Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_b01/g09/l1.exe /home/scan-user-1/run/54331/Gau-22602.inp -scrdir=/home/scan-user-1/run/54331/ Entering Link 1 = /apps/gaussian/g09_b01/g09/l1.exe PID= 22603. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 5-Feb-2012 ****************************************** %nprocshared=4 Will use up to 4 processors via shared memory. %mem=7000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.656869.cx1b/rwf ----------------------------------------------- # rb3lyp/3-21g pop=(nbo,full) geom=connectivity ----------------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=5,11=2,16=1,25=1,30=1,74=-5,116=1/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=3,28=1/1,7; 99/5=1,9=1/99; ------------- CO MO Diagram ------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C O 1 B1 Variables: B1 1.15349 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.153486 --------------------------------------------------------------------- Stoichiometry CO Framework group C*V[C*(CO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.659135 2 8 0 0.000000 0.000000 0.494351 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 55.3998464 55.3998464 Standard basis: 3-21G (6D, 7F) There are 10 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 4 symmetry adapted basis functions of B1 symmetry. There are 4 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 18 basis functions, 30 primitive gaussians, 18 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 22.0206464002 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 18 RedAO= T NBF= 10 0 4 4 NBsUse= 18 1.00D-06 NBFU= 10 0 4 4 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 1.96D-01 ExpMax= 3.22D+02 ExpMxC= 3.22D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=908212. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -112.671936890 A.U. after 11 cycles Convg = 0.3053D-08 -V/T = 2.0083 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (PI) (PI) (SG) Virtual (PI) (PI) (SG) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -19.15525 -10.25052 -1.18111 -0.55567 -0.46671 Alpha occ. eigenvalues -- -0.46671 -0.36409 Alpha virt. eigenvalues -- -0.02552 -0.02552 0.31955 0.67852 0.67852 Alpha virt. eigenvalues -- 0.80984 1.06545 1.42847 1.42847 1.45348 Alpha virt. eigenvalues -- 2.92805 Molecular Orbital Coefficients: 1 2 3 4 5 O O O O O Eigenvalues -- -19.15525 -10.25052 -1.18111 -0.55567 -0.46671 1 1 C 1S 0.00054 0.98456 -0.12127 0.14064 0.00000 2 2S 0.00094 0.09750 0.13887 -0.19132 0.00000 3 2PX 0.00000 0.00000 0.00000 0.00000 0.27925 4 2PY 0.00000 0.00000 0.00000 0.00000 0.00000 5 2PZ 0.00252 0.00702 0.18933 -0.11657 0.00000 6 3S 0.02180 -0.02637 0.05734 -0.31447 0.00000 7 3PX 0.00000 0.00000 0.00000 0.00000 0.21370 8 3PY 0.00000 0.00000 0.00000 0.00000 0.00000 9 3PZ 0.01635 -0.00027 -0.04250 0.03372 0.00000 10 2 O 1S 0.98256 0.00021 -0.21484 -0.13648 0.00000 11 2S 0.10579 0.00022 0.21106 0.12680 0.00000 12 2PX 0.00000 0.00000 0.00000 0.00000 0.45670 13 2PY 0.00000 0.00000 0.00000 0.00000 0.00000 14 2PZ -0.00448 0.00177 -0.17244 0.38755 0.00000 15 3S -0.05605 -0.00251 0.64900 0.55020 0.00000 16 3PX 0.00000 0.00000 0.00000 0.00000 0.45488 17 3PY 0.00000 0.00000 0.00000 0.00000 0.00000 18 3PZ 0.01488 0.00811 -0.15088 0.33184 0.00000 6 7 8 9 10 O O V V V Eigenvalues -- -0.46671 -0.36409 -0.02552 -0.02552 0.31955 1 1 C 1S 0.00000 -0.15325 0.00000 0.00000 0.06437 2 2S 0.00000 0.12916 0.00000 0.00000 0.06142 3 2PX 0.00000 0.00000 0.48223 0.00000 0.00000 4 2PY 0.27925 0.00000 0.00000 0.48223 0.00000 5 2PZ 0.00000 -0.37759 0.00000 0.00000 -0.16400 6 3S 0.00000 0.78016 0.00000 0.00000 -1.36774 7 3PX 0.00000 0.00000 0.63366 0.00000 0.00000 8 3PY 0.21370 0.00000 0.00000 0.63366 0.00000 9 3PZ 0.00000 -0.14846 0.00000 0.00000 -1.59582 10 2 O 1S 0.00000 0.00710 0.00000 0.00000 -0.12706 11 2S 0.00000 -0.01298 0.00000 0.00000 0.06961 12 2PX 0.00000 0.00000 -0.34654 0.00000 0.00000 13 2PY 0.45670 0.00000 0.00000 -0.34654 0.00000 14 2PZ 0.00000 0.25040 0.00000 0.00000 -0.18265 15 3S 0.00000 -0.08639 0.00000 0.00000 1.62972 16 3PX 0.00000 0.00000 -0.47468 0.00000 0.00000 17 3PY 0.45488 0.00000 0.00000 -0.47468 0.00000 18 3PZ 0.00000 0.26163 0.00000 0.00000 -0.68322 11 12 13 14 15 V V V V V Eigenvalues -- 0.67852 0.67852 0.80984 1.06545 1.42847 1 1 C 1S 0.00000 0.00000 0.00343 -0.11275 0.00000 2 2S 0.00000 0.00000 -0.12771 1.48069 0.00000 3 2PX -1.03865 0.00000 0.00000 0.00000 0.00930 4 2PY 0.00000 -1.03865 0.00000 0.00000 0.00000 5 2PZ 0.00000 0.00000 1.18361 0.17034 0.00000 6 3S 0.00000 0.00000 0.55543 -1.32905 0.00000 7 3PX 1.07231 0.00000 0.00000 0.00000 -0.36959 8 3PY 0.00000 1.07231 0.00000 0.00000 0.00000 9 3PZ 0.00000 0.00000 -0.67879 -0.16621 0.00000 10 2 O 1S 0.00000 0.00000 0.05745 0.01355 0.00000 11 2S 0.00000 0.00000 -0.07274 -0.00357 0.00000 12 2PX -0.04191 0.00000 0.00000 0.00000 -1.01618 13 2PY 0.00000 -0.04191 0.00000 0.00000 0.00000 14 2PZ 0.00000 0.00000 0.25789 0.38736 0.00000 15 3S 0.00000 0.00000 -0.17438 0.23447 0.00000 16 3PX -0.12352 0.00000 0.00000 0.00000 1.13723 17 3PY 0.00000 -0.12352 0.00000 0.00000 0.00000 18 3PZ 0.00000 0.00000 0.49425 -0.04880 0.00000 16 17 18 V V V Eigenvalues -- 1.42847 1.45348 2.92805 1 1 C 1S 0.00000 0.03444 -0.01650 2 2S 0.00000 0.59132 -0.16354 3 2PX 0.00000 0.00000 0.00000 4 2PY 0.00930 0.00000 0.00000 5 2PZ 0.00000 0.19846 -0.29453 6 3S 0.00000 0.17911 -1.24154 7 3PX 0.00000 0.00000 0.00000 8 3PY -0.36959 0.00000 0.00000 9 3PZ 0.00000 0.17056 -0.90345 10 2 O 1S 0.00000 0.06314 0.05654 11 2S 0.00000 -0.17889 -1.73578 12 2PX 0.00000 0.00000 0.00000 13 2PY -1.01618 0.00000 0.00000 14 2PZ 0.00000 -0.93518 0.21724 15 3S 0.00000 -0.26730 2.75514 16 3PX 0.00000 0.00000 0.00000 17 3PY 1.13723 0.00000 0.00000 18 3PZ 0.00000 1.37125 -0.99768 Density Matrix: 1 2 3 4 5 1 1 C 1S 2.05467 2 2S 0.06491 0.16415 3 2PX 0.00000 0.00000 0.15597 4 2PY 0.00000 0.00000 0.00000 0.15597 5 2PZ 0.05085 0.00103 0.00000 0.00000 0.38413 6 3S -0.39338 0.33268 0.00000 0.00000 -0.49439 7 3PX 0.00000 0.00000 0.11935 0.00000 0.00000 8 3PY 0.00000 0.00000 0.00000 0.11935 0.00000 9 3PZ 0.06477 -0.06308 0.00000 0.00000 0.08824 10 2 O 1S 0.01302 -0.00373 0.00000 0.00000 -0.04994 11 2S -0.01100 0.00699 0.00000 0.00000 0.06069 12 2PX 0.00000 0.00000 0.25507 0.00000 0.00000 13 2PY 0.00000 0.00000 0.00000 0.25507 0.00000 14 2PZ 0.07757 -0.13116 0.00000 0.00000 -0.34475 15 3S 0.01883 -0.05318 0.00000 0.00000 0.18239 16 3PX 0.00000 0.00000 0.25406 0.00000 0.00000 17 3PY 0.00000 0.00000 0.00000 0.25406 0.00000 18 3PZ 0.06573 -0.09969 0.00000 0.00000 -0.33189 6 7 8 9 10 6 3S 1.42400 7 3PX 0.00000 0.09133 8 3PY 0.00000 0.00000 0.09133 9 3PZ -0.25700 0.00000 0.00000 0.05050 10 2 O 1S 0.11510 0.00000 0.00000 0.03908 2.06050 11 2S -0.07120 0.00000 0.00000 -0.00207 0.08242 12 2PX 0.00000 0.19519 0.00000 0.00000 0.00000 13 2PY 0.00000 0.00000 0.19519 0.00000 0.00000 14 2PZ 0.12690 0.00000 0.00000 -0.03371 -0.03693 15 3S -0.40872 0.00000 0.00000 0.00576 -0.54042 16 3PX 0.00000 0.19441 0.00000 0.00000 0.00000 17 3PY 0.00000 0.00000 0.19441 0.00000 0.00000 18 3PZ 0.18244 0.00000 0.00000 -0.04200 0.00721 11 12 13 14 15 11 2S 0.14397 12 2PX 0.00000 0.41715 13 2PY 0.00000 0.00000 0.41715 14 2PZ 0.01805 0.00000 0.00000 0.48530 15 3S 0.40386 0.00000 0.00000 0.15986 1.46907 16 3PX 0.00000 0.41549 0.00000 0.00000 0.00000 17 3PY 0.00000 0.00000 0.41549 0.00000 0.00000 18 3PZ 0.01683 0.00000 0.00000 0.44017 0.12241 16 17 18 16 3PX 0.41383 17 3PY 0.00000 0.41383 18 3PZ 0.00000 0.00000 0.40324 Full Mulliken population analysis: 1 2 3 4 5 1 1 C 1S 2.05467 2 2S 0.01243 0.16415 3 2PX 0.00000 0.00000 0.15597 4 2PY 0.00000 0.00000 0.00000 0.15597 5 2PZ 0.00000 0.00000 0.00000 0.00000 0.38413 6 3S -0.07093 0.25329 0.00000 0.00000 0.00000 7 3PX 0.00000 0.00000 0.06313 0.00000 0.00000 8 3PY 0.00000 0.00000 0.00000 0.06313 0.00000 9 3PZ 0.00000 0.00000 0.00000 0.00000 0.04667 10 2 O 1S 0.00000 -0.00004 0.00000 0.00000 -0.00149 11 2S -0.00002 0.00074 0.00000 0.00000 0.01178 12 2PX 0.00000 0.00000 0.01443 0.00000 0.00000 13 2PY 0.00000 0.00000 0.00000 0.01443 0.00000 14 2PZ -0.00047 0.01896 0.00000 0.00000 0.07928 15 3S 0.00099 -0.01591 0.00000 0.00000 0.05684 16 3PX 0.00000 0.00000 0.05942 0.00000 0.00000 17 3PY 0.00000 0.00000 0.00000 0.05942 0.00000 18 3PZ -0.00869 0.05136 0.00000 0.00000 0.11132 6 7 8 9 10 6 3S 1.42400 7 3PX 0.00000 0.09133 8 3PY 0.00000 0.00000 0.09133 9 3PZ 0.00000 0.00000 0.00000 0.05050 10 2 O 1S 0.00531 0.00000 0.00000 0.00342 2.06050 11 2S -0.01680 0.00000 0.00000 -0.00083 0.01724 12 2PX 0.00000 0.02377 0.00000 0.00000 0.00000 13 2PY 0.00000 0.00000 0.02377 0.00000 0.00000 14 2PZ -0.01491 0.00000 0.00000 0.00272 0.00000 15 3S -0.20552 0.00000 0.00000 0.00367 -0.09894 16 3PX 0.00000 0.09287 0.00000 0.00000 0.00000 17 3PY 0.00000 0.00000 0.09287 0.00000 0.00000 18 3PZ -0.08407 0.00000 0.00000 0.00444 0.00000 11 12 13 14 15 11 2S 0.14397 12 2PX 0.00000 0.41715 13 2PY 0.00000 0.00000 0.41715 14 2PZ 0.00000 0.00000 0.00000 0.48530 15 3S 0.29887 0.00000 0.00000 0.00000 1.46907 16 3PX 0.00000 0.20723 0.00000 0.00000 0.00000 17 3PY 0.00000 0.00000 0.20723 0.00000 0.00000 18 3PZ 0.00000 0.00000 0.00000 0.21954 0.00000 16 17 18 16 3PX 0.41383 17 3PY 0.00000 0.41383 18 3PZ 0.00000 0.00000 0.40324 Gross orbital populations: 1 1 1 C 1S 1.98796 2 2S 0.48498 3 2PX 0.29295 4 2PY 0.29295 5 2PZ 0.68853 6 3S 1.29037 7 3PX 0.27111 8 3PY 0.27111 9 3PZ 0.11060 10 2 O 1S 1.98601 11 2S 0.45494 12 2PX 0.66259 13 2PY 0.66259 14 2PZ 0.79042 15 3S 1.50905 16 3PX 0.77335 17 3PY 0.77335 18 3PZ 0.69714 Condensed to atoms (all electrons): 1 2 1 C 5.307497 0.383062 2 O 0.383062 7.926379 Mulliken atomic charges: 1 1 C 0.309441 2 O -0.309441 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.309441 2 O -0.309441 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 40.2620 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0496 Tot= 0.0496 Quadrupole moment (field-independent basis, Debye-Ang): XX= -9.8735 YY= -9.8735 ZZ= -12.4955 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.8740 YY= 0.8740 ZZ= -1.7480 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 6.0338 XYY= 0.0000 XXY= 0.0000 XXZ= 1.2747 XZZ= 0.0000 YZZ= 0.0000 YYZ= 1.2747 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -7.5721 YYYY= -7.5721 ZZZZ= -34.5818 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -2.5240 XXZZ= -6.5205 YYZZ= -6.5205 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.202064640018D+01 E-N=-3.082022715496D+02 KE= 1.117392015931D+02 Symmetry A1 KE= 1.037548372317D+02 Symmetry A2 KE= 0.000000000000D+00 Symmetry B1 KE= 3.992182180722D+00 Symmetry B2 KE= 3.992182180722D+00 Orbital energies and kinetic energies (alpha): 1 2 1 O -19.155249 28.828569 2 O -10.250522 15.800225 3 O -1.181107 2.894500 4 O -0.555673 2.690304 5 O -0.466714 1.996091 6 O -0.466714 1.996091 7 O -0.364090 1.663821 8 V -0.025522 1.917828 9 V -0.025522 1.917828 10 V 0.319555 1.671796 11 V 0.678524 2.425950 12 V 0.678524 2.425950 13 V 0.809843 3.489248 14 V 1.065448 3.718218 15 V 1.428474 4.900840 16 V 1.428474 4.900840 17 V 1.453476 4.585510 18 V 2.928045 6.474360 Total kinetic energy from orbitals= 1.117392015931D+02 ******************************Gaussian NBO Version 3.1****************************** N A T U R A L A T O M I C O R B I T A L A N D N A T U R A L B O N D O R B I T A L A N A L Y S I S ******************************Gaussian NBO Version 3.1****************************** /RESON / : Allow strongly delocalized NBO set Analyzing the SCF density Job title: CO MO Diagram Storage needed: 1098 in NPA, 1363 in NBO ( 917503972 available) NATURAL POPULATIONS: Natural atomic orbital occupancies NAO Atom No lang Type(AO) Occupancy Energy ---------------------------------------------------------- 1 C 1 S Cor( 1S) 1.99995 -10.12671 2 C 1 S Val( 2S) 1.70570 -0.48139 3 C 1 S Ryd( 3S) 0.01698 1.03990 4 C 1 px Val( 2p) 0.50471 -0.11892 5 C 1 px Ryd( 3p) 0.00111 0.66113 6 C 1 py Val( 2p) 0.50471 -0.11892 7 C 1 py Ryd( 3p) 0.00111 0.66113 8 C 1 pz Val( 2p) 0.81169 0.06604 9 C 1 pz Ryd( 3p) 0.01782 0.65320 10 O 2 S Cor( 1S) 1.99960 -18.84307 11 O 2 S Val( 2S) 1.76026 -1.08430 12 O 2 S Ryd( 3S) 0.00057 2.85476 13 O 2 px Val( 2p) 1.49417 -0.35206 14 O 2 px Ryd( 3p) 0.00001 1.42461 15 O 2 py Val( 2p) 1.49417 -0.35206 16 O 2 py Ryd( 3p) 0.00001 1.42461 17 O 2 pz Val( 2p) 1.68726 -0.43075 18 O 2 pz Ryd( 3p) 0.00017 1.42204 Summary of Natural Population Analysis: Natural Population Natural ----------------------------------------------- Atom No Charge Core Valence Rydberg Total ----------------------------------------------------------------------- C 1 0.43621 1.99995 3.52681 0.03703 5.56379 O 2 -0.43621 1.99960 6.43585 0.00076 8.43621 ======================================================================= * Total * 0.00000 3.99955 9.96266 0.03779 14.00000 Natural Population -------------------------------------------------------- Core 3.99955 ( 99.9888% of 4) Valence 9.96266 ( 99.6266% of 10) Natural Minimal Basis 13.96221 ( 99.7301% of 14) Natural Rydberg Basis 0.03779 ( 0.2699% of 14) -------------------------------------------------------- Atom No Natural Electron Configuration ---------------------------------------------------------------------------- C 1 [core]2S( 1.71)2p( 1.82)3S( 0.02)3p( 0.02) O 2 [core]2S( 1.76)2p( 4.68) NATURAL BOND ORBITAL ANALYSIS: Occupancies Lewis Structure Low High Occ. ------------------- ----------------- occ occ Cycle Thresh. Lewis Non-Lewis CR BD 3C LP (L) (NL) Dev ============================================================================= 1(1) 1.90 13.98961 0.01039 2 3 0 2 0 0 0.00 ----------------------------------------------------------------------------- Structure accepted: No low occupancy Lewis orbitals -------------------------------------------------------- Core 3.99955 ( 99.989% of 4) Valence Lewis 9.99007 ( 99.901% of 10) ================== ============================ Total Lewis 13.98961 ( 99.926% of 14) ----------------------------------------------------- Valence non-Lewis 0.00001 ( 0.000% of 14) Rydberg non-Lewis 0.01038 ( 0.074% of 14) ================== ============================ Total non-Lewis 0.01039 ( 0.074% of 14) -------------------------------------------------------- (Occupancy) Bond orbital/ Coefficients/ Hybrids --------------------------------------------------------------------------------- 1. (2.00000) BD ( 1) C 1 - O 2 ( 27.12%) 0.5208* C 1 s( 21.61%)p 3.63( 78.39%) 0.0000 0.4363 0.1605 0.0000 0.0000 0.0000 0.0000 0.8752 0.1340 ( 72.88%) 0.8537* O 2 s( 43.19%)p 1.32( 56.81%) 0.0000 0.6571 0.0119 0.0000 0.0000 0.0000 0.0000 -0.7537 0.0062 2. (2.00000) BD ( 2) C 1 - O 2 ( 25.29%) 0.5029* C 1 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.9989 -0.0469 0.0000 0.0000 0.0000 0.0000 ( 74.71%) 0.8643* O 2 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 1.0000 0.0021 0.0000 0.0000 0.0000 0.0000 3. (2.00000) BD ( 3) C 1 - O 2 ( 25.29%) 0.5029* C 1 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.9989 -0.0469 0.0000 0.0000 ( 74.71%) 0.8643* O 2 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0021 0.0000 0.0000 4. (1.99995) CR ( 1) C 1 s(100.00%) 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5. (1.99960) CR ( 1) O 2 s(100.00%)p 0.00( 0.00%) 1.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 6. (1.99974) LP ( 1) C 1 s( 80.17%)p 0.25( 19.83%) 0.0000 0.8951 -0.0210 0.0000 0.0000 0.0000 0.0000 -0.4450 0.0166 7. (1.99033) LP ( 1) O 2 s( 56.83%)p 0.76( 43.17%) -0.0004 0.7538 -0.0076 0.0000 0.0000 0.0000 0.0000 0.6571 0.0004 8. (0.01001) RY*( 1) C 1 s( 21.93%)p 3.56( 78.07%) 0.0000 -0.0907 0.4595 0.0000 0.0000 0.0000 0.0000 -0.1718 0.8667 9. (0.00000) RY*( 2) C 1 s( 0.00%)p 1.00(100.00%) 10. (0.00000) RY*( 3) C 1 s( 0.00%)p 1.00(100.00%) 11. (0.00000) RY*( 4) C 1 s( 76.28%)p 0.31( 23.72%) 12. (0.00027) RY*( 1) O 2 s( 88.73%)p 0.13( 11.27%) 0.0000 -0.0035 0.9419 0.0000 0.0000 0.0000 0.0000 0.0147 0.3354 13. (0.00010) RY*( 2) O 2 s( 11.26%)p 7.88( 88.74%) 14. (0.00000) RY*( 3) O 2 s( 0.00%)p 1.00(100.00%) 15. (0.00000) RY*( 4) O 2 s( 0.00%)p 1.00(100.00%) 16. (0.00001) BD*( 1) C 1 - O 2 ( 72.88%) 0.8537* C 1 s( 21.61%)p 3.63( 78.39%) ( 27.12%) -0.5208* O 2 s( 43.19%)p 1.32( 56.81%) 17. (0.00000) BD*( 2) C 1 - O 2 ( 74.71%) 0.8643* C 1 s( 0.00%)p 1.00(100.00%) ( 25.29%) -0.5029* O 2 s( 0.00%)p 1.00(100.00%) 18. (0.00000) BD*( 3) C 1 - O 2 ( 74.71%) 0.8643* C 1 s( 0.00%)p 1.00(100.00%) ( 25.29%) -0.5029* O 2 s( 0.00%)p 1.00(100.00%) NHO Directionality and "Bond Bending" (deviations from line of nuclear centers) [Thresholds for printing: angular deviation > 1.0 degree] hybrid p-character > 25.0% orbital occupancy > 0.10e Line of Centers Hybrid 1 Hybrid 2 --------------- ------------------- ------------------ NBO Theta Phi Theta Phi Dev Theta Phi Dev ======================================================================================== 2. BD ( 2) C 1 - O 2 0.0 0.0 90.0 0.0 90.0 90.0 0.0 90.0 3. BD ( 3) C 1 - O 2 0.0 0.0 90.0 90.0 90.0 90.0 90.0 90.0 7. LP ( 1) O 2 -- -- 0.0 0.0 -- -- -- -- Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis Threshold for printing: 0.50 kcal/mol E(2) E(j)-E(i) F(i,j) Donor NBO (i) Acceptor NBO (j) kcal/mol a.u. a.u. =================================================================================================== within unit 1 1. BD ( 1) C 1 - O 2 / 8. RY*( 1) C 1 1.48 1.86 0.047 5. CR ( 1) O 2 / 8. RY*( 1) C 1 8.73 19.47 0.369 5. CR ( 1) O 2 / 13. RY*( 2) O 2 0.72 20.43 0.108 6. LP ( 1) C 1 / 12. RY*( 1) O 2 0.51 3.19 0.036 7. LP ( 1) O 2 / 8. RY*( 1) C 1 13.05 1.42 0.121 Natural Bond Orbitals (Summary): Principal Delocalizations NBO Occupancy Energy (geminal,vicinal,remote) ==================================================================================== Molecular unit 1 (CO) 1. BD ( 1) C 1 - O 2 2.00000 -1.23564 8(g) 2. BD ( 2) C 1 - O 2 2.00000 -0.46671 3. BD ( 3) C 1 - O 2 2.00000 -0.46671 4. CR ( 1) C 1 1.99995 -10.12670 5. CR ( 1) O 2 1.99960 -18.84460 8(v),13(g) 6. LP ( 1) C 1 1.99974 -0.49660 12(v) 7. LP ( 1) O 2 1.99033 -0.78847 8(v) 8. RY*( 1) C 1 0.01001 0.62913 9. RY*( 2) C 1 0.00000 0.66991 10. RY*( 3) C 1 0.00000 0.66991 11. RY*( 4) C 1 0.00000 0.99359 12. RY*( 1) O 2 0.00027 2.68867 13. RY*( 2) O 2 0.00010 1.58641 14. RY*( 3) O 2 0.00000 1.42451 15. RY*( 4) O 2 0.00000 1.42451 16. BD*( 1) C 1 - O 2 0.00001 0.66394 17. BD*( 2) C 1 - O 2 0.00000 -0.01294 18. BD*( 3) C 1 - O 2 0.00000 -0.01294 ------------------------------- Total Lewis 13.98961 ( 99.9258%) Valence non-Lewis 0.00001 ( 0.0001%) Rydberg non-Lewis 0.01038 ( 0.0741%) ------------------------------- Total unit 1 14.00000 (100.0000%) Charge unit 1 0.00000 1\1\GINC-CX1-7-36-1\SP\RB3LYP\3-21G\C1O1\SCAN-USER-1\05-Feb-2012\0\\# rb3lyp/3-21g pop=(nbo,full) geom=connectivity\\CO MO Diagram\\0,1\C\O, 1,1.15348594\\Version=EM64L-G09RevB.01\State=1-SG\HF=-112.6719369\RMSD =3.053e-09\Dipole=0.,0.,0.0195045\Quadrupole=0.6498048,0.6498048,-1.29 96097,0.,0.,0.\PG=C*V [C*(C1O1)]\\@ WHEN A MATHEMATICIAN ENGAGED IN INVESTIGATING PHYSICAL ACTIONS AND RESULTS HAS ARRIVED AT HIS CONCLUSIONS, MAY THEY NOT BE EXPRESSED IN COMMON LANGUAGE AS FULLY, CLEARLY, AND DEFINITELY AS IN MATHEMATICAL FORMULAE? - LETTER FROM M. FARADAY TO J.C. MAXWELL, 1857. Job cpu time: 0 days 0 hours 0 minutes 9.5 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Sun Feb 5 05:14:18 2012.