D+00 Orbital energies and kinetic energies (alpha): 1 2 1 O -0.987279 -0.958296 2 O -0.757010 -0.745474 3 O -0.588607 -0.548015 4 O -0.531549 -0.456705 5 O -0.442595 -0.437448 6 O -0.392334 -0.346817 7 V 0.042585 -0.210536 8 V 0.200660 -0.204064 9 V 0.210963 -0.127189 10 V 0.231657 -0.190756 11 V 0.238575 -0.160920 12 V 0.239143 -0.188637 Total kinetic energy from orbitals=-6.985511182756D+00 1|1| IMPERIAL COLLEGE-CHWS-262|FOpt|RPM6|ZDO|C2H4|MP3214|01-Dec-2016|0 ||# opt pm6 geom=connectivity gfprint integral=grid=ultrafine pop=full ||Title Card Required||0,1|C,-3.7192914382,-0.3324613051,-0.0096070995 |C,-2.4185811317,-0.2309054034,0.2334017403|H,-4.1741586105,-1.1955231 104,-0.4767277107|H,-4.4347900173,0.4397657525,0.2387407518|H,-1.96473 19574,0.6322650558,0.699734257|H,-1.702135245,-1.0032991693,-0.0146578 589||Version=EM64W-G09RevD.01|State=1-A|HF=0.0251119|RMSD=6.785e-009|R MSF=1.971e-004|Dipole=0.000021,-0.0001388,-0.0002159|PG=C01 [X(C2H4)]| |@ Other things may change us, but we start and end with family. -- Anthony Brandt Job cpu time: 0 days 0 hours 0 minutes 51.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Thu Dec 01 16:34:08 2016.