Entering Link 1 = C:\G09W\l1.exe PID= 3220. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: IA32W-G09RevB.01 12-Aug-2010 12-Dec-2011 ****************************************** %chk=\\icfs7.cc.ic.ac.uk\sp3609\Computational Labs\module 3\Chair TS\Chair b3opt .chk ---------------------------------------------------------------------- # opt=(calcfc,ts,noeigen) freq rb3lyp/6-31g(d) scrf=check guess=tcheck geom=connectivity ---------------------------------------------------------------------- 1/5=1,10=4,11=1,14=-1,18=20,26=3,38=1,40=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,70=2,71=2,74=-5,116=1/1,2,3; 4/5=101/1; 5/5=2/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1,7=6,13=1/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7/10=1,18=20,25=1/1,2,3,16; 1/5=1,10=4,11=1,14=-1,18=20/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,70=5,71=1,74=-5,116=1/1,2,3; 4/5=5,16=3/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/5=1,11=1,14=-1,18=20/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------------ optimisation of chair b3 ------------------------ Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C -1.41247 0.001 0.27767 H -1.80418 0.00126 1.27969 C -0.97792 -1.20547 -0.25681 H -1.30226 -2.12485 0.19848 H -0.82372 -1.27739 -1.31747 C -0.97611 1.20686 -0.25674 H -1.29907 2.12672 0.19859 H -0.82202 1.27849 -1.31749 C 1.41248 -0.00102 -0.27767 H 1.80432 -0.00137 -1.27963 C 0.97605 -1.20686 0.25681 H 1.29923 -2.1267 -0.19839 H 0.8219 -1.27839 1.31754 C 0.97792 1.20547 0.25672 H 1.30245 2.12478 -0.19858 H 0.82362 1.27754 1.31737 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0759 calculate D2E/DX2 analytically ! ! R2 R(1,3) 1.3893 calculate D2E/DX2 analytically ! ! R3 R(1,6) 1.3893 calculate D2E/DX2 analytically ! ! R4 R(3,4) 1.076 calculate D2E/DX2 analytically ! ! R5 R(3,5) 1.0742 calculate D2E/DX2 analytically ! ! R6 R(3,11) 2.0203 calculate D2E/DX2 analytically ! ! R7 R(3,12) 2.4571 calculate D2E/DX2 analytically ! ! R8 R(3,13) 2.3923 calculate D2E/DX2 analytically ! ! R9 R(4,11) 2.457 calculate D2E/DX2 analytically ! ! R10 R(5,11) 2.3922 calculate D2E/DX2 analytically ! ! R11 R(6,7) 1.076 calculate D2E/DX2 analytically ! ! R12 R(6,8) 1.0743 calculate D2E/DX2 analytically ! ! R13 R(6,14) 2.0204 calculate D2E/DX2 analytically ! ! R14 R(6,15) 2.4572 calculate D2E/DX2 analytically ! ! R15 R(6,16) 2.392 calculate D2E/DX2 analytically ! ! R16 R(7,14) 2.457 calculate D2E/DX2 analytically ! ! R17 R(8,14) 2.3923 calculate D2E/DX2 analytically ! ! R18 R(9,10) 1.0759 calculate D2E/DX2 analytically ! ! R19 R(9,11) 1.3893 calculate D2E/DX2 analytically ! ! R20 R(9,14) 1.3893 calculate D2E/DX2 analytically ! ! R21 R(11,12) 1.076 calculate D2E/DX2 analytically ! ! R22 R(11,13) 1.0743 calculate D2E/DX2 analytically ! ! R23 R(14,15) 1.076 calculate D2E/DX2 analytically ! ! R24 R(14,16) 1.0742 calculate D2E/DX2 analytically ! ! A1 A(2,1,3) 118.1906 calculate D2E/DX2 analytically ! ! A2 A(2,1,6) 118.1912 calculate D2E/DX2 analytically ! ! A3 A(3,1,6) 120.4993 calculate D2E/DX2 analytically ! ! A4 A(1,3,4) 119.009 calculate D2E/DX2 analytically ! ! A5 A(1,3,5) 118.8756 calculate D2E/DX2 analytically ! ! A6 A(1,3,11) 101.8474 calculate D2E/DX2 analytically ! ! A7 A(1,3,12) 127.3241 calculate D2E/DX2 analytically ! ! A8 A(1,3,13) 90.4935 calculate D2E/DX2 analytically ! ! A9 A(4,3,5) 113.8195 calculate D2E/DX2 analytically ! ! A10 A(4,3,12) 87.0732 calculate D2E/DX2 analytically ! ! A11 A(4,3,13) 85.542 calculate D2E/DX2 analytically ! ! A12 A(5,3,12) 82.2611 calculate D2E/DX2 analytically ! ! A13 A(5,3,13) 122.666 calculate D2E/DX2 analytically ! ! A14 A(12,3,13) 43.5897 calculate D2E/DX2 analytically ! ! A15 A(1,6,7) 119.0103 calculate D2E/DX2 analytically ! ! A16 A(1,6,8) 118.8652 calculate D2E/DX2 analytically ! ! A17 A(1,6,14) 101.8543 calculate D2E/DX2 analytically ! ! A18 A(1,6,15) 127.3295 calculate D2E/DX2 analytically ! ! A19 A(1,6,16) 90.5059 calculate D2E/DX2 analytically ! ! A20 A(7,6,8) 113.8216 calculate D2E/DX2 analytically ! ! A21 A(7,6,15) 87.0742 calculate D2E/DX2 analytically ! ! A22 A(7,6,16) 85.5321 calculate D2E/DX2 analytically ! ! A23 A(8,6,15) 82.2679 calculate D2E/DX2 analytically ! ! A24 A(8,6,16) 122.6762 calculate D2E/DX2 analytically ! ! A25 A(15,6,16) 43.5892 calculate D2E/DX2 analytically ! ! A26 A(10,9,11) 118.1915 calculate D2E/DX2 analytically ! ! A27 A(10,9,14) 118.193 calculate D2E/DX2 analytically ! ! A28 A(11,9,14) 120.4985 calculate D2E/DX2 analytically ! ! A29 A(3,11,9) 101.8535 calculate D2E/DX2 analytically ! ! A30 A(4,11,5) 43.5908 calculate D2E/DX2 analytically ! ! A31 A(4,11,9) 127.3324 calculate D2E/DX2 analytically ! ! A32 A(4,11,12) 87.0803 calculate D2E/DX2 analytically ! ! A33 A(4,11,13) 82.2707 calculate D2E/DX2 analytically ! ! A34 A(5,11,9) 90.5015 calculate D2E/DX2 analytically ! ! A35 A(5,11,12) 85.547 calculate D2E/DX2 analytically ! ! A36 A(5,11,13) 122.6761 calculate D2E/DX2 analytically ! ! A37 A(9,11,12) 119.0043 calculate D2E/DX2 analytically ! ! A38 A(9,11,13) 118.8642 calculate D2E/DX2 analytically ! ! A39 A(12,11,13) 113.8223 calculate D2E/DX2 analytically ! ! A40 A(6,14,9) 101.8508 calculate D2E/DX2 analytically ! ! A41 A(7,14,8) 43.5913 calculate D2E/DX2 analytically ! ! A42 A(7,14,9) 127.3299 calculate D2E/DX2 analytically ! ! A43 A(7,14,15) 87.0851 calculate D2E/DX2 analytically ! ! A44 A(7,14,16) 82.2468 calculate D2E/DX2 analytically ! ! A45 A(8,14,9) 90.5004 calculate D2E/DX2 analytically ! ! A46 A(8,14,15) 85.5498 calculate D2E/DX2 analytically ! ! A47 A(8,14,16) 122.6554 calculate D2E/DX2 analytically ! ! A48 A(9,14,15) 119.0047 calculate D2E/DX2 analytically ! ! A49 A(9,14,16) 118.8805 calculate D2E/DX2 analytically ! ! A50 A(15,14,16) 113.8158 calculate D2E/DX2 analytically ! ! D1 D(2,1,3,4) 18.0832 calculate D2E/DX2 analytically ! ! D2 D(2,1,3,5) 164.5078 calculate D2E/DX2 analytically ! ! D3 D(2,1,3,11) -91.2196 calculate D2E/DX2 analytically ! ! D4 D(2,1,3,12) -92.3658 calculate D2E/DX2 analytically ! ! D5 D(2,1,3,13) -67.0922 calculate D2E/DX2 analytically ! ! D6 D(6,1,3,4) 177.7648 calculate D2E/DX2 analytically ! ! D7 D(6,1,3,5) -35.8107 calculate D2E/DX2 analytically ! ! D8 D(6,1,3,11) 68.462 calculate D2E/DX2 analytically ! ! D9 D(6,1,3,12) 67.3157 calculate D2E/DX2 analytically ! ! D10 D(6,1,3,13) 92.5893 calculate D2E/DX2 analytically ! ! D11 D(2,1,6,7) -18.0844 calculate D2E/DX2 analytically ! ! D12 D(2,1,6,8) -164.4968 calculate D2E/DX2 analytically ! ! D13 D(2,1,6,14) 91.2215 calculate D2E/DX2 analytically ! ! D14 D(2,1,6,15) 92.3724 calculate D2E/DX2 analytically ! ! D15 D(2,1,6,16) 67.0865 calculate D2E/DX2 analytically ! ! D16 D(3,1,6,7) -177.7658 calculate D2E/DX2 analytically ! ! D17 D(3,1,6,8) 35.8218 calculate D2E/DX2 analytically ! ! D18 D(3,1,6,14) -68.4599 calculate D2E/DX2 analytically ! ! D19 D(3,1,6,15) -67.309 calculate D2E/DX2 analytically ! ! D20 D(3,1,6,16) -92.5949 calculate D2E/DX2 analytically ! ! D21 D(1,3,11,9) -54.9815 calculate D2E/DX2 analytically ! ! D22 D(1,6,14,9) 54.9721 calculate D2E/DX2 analytically ! ! D23 D(10,9,11,3) -91.2252 calculate D2E/DX2 analytically ! ! D24 D(10,9,11,4) -92.3719 calculate D2E/DX2 analytically ! ! D25 D(10,9,11,5) -67.0951 calculate D2E/DX2 analytically ! ! D26 D(10,9,11,12) 18.0907 calculate D2E/DX2 analytically ! ! D27 D(10,9,11,13) 164.4919 calculate D2E/DX2 analytically ! ! D28 D(14,9,11,3) 68.4625 calculate D2E/DX2 analytically ! ! D29 D(14,9,11,4) 67.3158 calculate D2E/DX2 analytically ! ! D30 D(14,9,11,5) 92.5926 calculate D2E/DX2 analytically ! ! D31 D(14,9,11,12) 177.7783 calculate D2E/DX2 analytically ! ! D32 D(14,9,11,13) -35.8204 calculate D2E/DX2 analytically ! ! D33 D(10,9,14,6) 91.2319 calculate D2E/DX2 analytically ! ! D34 D(10,9,14,7) 92.3819 calculate D2E/DX2 analytically ! ! D35 D(10,9,14,8) 67.1021 calculate D2E/DX2 analytically ! ! D36 D(10,9,14,15) -18.0862 calculate D2E/DX2 analytically ! ! D37 D(10,9,14,16) -164.5039 calculate D2E/DX2 analytically ! ! D38 D(11,9,14,6) -68.4554 calculate D2E/DX2 analytically ! ! D39 D(11,9,14,7) -67.3054 calculate D2E/DX2 analytically ! ! D40 D(11,9,14,8) -92.5852 calculate D2E/DX2 analytically ! ! D41 D(11,9,14,15) -177.7736 calculate D2E/DX2 analytically ! ! D42 D(11,9,14,16) 35.8088 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 100 maximum allowed number of steps= 100. Search for a saddle point of order 1. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.412471 0.000999 0.277670 2 1 0 -1.804176 0.001255 1.279685 3 6 0 -0.977918 -1.205469 -0.256811 4 1 0 -1.302257 -2.124854 0.198484 5 1 0 -0.823719 -1.277394 -1.317465 6 6 0 -0.976105 1.206862 -0.256742 7 1 0 -1.299067 2.126719 0.198585 8 1 0 -0.822018 1.278493 -1.317488 9 6 0 1.412475 -0.001021 -0.277671 10 1 0 1.804315 -0.001368 -1.279629 11 6 0 0.976050 -1.206857 0.256814 12 1 0 1.299231 -2.126700 -0.198389 13 1 0 0.821904 -1.278387 1.317543 14 6 0 0.977922 1.205472 0.256719 15 1 0 1.302447 2.124778 -0.198576 16 1 0 0.823623 1.277539 1.317368 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.075856 0.000000 3 C 1.389270 2.121251 0.000000 4 H 2.130180 2.437470 1.075992 0.000000 5 H 2.127292 3.056375 1.074215 1.801468 0.000000 6 C 1.389287 2.121273 2.412332 3.378452 2.705528 7 H 2.130211 2.437521 3.378461 4.251574 3.756641 8 H 2.127241 3.056351 2.705440 3.756537 2.555888 9 C 2.879015 3.573822 2.676772 3.479534 2.776844 10 H 3.573919 4.423946 3.199506 4.042870 2.921684 11 C 2.676637 3.199290 2.020347 2.456991 2.392174 12 H 3.479521 4.042775 2.457130 2.631587 2.545696 13 H 2.776796 2.921509 2.392335 2.545753 3.106661 14 C 2.676784 3.199479 3.146690 4.036543 3.447983 15 H 3.479659 4.042983 4.036583 5.000151 4.165005 16 H 2.776804 2.921583 3.448031 4.165038 4.022905 6 7 8 9 10 6 C 0.000000 7 H 1.075994 0.000000 8 H 1.074270 1.801538 0.000000 9 C 2.676702 3.479448 2.776929 0.000000 10 H 3.199508 4.042877 2.921832 1.075852 0.000000 11 C 3.146536 4.036369 3.447962 1.389310 2.121293 12 H 4.036483 5.000031 4.165023 2.130169 2.437463 13 H 3.447850 4.164773 4.022873 2.127239 3.056340 14 C 2.020363 2.456981 2.392330 1.389257 2.121262 15 H 2.457184 2.631656 2.545882 2.130114 2.437426 16 H 2.392036 2.545308 3.106542 2.127349 3.056428 11 12 13 14 15 11 C 0.000000 12 H 1.075996 0.000000 13 H 1.074255 1.801534 0.000000 14 C 2.412330 3.378422 2.705410 0.000000 15 H 3.378418 4.251479 3.756470 1.075980 0.000000 16 H 2.705593 3.756669 2.555927 1.074234 1.801436 16 16 H 0.000000 Stoichiometry C6H10 Framework group C1[X(C6H10)] Deg. of freedom 42 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.412471 0.000996 0.277670 2 1 0 -1.804176 0.001251 1.279685 3 6 0 -0.977915 -1.205471 -0.256811 4 1 0 -1.302252 -2.124857 0.198484 5 1 0 -0.823716 -1.277396 -1.317465 6 6 0 -0.976108 1.206860 -0.256742 7 1 0 -1.299072 2.126716 0.198585 8 1 0 -0.822021 1.278491 -1.317488 9 6 0 1.412475 -0.001018 -0.277671 10 1 0 1.804315 -0.001364 -1.279629 11 6 0 0.976053 -1.206855 0.256814 12 1 0 1.299236 -2.126697 -0.198389 13 1 0 0.821907 -1.278385 1.317543 14 6 0 0.977919 1.205474 0.256719 15 1 0 1.302442 2.124781 -0.198576 16 1 0 0.823620 1.277541 1.317368 --------------------------------------------------------------------- Rotational constants (GHZ): 4.5907400 4.0339082 2.4717544 Standard basis: 6-31G(d) (6D, 7F) There are 110 symmetry adapted basis functions of A symmetry. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 110 basis functions, 208 primitive gaussians, 110 cartesian basis functions 23 alpha electrons 23 beta electrons nuclear repulsion energy 231.7619307790 Hartrees. NAtoms= 16 NActive= 16 NUniq= 16 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 110 RedAO= T NBF= 110 NBsUse= 110 1.00D-06 NBFU= 110 No guess information found on chk file. Error termination via Lnk1e in C:\G09W\l401.exe at Mon Dec 12 11:20:57 2011. Job cpu time: 0 days 0 hours 0 minutes 3.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1