Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_d01/g09/l1.exe "/home/scan-user-1/run/90885/Gau-26789.inp" -scrdir="/home/scan-user-1/run/90885/" Entering Link 1 = /apps/gaussian/g09_d01/g09/l1.exe PID= 26790. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: ES64L-G09RevD.01 24-Apr-2013 20-Mar-2014 ****************************************** %nprocshared=8 Will use up to 8 processors via shared memory. %mem=13000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.6741073.cx1b/rwf ---------------------------------------------------------------------- # CAM-B3LYP/6-311++g(2df,p) polar(optrot) scrf(cpcm,solvent=benzene) C PHF=RdFreq ---------------------------------------------------------------------- 1/38=1,83=21/1; 2/12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=1114,11=2,16=1,25=1,30=1,36=2,70=2101,72=12,74=-40/1,2,3; 4//1; 5/5=2,38=5,53=12,96=-2,98=1/2; 8/6=4,10=90,11=11/1; 10/6=1,13=10,46=8,60=-2,72=3/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; -------------------- rr stilbene jq411 or -------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C -3.90543 1.18842 0.84921 C -4.61347 0.56233 -0.17944 C -3.98413 -0.40899 -0.96338 C -2.65296 -0.74879 -0.72476 C -1.93722 -0.11953 0.30251 C -2.57432 0.84611 1.09184 C -0.50516 -0.44561 0.54671 C 0.50517 -0.44562 -0.54676 C 1.93723 -0.11953 -0.30253 C 2.57428 0.84628 -1.0917 C 3.90538 1.1886 -0.84904 C 4.61346 0.56235 0.17949 C 3.98417 -0.40913 0.96327 C 2.65301 -0.74895 0.72461 O 0. -1.67604 -0.00003 H -4.39027 1.93908 1.46633 H -5.65051 0.82518 -0.36553 H -4.53282 -0.90509 -1.75864 H -2.16061 -1.51312 -1.31782 H -2.02647 1.32969 1.8966 H -0.13046 -0.21546 1.54544 H 0.13049 -0.21546 -1.5455 H 2.02639 1.32998 -1.89637 H 4.39018 1.93939 -1.46602 H 5.65049 0.82521 0.36561 H 4.53289 -0.90535 1.75843 H 2.16069 -1.51339 1.31755 Using perturbation frequencies: 0.077357 0.124831 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.905429 1.188421 0.849213 2 6 0 -4.613468 0.562334 -0.179439 3 6 0 -3.984127 -0.408989 -0.963380 4 6 0 -2.652964 -0.748793 -0.724761 5 6 0 -1.937221 -0.119528 0.302509 6 6 0 -2.574322 0.846113 1.091838 7 6 0 -0.505158 -0.445609 0.546706 8 6 0 0.505168 -0.445621 -0.546757 9 6 0 1.937230 -0.119529 -0.302534 10 6 0 2.574279 0.846280 -1.091701 11 6 0 3.905375 1.188595 -0.849037 12 6 0 4.613457 0.562351 0.179492 13 6 0 3.984167 -0.409133 0.963271 14 6 0 2.653011 -0.748946 0.724612 15 8 0 0.000003 -1.676041 -0.000033 16 1 0 -4.390269 1.939083 1.466325 17 1 0 -5.650512 0.825180 -0.365527 18 1 0 -4.532816 -0.905087 -1.758638 19 1 0 -2.160615 -1.513122 -1.317820 20 1 0 -2.026467 1.329691 1.896596 21 1 0 -0.130461 -0.215464 1.545443 22 1 0 0.130487 -0.215462 -1.545499 23 1 0 2.026392 1.329979 -1.896365 24 1 0 4.390177 1.939387 -1.466022 25 1 0 5.650494 0.825206 0.365608 26 1 0 4.532886 -0.905351 1.758433 27 1 0 2.160694 -1.513389 1.317550 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.396936 0.000000 3 C 2.417314 1.397892 0.000000 4 C 2.792644 2.420745 1.394418 0.000000 5 C 2.425584 2.803481 2.424064 1.401266 0.000000 6 C 1.395667 2.419668 2.790475 2.418665 1.400500 7 C 3.784628 4.292021 3.792747 2.514283 1.488881 8 C 4.906342 5.229850 4.508734 3.177640 2.606310 9 C 6.097042 6.587240 5.965147 4.652325 3.921409 10 C 6.772800 7.250969 6.678687 5.477497 4.819776 11 C 7.993292 8.568037 8.050440 6.839644 6.096981 12 C 8.568075 9.233904 8.727434 7.438928 6.587221 13 C 8.050523 8.727477 8.197908 6.856845 5.965175 14 C 6.839741 7.438984 6.856857 5.500368 4.652372 15 O 4.917190 5.130948 4.290309 2.902284 2.503418 16 H 1.085997 2.157266 3.403213 3.878629 3.407314 17 H 2.157047 1.085899 2.158110 3.404664 3.889380 18 H 3.402540 2.157243 1.086098 2.151086 3.406251 19 H 3.877982 3.408800 2.161003 1.085507 2.148831 20 H 2.155798 3.404605 3.877487 3.403543 2.156227 21 H 4.087299 4.865957 4.602433 3.435300 2.195101 22 H 4.898382 4.997619 4.160092 2.950534 2.774843 23 H 6.537946 6.901076 6.326200 5.252649 4.758818 24 H 8.645308 9.198760 8.711859 7.575065 6.884969 25 H 9.575044 10.281785 9.803845 8.521373 7.646563 26 H 8.741609 9.463891 8.955119 7.604420 6.678287 27 H 6.657099 7.241469 6.646891 5.284595 4.445904 6 7 8 9 10 6 C 0.000000 7 C 2.499431 0.000000 8 C 3.719789 1.488765 0.000000 9 C 4.819838 2.606299 1.488886 0.000000 10 C 5.592489 3.719716 2.499438 1.400501 0.000000 11 C 6.772796 4.906274 3.784632 2.425582 1.395665 12 C 7.251004 5.229823 4.292026 2.803480 2.419668 13 C 6.678769 4.508758 3.792750 2.424064 2.790476 14 C 5.477598 3.177687 2.514282 1.401263 2.418664 15 O 3.765713 1.438080 1.438065 2.503415 3.765732 16 H 2.152321 4.650435 5.805568 6.885055 7.499510 17 H 3.404012 5.377894 6.288098 7.646586 8.256813 18 H 3.876547 4.663449 5.202023 6.678236 7.350027 19 H 3.397587 2.712301 2.973297 4.445812 5.295010 20 H 1.087027 2.699680 3.940924 4.758918 5.507310 21 H 2.702806 1.091256 2.198704 2.774810 3.923958 22 H 3.924090 2.198712 1.091258 2.195105 2.702841 23 H 5.507273 3.940819 2.699689 2.156228 1.087028 24 H 7.499476 5.805479 4.650442 3.407314 2.152321 25 H 8.256842 6.288070 5.377898 3.889379 3.404011 26 H 7.350128 5.202070 4.663450 3.406249 3.876547 27 H 5.295146 2.973402 2.712293 2.148826 3.397585 11 12 13 14 15 11 C 0.000000 12 C 1.396937 0.000000 13 C 2.417313 1.397890 0.000000 14 C 2.792642 2.420745 1.394420 0.000000 15 O 4.917202 5.130944 4.290288 2.902252 0.000000 16 H 8.645336 9.198827 8.711966 7.575185 5.873144 17 H 9.575011 10.281789 9.803891 8.521430 6.190154 18 H 8.741507 9.463828 8.955097 7.604408 4.922754 19 H 6.656971 7.241380 6.646842 5.284552 2.536016 20 H 6.537978 6.901148 6.326320 5.252789 4.091235 21 H 4.898254 4.997557 4.160120 2.950607 2.130446 22 H 4.087324 4.865964 4.602422 3.435278 2.130442 23 H 2.155797 3.404606 3.877488 3.403542 4.091269 24 H 1.085998 2.157266 3.403212 3.878628 5.873165 25 H 2.157048 1.085899 2.158110 3.404665 6.190152 26 H 3.402540 2.157243 1.086097 2.151088 4.922722 27 H 3.877980 3.408800 2.161006 1.085507 2.535955 16 17 18 19 20 16 H 0.000000 17 H 2.486900 0.000000 18 H 4.302326 2.486730 0.000000 19 H 4.963924 4.307424 2.488245 0.000000 20 H 2.478720 4.301794 4.963542 4.293257 0.000000 21 H 4.774337 5.933440 5.547365 3.742154 2.470962 22 H 5.843833 5.991262 4.718835 2.642898 4.346029 23 H 7.269954 7.844306 6.930923 5.094013 5.550876 24 H 9.257154 10.162086 9.369977 7.406393 7.269955 25 H 10.162147 11.324632 10.545432 8.325571 7.844371 26 H 9.370103 10.545498 9.724029 7.391595 6.931062 27 H 7.406539 8.325659 7.391620 5.061510 5.094184 21 22 23 24 25 21 H 0.000000 22 H 3.101938 0.000000 23 H 4.345854 2.471022 0.000000 24 H 5.843669 4.774374 2.478720 0.000000 25 H 5.991197 5.933447 4.301794 2.486899 0.000000 26 H 4.718910 5.547344 4.963543 4.302326 2.486732 27 H 2.643092 3.742112 4.293254 4.963923 4.307427 26 27 26 H 0.000000 27 H 2.488249 0.000000 Stoichiometry C14H12O Framework group C1[X(C14H12O)] Deg. of freedom 75 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 3.905429 -1.188421 0.849213 2 6 0 4.613468 -0.562334 -0.179439 3 6 0 3.984127 0.408989 -0.963380 4 6 0 2.652964 0.748793 -0.724761 5 6 0 1.937221 0.119528 0.302509 6 6 0 2.574322 -0.846113 1.091838 7 6 0 0.505158 0.445609 0.546706 8 6 0 -0.505168 0.445621 -0.546757 9 6 0 -1.937230 0.119529 -0.302534 10 6 0 -2.574279 -0.846280 -1.091701 11 6 0 -3.905375 -1.188595 -0.849037 12 6 0 -4.613457 -0.562351 0.179492 13 6 0 -3.984167 0.409133 0.963271 14 6 0 -2.653011 0.748946 0.724612 15 8 0 -0.000003 1.676041 -0.000033 16 1 0 4.390269 -1.939083 1.466325 17 1 0 5.650512 -0.825180 -0.365527 18 1 0 4.532816 0.905087 -1.758638 19 1 0 2.160615 1.513122 -1.317820 20 1 0 2.026467 -1.329691 1.896596 21 1 0 0.130461 0.215464 1.545443 22 1 0 -0.130487 0.215462 -1.545499 23 1 0 -2.026392 -1.329979 -1.896365 24 1 0 -4.390177 -1.939387 -1.466022 25 1 0 -5.650494 -0.825206 0.365608 26 1 0 -4.532886 0.905351 1.758433 27 1 0 -2.160694 1.513389 1.317550 --------------------------------------------------------------------- Rotational constants (GHZ): 1.9263988 0.2576276 0.2540391 Standard basis: 6-311++G(2df,p) (5D, 7F) There are 669 symmetry adapted cartesian basis functions of A symmetry. There are 594 symmetry adapted basis functions of A symmetry. 594 basis functions, 888 primitive gaussians, 669 cartesian basis functions 52 alpha electrons 52 beta electrons nuclear repulsion energy 861.8664667955 Hartrees. NAtoms= 27 NActive= 27 NUniq= 27 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. ------------------------------------------------------------------------------ Polarizable Continuum Model (PCM) ================================= Model : C-PCM. Atomic radii : UFF (Universal Force Field). Polarization charges : Total charges. Charge compensation : None. Solution method : On-the-fly selection. Cavity type : Scaled VdW (van der Waals Surface) (Alpha=1.100). Cavity algorithm : GePol (No added spheres) Default sphere list used, NSphG= 27. Lebedev-Laikov grids with approx. 5.0 points / Ang**2. Smoothing algorithm: Karplus/York (Gamma=1.0000). Polarization charges: spherical gaussians, with point-specific exponents (IZeta= 3). Self-potential: point-specific (ISelfS= 7). Self-field : sphere-specific E.n sum rule (ISelfD= 2). Solvent : Benzene, Eps= 2.270600 Eps(inf)= 2.253301 ------------------------------------------------------------------------------ One-electron integrals computed using PRISM. NBasis= 594 RedAO= T EigKep= 1.20D-06 NBF= 594 NBsUse= 592 1.00D-06 EigRej= 6.46D-07 NBFU= 592 ExpMin= 3.60D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor=20419 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor=20419 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Inv3: Mode=1 IEnd= 13585152. Iteration 1 A*A^-1 deviation from unit magnitude is 6.22D-15 for 2124. Iteration 1 A*A^-1 deviation from orthogonality is 2.60D-15 for 2124 387. Iteration 1 A^-1*A deviation from unit magnitude is 6.22D-15 for 2124. Iteration 1 A^-1*A deviation from orthogonality is 1.90D-15 for 1394 1095. Error on total polarization charges = 0.01102 SCF Done: E(RCAM-B3LYP) = -615.760493403 A.U. after 15 cycles NFock= 15 Conv=0.21D-08 -V/T= 2.0043 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 592 NBasis= 594 NAE= 52 NBE= 52 NFC= 0 NFV= 0 NROrb= 592 NOA= 52 NOB= 52 NVA= 540 NVB= 540 **** Warning!!: The largest alpha MO coefficient is 0.13876598D+03 NEqPCM: Using non-equilibrium solvation (IEInf=1, Eps= 2.2706, EpsInf= 2.2533) Inv3: Mode=1 IEnd= 13585152. Iteration 1 A*A^-1 deviation from unit magnitude is 6.22D-15 for 2124. Iteration 1 A*A^-1 deviation from orthogonality is 2.60D-15 for 2124 387. Iteration 1 A^-1*A deviation from unit magnitude is 6.22D-15 for 2124. Iteration 1 A^-1*A deviation from orthogonality is 1.90D-15 for 1394 1095. Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=T KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. CalDSu exits because no D1Ps are significant. There are 6 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 6. LinEq1: Iter= 0 NonCon= 6 RMS=7.67D-02 Max=2.91D+00 NDo= 6 AX will form 6 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 6 RMS=1.25D-02 Max=7.50D-01 NDo= 6 LinEq1: Iter= 2 NonCon= 6 RMS=1.32D-02 Max=1.33D+00 NDo= 6 LinEq1: Iter= 3 NonCon= 6 RMS=3.81D-03 Max=1.55D-01 NDo= 6 LinEq1: Iter= 4 NonCon= 6 RMS=1.77D-03 Max=8.03D-02 NDo= 6 LinEq1: Iter= 5 NonCon= 6 RMS=1.20D-03 Max=4.87D-02 NDo= 6 LinEq1: Iter= 6 NonCon= 6 RMS=4.89D-04 Max=3.26D-02 NDo= 6 LinEq1: Iter= 7 NonCon= 6 RMS=1.83D-04 Max=1.29D-02 NDo= 6 LinEq1: Iter= 8 NonCon= 6 RMS=9.92D-05 Max=1.01D-02 NDo= 6 LinEq1: Iter= 9 NonCon= 6 RMS=6.56D-05 Max=4.49D-03 NDo= 6 LinEq1: Iter= 10 NonCon= 6 RMS=2.87D-05 Max=1.71D-03 NDo= 6 LinEq1: Iter= 11 NonCon= 6 RMS=1.73D-05 Max=1.03D-03 NDo= 6 LinEq1: Iter= 12 NonCon= 6 RMS=6.48D-06 Max=3.31D-04 NDo= 6 LinEq1: Iter= 13 NonCon= 6 RMS=3.21D-06 Max=1.68D-04 NDo= 6 LinEq1: Iter= 14 NonCon= 6 RMS=1.54D-06 Max=9.82D-05 NDo= 6 LinEq1: Iter= 15 NonCon= 6 RMS=5.63D-07 Max=2.38D-05 NDo= 6 LinEq1: Iter= 16 NonCon= 6 RMS=3.16D-07 Max=1.17D-05 NDo= 6 LinEq1: Iter= 17 NonCon= 6 RMS=1.07D-07 Max=4.78D-06 NDo= 6 LinEq1: Iter= 18 NonCon= 6 RMS=4.02D-08 Max=1.79D-06 NDo= 6 LinEq1: Iter= 19 NonCon= 5 RMS=1.89D-08 Max=1.34D-06 NDo= 6 LinEq1: Iter= 20 NonCon= 3 RMS=8.87D-09 Max=4.10D-07 NDo= 5 LinEq1: Iter= 21 NonCon= 1 RMS=2.78D-09 Max=1.68D-07 NDo= 3 LinEq1: Iter= 22 NonCon= 0 RMS=8.70D-10 Max=3.69D-08 NDo= 1 Linear equations converged to 1.000D-08 1.000D-07 after 22 iterations. Dipole-magnetic dipole polarizability for W= 0.077357: 1 2 3 1 -0.173480D+02 0.615063D-03 0.166453D+02 2 0.785152D-02 -0.125070D+03 0.238052D-01 3 0.788172D+02 0.257223D-01 0.137785D+03 w= 0.077357 a.u., Optical Rotation Beta= 1.5443 au. Molar Mass = 196.2482 grams/mole, [Alpha] ( 5890.0 A) = 304.47 deg. Dipole-magnetic dipole polarizability for W= 0.124831: 1 2 3 1 -0.215406D+02 0.767290D-03 0.194398D+02 2 0.850205D-02 -0.147573D+03 0.282185D-01 3 0.994096D+02 0.302154D-01 0.161588D+03 w= 0.124831 a.u., Optical Rotation Beta= 2.5084 au. Molar Mass = 196.2482 grams/mole, [Alpha] ( 3650.0 A) = 1287.83 deg. End of Minotr F.D. properties on file 721 Mask= 2 NFrqRd= 2 NDeriv= 1 ND12= 1 LenFil= 22: Frequencies= 0.077357 0.124831 Property number 2 -- FD Optical Rotation Tensor frequency 1 0.077357: 1 2 3 1 -0.173480D+02 0.615063D-03 0.166453D+02 2 0.785152D-02 -0.125070D+03 0.238052D-01 3 0.788172D+02 0.257223D-01 0.137785D+03 Property number 2 -- FD Optical Rotation Tensor frequency 2 0.124831: 1 2 3 1 -0.215406D+02 0.767290D-03 0.194398D+02 2 0.850205D-02 -0.147573D+03 0.282185D-01 3 0.994096D+02 0.302154D-01 0.161588D+03 End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -19.22196 -10.31348 -10.31320 -10.26543 -10.26543 Alpha occ. eigenvalues -- -10.25588 -10.25588 -10.25477 -10.25477 -10.25438 Alpha occ. eigenvalues -- -10.25438 -10.25319 -10.25319 -10.25274 -10.25274 Alpha occ. eigenvalues -- -1.16798 -0.95010 -0.94840 -0.85421 -0.85375 Alpha occ. eigenvalues -- -0.83494 -0.83410 -0.76126 -0.73627 -0.69500 Alpha occ. eigenvalues -- -0.68776 -0.66865 -0.65755 -0.61164 -0.60132 Alpha occ. eigenvalues -- -0.56082 -0.55428 -0.53177 -0.53154 -0.51482 Alpha occ. eigenvalues -- -0.51252 -0.49514 -0.49499 -0.47211 -0.46975 Alpha occ. eigenvalues -- -0.46148 -0.44797 -0.42595 -0.41706 -0.41251 Alpha occ. eigenvalues -- -0.41228 -0.40104 -0.36246 -0.32041 -0.31848 Alpha occ. eigenvalues -- -0.31662 -0.29468 Alpha virt. eigenvalues -- 0.00450 0.01421 0.01988 0.02070 0.02279 Alpha virt. eigenvalues -- 0.02748 0.02913 0.03211 0.03498 0.04627 Alpha virt. eigenvalues -- 0.04854 0.04876 0.06290 0.07017 0.07738 Alpha virt. eigenvalues -- 0.08064 0.08287 0.08668 0.09384 0.10072 Alpha virt. eigenvalues -- 0.10565 0.11575 0.12658 0.12806 0.12960 Alpha virt. eigenvalues -- 0.13118 0.13775 0.13836 0.13937 0.14216 Alpha virt. eigenvalues -- 0.14313 0.14492 0.14605 0.15144 0.15364 Alpha virt. eigenvalues -- 0.15576 0.15937 0.16156 0.16631 0.17020 Alpha virt. eigenvalues -- 0.17193 0.17692 0.17699 0.18104 0.19050 Alpha virt. eigenvalues -- 0.19316 0.19569 0.19792 0.20025 0.20398 Alpha virt. eigenvalues -- 0.21010 0.21485 0.21848 0.21868 0.22505 Alpha virt. eigenvalues -- 0.22809 0.23097 0.23762 0.24457 0.24635 Alpha virt. eigenvalues -- 0.24722 0.25080 0.25938 0.26260 0.26470 Alpha virt. eigenvalues -- 0.27151 0.28200 0.28479 0.28875 0.29065 Alpha virt. eigenvalues -- 0.30207 0.30290 0.31015 0.31204 0.31871 Alpha virt. eigenvalues -- 0.32131 0.32356 0.32813 0.33515 0.33669 Alpha virt. eigenvalues -- 0.33840 0.34287 0.34929 0.35388 0.36028 Alpha virt. eigenvalues -- 0.36492 0.36517 0.38056 0.38843 0.39561 Alpha virt. eigenvalues -- 0.40138 0.40190 0.40451 0.41340 0.41834 Alpha virt. eigenvalues -- 0.42863 0.44074 0.45166 0.47101 0.49205 Alpha virt. eigenvalues -- 0.49233 0.52033 0.52824 0.53523 0.54700 Alpha virt. eigenvalues -- 0.54873 0.55280 0.56359 0.57411 0.57442 Alpha virt. eigenvalues -- 0.57924 0.58347 0.58375 0.58707 0.59167 Alpha virt. eigenvalues -- 0.59248 0.59863 0.60386 0.60656 0.61112 Alpha virt. eigenvalues -- 0.61842 0.62454 0.62927 0.63963 0.64545 Alpha virt. eigenvalues -- 0.65470 0.66521 0.67502 0.68304 0.68983 Alpha virt. eigenvalues -- 0.69110 0.69305 0.70023 0.70653 0.71001 Alpha virt. eigenvalues -- 0.71055 0.71523 0.71623 0.73033 0.73425 Alpha virt. eigenvalues -- 0.73593 0.74701 0.76391 0.77155 0.77395 Alpha virt. eigenvalues -- 0.78368 0.78423 0.79882 0.80170 0.80520 Alpha virt. eigenvalues -- 0.82111 0.82344 0.83032 0.84709 0.85512 Alpha virt. eigenvalues -- 0.85811 0.86222 0.86419 0.87330 0.87662 Alpha virt. eigenvalues -- 0.88150 0.88482 0.88819 0.89158 0.89520 Alpha virt. eigenvalues -- 0.89733 0.90079 0.90889 0.91092 0.91457 Alpha virt. eigenvalues -- 0.91634 0.93059 0.93649 0.95720 0.96561 Alpha virt. eigenvalues -- 0.97859 0.99222 0.99756 1.00278 1.02280 Alpha virt. eigenvalues -- 1.05223 1.06343 1.07638 1.08563 1.09919 Alpha virt. eigenvalues -- 1.10513 1.12083 1.15826 1.16039 1.18083 Alpha virt. eigenvalues -- 1.18320 1.19031 1.21572 1.22148 1.23798 Alpha virt. eigenvalues -- 1.24501 1.24695 1.25439 1.26731 1.27905 Alpha virt. eigenvalues -- 1.30576 1.31734 1.32662 1.33505 1.34024 Alpha virt. eigenvalues -- 1.35711 1.36386 1.37733 1.37748 1.38216 Alpha virt. eigenvalues -- 1.38771 1.39114 1.39988 1.41669 1.41836 Alpha virt. eigenvalues -- 1.42692 1.42827 1.43948 1.44278 1.47299 Alpha virt. eigenvalues -- 1.49088 1.50839 1.53060 1.53232 1.54210 Alpha virt. eigenvalues -- 1.54418 1.56657 1.57991 1.59343 1.60440 Alpha virt. eigenvalues -- 1.60996 1.61718 1.62924 1.66758 1.67346 Alpha virt. eigenvalues -- 1.68109 1.68127 1.70568 1.72651 1.72813 Alpha virt. eigenvalues -- 1.74107 1.76720 1.77535 1.79920 1.80788 Alpha virt. eigenvalues -- 1.82151 1.83239 1.83825 1.87985 1.90287 Alpha virt. eigenvalues -- 1.93372 1.95991 1.97762 1.98874 1.99583 Alpha virt. eigenvalues -- 2.04118 2.04923 2.06288 2.11824 2.15516 Alpha virt. eigenvalues -- 2.21257 2.22128 2.23188 2.25420 2.31143 Alpha virt. eigenvalues -- 2.32601 2.33618 2.34954 2.37803 2.38040 Alpha virt. eigenvalues -- 2.38292 2.38889 2.39679 2.44186 2.44696 Alpha virt. eigenvalues -- 2.50164 2.51202 2.54538 2.55113 2.56181 Alpha virt. eigenvalues -- 2.57416 2.57738 2.58357 2.60072 2.61329 Alpha virt. eigenvalues -- 2.63039 2.63726 2.64585 2.64897 2.65399 Alpha virt. eigenvalues -- 2.66068 2.67319 2.68231 2.69041 2.70450 Alpha virt. eigenvalues -- 2.70948 2.71154 2.71523 2.72685 2.77487 Alpha virt. eigenvalues -- 2.77829 2.78179 2.79639 2.79778 2.81397 Alpha virt. eigenvalues -- 2.81473 2.82375 2.82662 2.84515 2.84935 Alpha virt. eigenvalues -- 2.85469 2.85987 2.86975 2.87208 2.87823 Alpha virt. eigenvalues -- 2.88160 2.89033 2.90432 2.91231 2.91375 Alpha virt. eigenvalues -- 2.91754 2.92465 2.92714 2.92771 2.93209 Alpha virt. eigenvalues -- 2.93259 2.93967 2.95323 2.95673 2.96840 Alpha virt. eigenvalues -- 2.97853 2.98195 2.98686 2.99337 2.99815 Alpha virt. eigenvalues -- 3.01080 3.01383 3.01430 3.02013 3.02999 Alpha virt. eigenvalues -- 3.04107 3.05337 3.06293 3.07622 3.08526 Alpha virt. eigenvalues -- 3.08620 3.10893 3.16824 3.17349 3.17440 Alpha virt. eigenvalues -- 3.18483 3.18568 3.21075 3.21709 3.22486 Alpha virt. eigenvalues -- 3.22965 3.24244 3.24870 3.25887 3.28187 Alpha virt. eigenvalues -- 3.28398 3.30009 3.30132 3.32425 3.33380 Alpha virt. eigenvalues -- 3.34011 3.35053 3.35821 3.35989 3.37128 Alpha virt. eigenvalues -- 3.37705 3.38032 3.39548 3.40572 3.42358 Alpha virt. eigenvalues -- 3.42508 3.42998 3.44134 3.44675 3.46467 Alpha virt. eigenvalues -- 3.46890 3.47334 3.47674 3.48439 3.51106 Alpha virt. eigenvalues -- 3.51529 3.52112 3.53700 3.53993 3.54724 Alpha virt. eigenvalues -- 3.56430 3.57100 3.57547 3.58275 3.58826 Alpha virt. eigenvalues -- 3.59934 3.60989 3.61221 3.61466 3.61771 Alpha virt. eigenvalues -- 3.63107 3.64214 3.65614 3.66444 3.66773 Alpha virt. eigenvalues -- 3.68776 3.70430 3.70439 3.72451 3.73470 Alpha virt. eigenvalues -- 3.74498 3.75458 3.77583 3.78362 3.78781 Alpha virt. eigenvalues -- 3.80121 3.80447 3.81344 3.82613 3.83388 Alpha virt. eigenvalues -- 3.84587 3.85572 3.89006 3.89309 3.91384 Alpha virt. eigenvalues -- 3.91528 3.92653 3.93605 3.95097 3.95210 Alpha virt. eigenvalues -- 3.96173 3.99062 4.00363 4.00442 4.01067 Alpha virt. eigenvalues -- 4.02967 4.03037 4.07908 4.09494 4.13441 Alpha virt. eigenvalues -- 4.14896 4.15569 4.18998 4.21007 4.23401 Alpha virt. eigenvalues -- 4.23650 4.25014 4.25251 4.28217 4.32899 Alpha virt. eigenvalues -- 4.33408 4.34380 4.35945 4.36893 4.38005 Alpha virt. eigenvalues -- 4.41188 4.41304 4.43884 4.45534 4.49344 Alpha virt. eigenvalues -- 4.49896 4.51087 4.51119 4.52571 4.53083 Alpha virt. eigenvalues -- 4.53633 4.54475 4.54723 4.55416 4.57559 Alpha virt. eigenvalues -- 4.58464 4.59158 4.62437 4.63154 4.64835 Alpha virt. eigenvalues -- 4.65412 4.71470 4.76557 4.78942 4.78963 Alpha virt. eigenvalues -- 4.81817 4.86532 4.87179 4.96759 4.97261 Alpha virt. eigenvalues -- 4.99114 4.99119 5.02880 5.11298 5.13118 Alpha virt. eigenvalues -- 5.18653 5.19309 5.20715 5.24856 5.25997 Alpha virt. eigenvalues -- 5.28424 5.30586 5.31967 5.36175 5.37583 Alpha virt. eigenvalues -- 5.38265 5.40024 5.42382 5.46864 5.51326 Alpha virt. eigenvalues -- 5.52334 5.52496 5.56622 5.63425 5.65794 Alpha virt. eigenvalues -- 5.66225 5.72409 5.84197 5.89547 6.02737 Alpha virt. eigenvalues -- 6.03578 6.47691 6.47781 6.52302 6.62691 Alpha virt. eigenvalues -- 7.15279 7.26574 7.41560 7.72314 7.82326 Alpha virt. eigenvalues -- 23.97274 23.97890 24.44114 24.44665 24.44972 Alpha virt. eigenvalues -- 24.46036 24.53343 24.55368 24.69422 24.71599 Alpha virt. eigenvalues -- 24.73200 24.73307 25.07036 25.07482 50.15066 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.598290 0.119075 0.259097 -0.444183 -0.345419 0.205356 2 C 0.119075 6.014757 -0.291533 0.990349 -0.165385 -0.045832 3 C 0.259097 -0.291533 8.019287 -3.544649 -0.261864 1.135036 4 C -0.444183 0.990349 -3.544649 12.975148 0.145449 -2.908097 5 C -0.345419 -0.165385 -0.261864 0.145449 8.440703 -0.436069 6 C 0.205356 -0.045832 1.135036 -2.908097 -0.436069 9.000135 7 C 0.582083 -0.681736 0.810996 -1.440179 -2.249556 -1.009257 8 C -0.056924 0.041895 -0.033768 -0.106031 0.277755 0.421370 9 C -0.037375 0.019063 0.013594 0.060550 -0.114262 0.012243 10 C -0.016107 0.016451 -0.046279 0.116003 0.012216 -0.118464 11 C 0.003227 -0.000745 0.000377 0.021480 -0.037440 -0.016103 12 C -0.000744 0.000887 -0.000306 -0.011397 0.019090 0.016435 13 C 0.000370 -0.000305 -0.014499 -0.014454 0.013574 -0.046230 14 C 0.021479 -0.011405 -0.014438 -0.148658 0.060761 0.115943 15 O 0.005503 -0.004882 0.078072 -0.191607 0.021436 0.090529 16 H 0.441805 -0.083902 0.024661 -0.020704 0.009384 -0.076068 17 H -0.059507 0.432198 -0.076695 0.025247 0.034609 -0.011596 18 H 0.019007 -0.081638 0.471690 -0.143688 0.019342 0.018206 19 H 0.009535 0.024856 -0.142092 0.565507 -0.055380 -0.032302 20 H -0.049709 0.016168 0.028624 -0.010376 -0.085072 0.457361 21 H -0.002630 -0.001635 -0.030651 0.069828 -0.035639 -0.079975 22 H 0.014176 -0.012787 0.029366 -0.083580 -0.032152 0.025688 23 H -0.002489 0.001533 -0.004759 0.003320 0.008928 -0.002791 24 H 0.000113 -0.000064 -0.000003 0.000886 -0.000746 -0.000867 25 H -0.000049 0.000014 0.000031 -0.000199 0.000260 0.000403 26 H 0.000043 -0.000017 -0.000188 0.000254 0.000028 -0.001021 27 H 0.000535 -0.000270 0.002691 -0.007414 -0.006617 0.010159 7 8 9 10 11 12 1 C 0.582083 -0.056924 -0.037375 -0.016107 0.003227 -0.000744 2 C -0.681736 0.041895 0.019063 0.016451 -0.000745 0.000887 3 C 0.810996 -0.033768 0.013594 -0.046279 0.000377 -0.000306 4 C -1.440179 -0.106031 0.060550 0.116003 0.021480 -0.011397 5 C -2.249556 0.277755 -0.114262 0.012216 -0.037440 0.019090 6 C -1.009257 0.421370 0.012243 -0.118464 -0.016103 0.016435 7 C 12.935344 -3.808564 0.277767 0.421858 -0.056750 0.041865 8 C -3.808564 12.934903 -2.249402 -1.010265 0.582042 -0.681708 9 C 0.277767 -2.249402 8.441041 -0.436465 -0.345305 -0.165472 10 C 0.421858 -1.010265 -0.436465 9.001654 0.204968 -0.045471 11 C -0.056750 0.582042 -0.345305 0.204968 5.598271 0.119117 12 C 0.041865 -0.681708 -0.165472 -0.045471 0.119117 6.014694 13 C -0.033755 0.811004 -0.261919 1.134842 0.258923 -0.291248 14 C -0.106748 -1.439303 0.145532 -2.908317 -0.443838 0.989844 15 O 0.131323 0.131276 0.021473 0.090536 0.005500 -0.004882 16 H 0.024992 0.001636 -0.000745 -0.000868 0.000113 -0.000064 17 H -0.008240 -0.001827 0.000259 0.000403 -0.000049 0.000014 18 H 0.022603 -0.003063 0.000029 -0.001022 0.000043 -0.000017 19 H -0.053067 0.019565 -0.006622 0.010164 0.000533 -0.000269 20 H -0.019970 -0.010973 0.008921 -0.002792 -0.002489 0.001532 21 H 0.310073 0.107654 -0.032161 0.025675 0.014178 -0.012780 22 H 0.107595 0.310150 -0.035611 -0.080029 -0.002626 -0.001641 23 H -0.010978 -0.019966 -0.085100 0.457399 -0.049711 0.016169 24 H 0.001636 0.024987 0.009389 -0.076067 0.441789 -0.083892 25 H -0.001827 -0.008239 0.034611 -0.011593 -0.059495 0.432179 26 H -0.003063 0.022600 0.019341 0.018207 0.018999 -0.081631 27 H 0.019571 -0.053069 -0.055389 -0.032291 0.009541 0.024846 13 14 15 16 17 18 1 C 0.000370 0.021479 0.005503 0.441805 -0.059507 0.019007 2 C -0.000305 -0.011405 -0.004882 -0.083902 0.432198 -0.081638 3 C -0.014499 -0.014438 0.078072 0.024661 -0.076695 0.471690 4 C -0.014454 -0.148658 -0.191607 -0.020704 0.025247 -0.143688 5 C 0.013574 0.060761 0.021436 0.009384 0.034609 0.019342 6 C -0.046230 0.115943 0.090529 -0.076068 -0.011596 0.018206 7 C -0.033755 -0.106748 0.131323 0.024992 -0.008240 0.022603 8 C 0.811004 -1.439303 0.131276 0.001636 -0.001827 -0.003063 9 C -0.261919 0.145532 0.021473 -0.000745 0.000259 0.000029 10 C 1.134842 -2.908317 0.090536 -0.000868 0.000403 -0.001022 11 C 0.258923 -0.443838 0.005500 0.000113 -0.000049 0.000043 12 C -0.291248 0.989844 -0.004882 -0.000064 0.000014 -0.000017 13 C 8.018479 -3.543785 0.078065 -0.000003 0.000031 -0.000188 14 C -3.543785 12.974134 -0.191641 0.000886 -0.000199 0.000255 15 O 0.078065 -0.191641 8.052483 0.000130 -0.000119 0.001778 16 H -0.000003 0.000886 0.000130 0.512337 -0.010980 -0.000548 17 H 0.000031 -0.000199 -0.000119 -0.010980 0.505302 -0.009970 18 H -0.000188 0.000255 0.001778 -0.000548 -0.009970 0.508254 19 H 0.002692 -0.007413 -0.010352 0.000859 -0.000506 -0.011755 20 H -0.004756 0.003319 -0.000319 -0.013500 -0.000676 0.001106 21 H 0.029347 -0.083538 -0.041647 0.000058 -0.000113 0.000214 22 H -0.030647 0.069835 -0.041648 0.000525 -0.000512 0.000804 23 H 0.028622 -0.010387 -0.000319 -0.000079 0.000053 -0.000100 24 H 0.024653 -0.020692 0.000130 0.000005 -0.000002 0.000001 25 H -0.076680 0.025234 -0.000119 -0.000002 0.000000 0.000000 26 H 0.471672 -0.143668 0.001778 0.000001 0.000000 -0.000001 27 H -0.142041 0.565447 -0.010349 0.000022 -0.000011 0.000019 19 20 21 22 23 24 1 C 0.009535 -0.049709 -0.002630 0.014176 -0.002489 0.000113 2 C 0.024856 0.016168 -0.001635 -0.012787 0.001533 -0.000064 3 C -0.142092 0.028624 -0.030651 0.029366 -0.004759 -0.000003 4 C 0.565507 -0.010376 0.069828 -0.083580 0.003320 0.000886 5 C -0.055380 -0.085072 -0.035639 -0.032152 0.008928 -0.000746 6 C -0.032302 0.457361 -0.079975 0.025688 -0.002791 -0.000867 7 C -0.053067 -0.019970 0.310073 0.107595 -0.010978 0.001636 8 C 0.019565 -0.010973 0.107654 0.310150 -0.019966 0.024987 9 C -0.006622 0.008921 -0.032161 -0.035611 -0.085100 0.009389 10 C 0.010164 -0.002792 0.025675 -0.080029 0.457399 -0.076067 11 C 0.000533 -0.002489 0.014178 -0.002626 -0.049711 0.441789 12 C -0.000269 0.001532 -0.012780 -0.001641 0.016169 -0.083892 13 C 0.002692 -0.004756 0.029347 -0.030647 0.028622 0.024653 14 C -0.007413 0.003319 -0.083538 0.069835 -0.010387 -0.020692 15 O -0.010352 -0.000319 -0.041647 -0.041648 -0.000319 0.000130 16 H 0.000859 -0.013500 0.000058 0.000525 -0.000079 0.000005 17 H -0.000506 -0.000676 -0.000113 -0.000512 0.000053 -0.000002 18 H -0.011755 0.001106 0.000214 0.000804 -0.000100 0.000001 19 H 0.480074 -0.001016 0.001397 -0.002877 0.000386 0.000022 20 H -0.001016 0.509381 0.007655 -0.001506 0.000291 -0.000079 21 H 0.001397 0.007655 0.549452 0.004844 -0.001506 0.000525 22 H -0.002877 -0.001506 0.004844 0.549461 0.007652 0.000058 23 H 0.000386 0.000291 -0.001506 0.007652 0.509380 -0.013499 24 H 0.000022 -0.000079 0.000525 0.000058 -0.013499 0.512335 25 H -0.000011 0.000053 -0.000512 -0.000113 -0.000676 -0.010979 26 H 0.000019 -0.000100 0.000803 0.000214 0.001106 -0.000548 27 H -0.000226 0.000386 -0.002872 0.001397 -0.001016 0.000859 25 26 27 1 C -0.000049 0.000043 0.000535 2 C 0.000014 -0.000017 -0.000270 3 C 0.000031 -0.000188 0.002691 4 C -0.000199 0.000254 -0.007414 5 C 0.000260 0.000028 -0.006617 6 C 0.000403 -0.001021 0.010159 7 C -0.001827 -0.003063 0.019571 8 C -0.008239 0.022600 -0.053069 9 C 0.034611 0.019341 -0.055389 10 C -0.011593 0.018207 -0.032291 11 C -0.059495 0.018999 0.009541 12 C 0.432179 -0.081631 0.024846 13 C -0.076680 0.471672 -0.142041 14 C 0.025234 -0.143668 0.565447 15 O -0.000119 0.001778 -0.010349 16 H -0.000002 0.000001 0.000022 17 H 0.000000 0.000000 -0.000011 18 H 0.000000 -0.000001 0.000019 19 H -0.000011 0.000019 -0.000226 20 H 0.000053 -0.000100 0.000386 21 H -0.000512 0.000803 -0.002872 22 H -0.000113 0.000214 0.001397 23 H -0.000676 0.001106 -0.001016 24 H -0.010979 -0.000548 0.000859 25 H 0.505299 -0.009969 -0.000507 26 H -0.009969 0.508255 -0.011754 27 H -0.000507 -0.011754 0.480066 Mulliken charges: 1 1 C -0.264558 2 C -0.295111 3 C -0.411799 4 C 0.101199 5 C 0.762068 6 C -0.724193 7 C -0.204016 8 C -0.203736 9 C 0.762017 10 C -0.724347 11 C -0.264551 12 C -0.295150 13 C -0.411763 14 C 0.101364 15 O -0.212126 16 H 0.190047 17 H 0.182886 18 H 0.188637 19 H 0.208280 20 H 0.168535 21 H 0.203958 22 H 0.203965 23 H 0.168536 24 H 0.190048 25 H 0.182886 26 H 0.188637 27 H 0.208287 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.074511 2 C -0.112224 3 C -0.223162 4 C 0.309478 5 C 0.762068 6 C -0.555658 7 C -0.000058 8 C 0.000229 9 C 0.762017 10 C -0.555811 11 C -0.074502 12 C -0.112264 13 C -0.223126 14 C 0.309650 15 O -0.212126 Electronic spatial extent (au): = 4314.3584 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0001 Y= -2.1661 Z= 0.0000 Tot= 2.1661 Quadrupole moment (field-independent basis, Debye-Ang): XX= -76.8974 YY= -92.4477 ZZ= -83.1651 XY= -0.0002 XZ= -2.6714 YZ= 0.0002 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 7.2726 YY= -8.2776 ZZ= 1.0050 XY= -0.0002 XZ= -2.6714 YZ= 0.0002 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0028 YYY= -3.3795 ZZZ= 0.0000 XYY= -0.0050 XXY= -21.9157 XXZ= 0.0027 XZZ= 0.0050 YZZ= 1.6287 YYZ= -0.0002 XYZ= -25.5493 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -4670.5855 YYYY= -517.0724 ZZZZ= -443.6378 XXXY= -0.0085 XXXZ= -122.5320 YYYX= 0.0054 YYYZ= 0.0062 ZZZX= -9.3255 ZZZY= -0.0054 XXYY= -931.0070 XXZZ= -920.1308 YYZZ= -137.9390 XXYZ= -0.0004 YYXZ= 18.6253 ZZXY= -0.0037 N-N= 8.618664667955D+02 E-N=-3.155545204666D+03 KE= 6.131035896345D+02 AllDun F.D. properties on file 20721 Mask= 2 NFrqRd= 2 NDeriv= 1 ND12= 1 LenFil= 22: Frequencies= 0.077357 0.124831 Property number 2 -- FD Optical Rotation Tensor frequency 1 0.077357: 1 2 3 1 -0.173480D+02 0.613725D-03 -0.166453D+02 2 0.785018D-02 -0.125070D+03 -0.238050D-01 3 -0.788172D+02 -0.257213D-01 0.137785D+03 Property number 2 -- FD Optical Rotation Tensor frequency 2 0.124831: 1 2 3 1 -0.215406D+02 0.765724D-03 -0.194398D+02 2 0.850049D-02 -0.147573D+03 -0.282183D-01 3 -0.994096D+02 -0.302142D-01 0.161588D+03 1\1\GINC-CX1-29-9-3\SP\RCAM-B3LYP\6-311++G(2df,p)\C14H12O1\SCAN-USER-1 \20-Mar-2014\0\\# CAM-B3LYP/6-311++g(2df,p) polar(optrot) scrf(cpcm,so lvent=benzene) CPHF=RdFreq\\rr stilbene jq411 or\\0,1\C,0,-3.905429,1. 188421,0.849213\C,0,-4.613468,0.562334,-0.179439\C,0,-3.984127,-0.4089 89,-0.96338\C,0,-2.652964,-0.748793,-0.724761\C,0,-1.937221,-0.119528, 0.302509\C,0,-2.574322,0.846113,1.091838\C,0,-0.505158,-0.445609,0.546 706\C,0,0.505168,-0.445621,-0.546757\C,0,1.93723,-0.119529,-0.302534\C ,0,2.574279,0.84628,-1.091701\C,0,3.905375,1.188595,-0.849037\C,0,4.61 3457,0.562351,0.179492\C,0,3.984167,-0.409133,0.963271\C,0,2.653011,-0 .748946,0.724612\O,0,0.000003,-1.676041,-0.000033\H,0,-4.390269,1.9390 83,1.466325\H,0,-5.650512,0.82518,-0.365527\H,0,-4.532816,-0.905087,-1 .758638\H,0,-2.160615,-1.513122,-1.31782\H,0,-2.026467,1.329691,1.8965 96\H,0,-0.130461,-0.215464,1.545443\H,0,0.130487,-0.215462,-1.545499\H ,0,2.026392,1.329979,-1.896365\H,0,4.390177,1.939387,-1.466022\H,0,5.6 50494,0.825206,0.365608\H,0,4.532886,-0.905351,1.758433\H,0,2.160694,- 1.513389,1.31755\\Version=ES64L-G09RevD.01\State=1-A\HF=-615.7604934\R MSD=2.147e-09\Dipole=-0.0000297,0.8522167,0.0000112\Quadrupole=5.40702 07,-6.1541997,0.747179,-0.0001657,1.9860848,-0.00012\PG=C01 [X(C14H12O 1)]\\@ YOU KNOW YOU'RE A TEACHER WHEN YOU SAY 2, WRITE 3, AND MEAN 4. -- RONALD ANSTROM, HIGH SCHOOL TEACHER, UNDERWOOD, N.D. 1974 Job cpu time: 0 days 13 hours 8 minutes 53.0 seconds. File lengths (MBytes): RWF= 636 Int= 0 D2E= 0 Chk= 17 Scr= 1 Normal termination of Gaussian 09 at Thu Mar 20 17:35:53 2014.