Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 7988. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 15-May-2019 ****************************************** %chk=\\icnas4.cc.ic.ac.uk\yh1817\Desktop\2ndyearlab\nh3bh3\yh_nh3bh3_opt.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ---------- nh3bh3_opt ---------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 H -1.0968 0.95076 -0.00125 H -1.09679 -0.47647 -0.82276 H -1.0968 -0.4743 0.82401 H 1.24175 -1.17099 0.00155 H 1.24175 0.58415 -1.01488 H 1.24175 0.58683 1.01333 B 0.9368 0. 0. N -0.73127 0. 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,8) 1.0186 estimate D2E/DX2 ! ! R2 R(2,8) 1.0186 estimate D2E/DX2 ! ! R3 R(3,8) 1.0186 estimate D2E/DX2 ! ! R4 R(4,7) 1.21 estimate D2E/DX2 ! ! R5 R(5,7) 1.21 estimate D2E/DX2 ! ! R6 R(6,7) 1.21 estimate D2E/DX2 ! ! R7 R(7,8) 1.6681 estimate D2E/DX2 ! ! A1 A(4,7,5) 113.8743 estimate D2E/DX2 ! ! A2 A(4,7,6) 113.8743 estimate D2E/DX2 ! ! A3 A(4,7,8) 104.5965 estimate D2E/DX2 ! ! A4 A(5,7,6) 113.8744 estimate D2E/DX2 ! ! A5 A(5,7,8) 104.5969 estimate D2E/DX2 ! ! A6 A(6,7,8) 104.597 estimate D2E/DX2 ! ! A7 A(1,8,2) 107.8688 estimate D2E/DX2 ! ! A8 A(1,8,3) 107.8687 estimate D2E/DX2 ! ! A9 A(1,8,7) 111.0301 estimate D2E/DX2 ! ! A10 A(2,8,3) 107.8686 estimate D2E/DX2 ! ! A11 A(2,8,7) 111.0296 estimate D2E/DX2 ! ! A12 A(3,8,7) 111.0297 estimate D2E/DX2 ! ! D1 D(4,7,8,1) 179.9996 estimate D2E/DX2 ! ! D2 D(4,7,8,2) -60.0002 estimate D2E/DX2 ! ! D3 D(4,7,8,3) 59.9995 estimate D2E/DX2 ! ! D4 D(5,7,8,1) -60.0004 estimate D2E/DX2 ! ! D5 D(5,7,8,2) 59.9997 estimate D2E/DX2 ! ! D6 D(5,7,8,3) 179.9994 estimate D2E/DX2 ! ! D7 D(6,7,8,1) 59.9997 estimate D2E/DX2 ! ! D8 D(6,7,8,2) 179.9999 estimate D2E/DX2 ! ! D9 D(6,7,8,3) -60.0004 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 38 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 -1.096802 0.950757 -0.001251 2 1 0 -1.096793 -0.476465 -0.822756 3 1 0 -1.096795 -0.474297 0.824006 4 1 0 1.241745 -1.170986 0.001548 5 1 0 1.241752 0.584150 -1.014875 6 1 0 1.241753 0.586831 1.013327 7 5 0 0.936801 0.000001 0.000000 8 7 0 -0.731267 0.000001 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 H 0.000000 2 H 1.646764 0.000000 3 H 1.646763 1.646763 0.000000 4 H 3.157626 2.574994 2.574992 0.000000 5 H 2.575009 2.574996 3.157625 2.028206 0.000000 6 H 2.575005 3.157625 2.575003 2.028205 2.028204 7 B 2.244879 2.244872 2.244874 1.210043 1.210040 8 N 1.018604 1.018605 1.018605 2.294339 2.294342 6 7 8 6 H 0.000000 7 B 1.210040 0.000000 8 N 2.294343 1.668068 0.000000 This structure is nearly, but not quite of a higher symmetry. Consider Symm=Loose if the higher symmetry is desired. Stoichiometry BH6N Framework group C1[X(BH6N)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 -0.260977 -1.137056 -0.863661 2 1 0 -0.751690 0.403921 -1.174185 3 1 0 0.853262 0.035193 -1.173716 4 1 0 0.316149 1.377292 0.957214 5 1 0 -1.056190 -0.066476 1.339102 6 1 0 0.920514 -0.520622 1.339686 7 5 0 0.045384 0.198711 0.914358 8 7 0 -0.035427 -0.155115 -0.713747 --------------------------------------------------------------------- Rotational constants (GHZ): 73.4684777 17.4992529 17.4992494 Standard basis: 6-31G(d,p) (6D, 7F) There are 60 symmetry adapted cartesian basis functions of A symmetry. There are 60 symmetry adapted basis functions of A symmetry. 60 basis functions, 98 primitive gaussians, 60 cartesian basis functions 9 alpha electrons 9 beta electrons nuclear repulsion energy 40.4349531036 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 60 RedAO= T EigKep= 8.41D-03 NBF= 60 NBsUse= 60 1.00D-06 EigRej= -1.00D+00 NBFU= 60 ExpMin= 1.27D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=2589627. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -83.2246888496 A.U. after 10 cycles NFock= 10 Conv=0.92D-08 -V/T= 2.0104 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -14.41343 -6.67465 -0.94739 -0.54784 -0.54784 Alpha occ. eigenvalues -- -0.50377 -0.34682 -0.26699 -0.26699 Alpha virt. eigenvalues -- 0.02812 0.10580 0.10580 0.18568 0.22063 Alpha virt. eigenvalues -- 0.22063 0.24956 0.45500 0.45500 0.47855 Alpha virt. eigenvalues -- 0.65294 0.65294 0.66862 0.78871 0.80133 Alpha virt. eigenvalues -- 0.80133 0.88737 0.95655 0.95655 0.99942 Alpha virt. eigenvalues -- 1.18498 1.18498 1.44148 1.54901 1.54901 Alpha virt. eigenvalues -- 1.66068 1.76070 1.76070 2.00515 2.08658 Alpha virt. eigenvalues -- 2.18092 2.18092 2.27029 2.27029 2.29435 Alpha virt. eigenvalues -- 2.44309 2.44309 2.44799 2.69152 2.69152 Alpha virt. eigenvalues -- 2.72447 2.90642 2.90642 3.04019 3.16338 Alpha virt. eigenvalues -- 3.21876 3.21877 3.40167 3.40167 3.63707 Alpha virt. eigenvalues -- 4.11335 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 H 0.418971 -0.021357 -0.021357 0.003400 -0.001439 -0.001439 2 H -0.021357 0.418970 -0.021357 -0.001439 -0.001439 0.003400 3 H -0.021357 -0.021357 0.418971 -0.001439 0.003400 -0.001439 4 H 0.003400 -0.001439 -0.001439 0.766717 -0.020038 -0.020038 5 H -0.001439 -0.001439 0.003400 -0.020038 0.766713 -0.020038 6 H -0.001439 0.003400 -0.001439 -0.020038 -0.020038 0.766713 7 B -0.017535 -0.017535 -0.017535 0.417342 0.417343 0.417343 8 N 0.338484 0.338484 0.338484 -0.027546 -0.027546 -0.027546 7 8 1 H -0.017535 0.338484 2 H -0.017535 0.338484 3 H -0.017535 0.338484 4 H 0.417342 -0.027546 5 H 0.417343 -0.027546 6 H 0.417343 -0.027546 7 B 3.582088 0.182848 8 N 0.182848 6.475922 Mulliken charges: 1 1 H 0.302273 2 H 0.302273 3 H 0.302273 4 H -0.116959 5 H -0.116957 6 H -0.116957 7 B 0.035639 8 N -0.591585 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 7 B -0.315234 8 N 0.315234 Electronic spatial extent (au): = 117.9535 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.2696 Y= -1.1805 Z= -5.4318 Tot= 5.5651 Quadrupole moment (field-independent basis, Debye-Ang): XX= -15.5763 YY= -15.5991 ZZ= -16.0830 XY= -0.0055 XZ= -0.0252 YZ= -0.1104 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.1765 YY= 0.1537 ZZ= -0.3302 XY= -0.0055 XZ= -0.0252 YZ= -0.1104 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.2028 YYY= -6.2458 ZZZ= -18.2106 XYY= -1.3382 XXY= -0.5030 XXZ= -8.2131 XZZ= -0.1357 YZZ= -0.5928 YYZ= -7.3581 XYZ= 0.2075 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -34.5596 YYYY= -37.0827 ZZZZ= -103.3312 XXXY= -0.5616 XXXZ= -2.1617 YYYX= -0.0450 YYYZ= -7.0522 ZZZX= -1.6861 ZZZY= -7.3844 XXYY= -12.2125 XXZZ= -22.6780 YYZZ= -23.7594 XXYZ= -3.0616 YYXZ= -0.1486 ZZXY= -0.2620 N-N= 4.043495310364D+01 E-N=-2.729564758620D+02 KE= 8.236638403145D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000051989 -0.000098434 -0.000000129 2 1 0.000051804 0.000049819 0.000085881 3 1 0.000051800 0.000049202 -0.000085402 4 1 -0.000040145 0.000116228 -0.000000127 5 1 -0.000039679 -0.000057369 0.000099508 6 1 -0.000039943 -0.000057660 -0.000099413 7 5 0.000019890 -0.000001124 0.000000271 8 7 -0.000055716 -0.000000663 -0.000000588 ------------------------------------------------------------------- Cartesian Forces: Max 0.000116228 RMS 0.000059695 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000122613 RMS 0.000057625 Search for a local minimum. Step number 1 out of a maximum of 38 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00230 0.05427 0.05427 0.06602 0.06602 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.19629 0.23947 0.23947 0.23947 Eigenvalues --- 0.44561 0.44561 0.44562 RFO step: Lambda=-3.29945577D-07 EMin= 2.30000000D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00029607 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92488 -0.00011 0.00000 -0.00025 -0.00025 1.92463 R2 1.92488 -0.00011 0.00000 -0.00025 -0.00025 1.92464 R3 1.92488 -0.00011 0.00000 -0.00025 -0.00025 1.92464 R4 2.28665 -0.00012 0.00000 -0.00051 -0.00051 2.28614 R5 2.28664 -0.00012 0.00000 -0.00051 -0.00051 2.28614 R6 2.28664 -0.00012 0.00000 -0.00051 -0.00051 2.28614 R7 3.15219 -0.00010 0.00000 -0.00051 -0.00051 3.15168 A1 1.98748 0.00001 0.00000 0.00007 0.00007 1.98755 A2 1.98748 0.00001 0.00000 0.00007 0.00007 1.98755 A3 1.82555 -0.00001 0.00000 -0.00008 -0.00008 1.82547 A4 1.98748 0.00001 0.00000 0.00007 0.00007 1.98755 A5 1.82556 -0.00001 0.00000 -0.00008 -0.00008 1.82548 A6 1.82556 -0.00001 0.00000 -0.00008 -0.00008 1.82548 A7 1.88266 0.00001 0.00000 0.00008 0.00008 1.88274 A8 1.88266 0.00001 0.00000 0.00008 0.00008 1.88274 A9 1.93784 -0.00001 0.00000 -0.00008 -0.00008 1.93776 A10 1.88266 0.00001 0.00000 0.00008 0.00008 1.88274 A11 1.93783 -0.00001 0.00000 -0.00007 -0.00007 1.93776 A12 1.93783 -0.00001 0.00000 -0.00007 -0.00007 1.93776 D1 3.14159 0.00000 0.00000 0.00001 0.00001 -3.14159 D2 -1.04720 0.00000 0.00000 0.00001 0.00001 -1.04719 D3 1.04719 0.00000 0.00000 0.00001 0.00001 1.04720 D4 -1.04721 0.00000 0.00000 0.00001 0.00001 -1.04719 D5 1.04719 0.00000 0.00000 0.00001 0.00001 1.04720 D6 3.14158 0.00000 0.00000 0.00001 0.00001 -3.14159 D7 1.04719 0.00000 0.00000 0.00001 0.00001 1.04720 D8 3.14159 0.00000 0.00000 0.00001 0.00001 -3.14158 D9 -1.04720 0.00000 0.00000 0.00001 0.00001 -1.04719 Item Value Threshold Converged? Maximum Force 0.000123 0.000450 YES RMS Force 0.000058 0.000300 YES Maximum Displacement 0.000535 0.001800 YES RMS Displacement 0.000296 0.001200 YES Predicted change in Energy=-1.649728D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,8) 1.0186 -DE/DX = -0.0001 ! ! R2 R(2,8) 1.0186 -DE/DX = -0.0001 ! ! R3 R(3,8) 1.0186 -DE/DX = -0.0001 ! ! R4 R(4,7) 1.21 -DE/DX = -0.0001 ! ! R5 R(5,7) 1.21 -DE/DX = -0.0001 ! ! R6 R(6,7) 1.21 -DE/DX = -0.0001 ! ! R7 R(7,8) 1.6681 -DE/DX = -0.0001 ! ! A1 A(4,7,5) 113.8743 -DE/DX = 0.0 ! ! A2 A(4,7,6) 113.8743 -DE/DX = 0.0 ! ! A3 A(4,7,8) 104.5965 -DE/DX = 0.0 ! ! A4 A(5,7,6) 113.8744 -DE/DX = 0.0 ! ! A5 A(5,7,8) 104.5969 -DE/DX = 0.0 ! ! A6 A(6,7,8) 104.597 -DE/DX = 0.0 ! ! A7 A(1,8,2) 107.8688 -DE/DX = 0.0 ! ! A8 A(1,8,3) 107.8687 -DE/DX = 0.0 ! ! A9 A(1,8,7) 111.0301 -DE/DX = 0.0 ! ! A10 A(2,8,3) 107.8686 -DE/DX = 0.0 ! ! A11 A(2,8,7) 111.0296 -DE/DX = 0.0 ! ! A12 A(3,8,7) 111.0297 -DE/DX = 0.0 ! ! D1 D(4,7,8,1) -180.0004 -DE/DX = 0.0 ! ! D2 D(4,7,8,2) -60.0002 -DE/DX = 0.0 ! ! D3 D(4,7,8,3) 59.9995 -DE/DX = 0.0 ! ! D4 D(5,7,8,1) -60.0004 -DE/DX = 0.0 ! ! D5 D(5,7,8,2) 59.9997 -DE/DX = 0.0 ! ! D6 D(5,7,8,3) -180.0006 -DE/DX = 0.0 ! ! D7 D(6,7,8,1) 59.9997 -DE/DX = 0.0 ! ! D8 D(6,7,8,2) -180.0001 -DE/DX = 0.0 ! ! D9 D(6,7,8,3) -60.0004 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 -1.096802 0.950757 -0.001251 2 1 0 -1.096793 -0.476465 -0.822756 3 1 0 -1.096795 -0.474297 0.824006 4 1 0 1.241745 -1.170986 0.001548 5 1 0 1.241752 0.584150 -1.014875 6 1 0 1.241753 0.586831 1.013327 7 5 0 0.936801 0.000001 0.000000 8 7 0 -0.731267 0.000001 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 H 0.000000 2 H 1.646764 0.000000 3 H 1.646763 1.646763 0.000000 4 H 3.157626 2.574994 2.574992 0.000000 5 H 2.575009 2.574996 3.157625 2.028206 0.000000 6 H 2.575005 3.157625 2.575003 2.028205 2.028204 7 B 2.244879 2.244872 2.244874 1.210043 1.210040 8 N 1.018604 1.018605 1.018605 2.294339 2.294342 6 7 8 6 H 0.000000 7 B 1.210040 0.000000 8 N 2.294343 1.668068 0.000000 Stoichiometry BH6N Framework group C1[X(BH6N)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 -1.096802 -0.927707 0.208086 2 1 0 -1.096793 0.644065 0.699376 3 1 0 -1.096795 0.283648 -0.907462 4 1 0 1.241745 1.142596 -0.256293 5 1 0 1.241752 -0.349340 1.117660 6 1 0 1.241753 -0.793251 -0.861368 7 5 0 0.936801 -0.000001 0.000000 8 7 0 -0.731267 -0.000001 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 73.4684777 17.4992529 17.4992494 1|1| IMPERIAL COLLEGE-SKCH-135-006|FOpt|RB3LYP|6-31G(d,p)|B1H6N1|YH181 7|15-May-2019|0||# opt b3lyp/6-31g(d,p) geom=connectivity integral=gri d=ultrafine||nh3bh3_opt||0,1|H,-1.096802,0.950757,-0.001251|H,-1.09679 3,-0.476465,-0.822756|H,-1.096795,-0.474297,0.824006|H,1.241745,-1.170 986,0.001548|H,1.241752,0.58415,-1.014875|H,1.241753,0.586831,1.013327 |B,0.936801,0.000001,0.|N,-0.731267,0.000001,0.||Version=EM64W-G09RevD .01|State=1-A|HF=-83.2246888|RMSD=9.195e-009|RMSF=5.970e-005|Dipole=-2 .1894883,0.000001,-0.0000005|Quadrupole=-0.2642589,0.1321251,0.1321338 ,0.0000047,-0.0000018,0.0000021|PG=C01 [X(B1H6N1)]||@ WHEN YOU REACH FOR THE STARS, YOU MAY NOT QUITE GET ONE, BUT YOU WON'T COME UP WITH A HANDFUL OF MUD, EITHER. -- LEO BURNETT (AD AGENCY HEAD) Job cpu time: 0 days 0 hours 0 minutes 17.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Wed May 15 14:28:43 2019.