Entering Link 1 = C:\G03W\l1.exe PID= 3000. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2004, Gaussian, Inc. All Rights Reserved. This is the Gaussian(R) 03 program. It is based on the the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 03, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. ****************************************** Gaussian 03: IA32W-G03RevC.01 3-Apr-2004 13-Feb-2012 ****************************************** %chk=anti1.chk %mem=6MW %nproc=1 Will use up to 1 processors via shared memory. Default route: MaxDisk=2000MB -------------------------------- # opt hf/3-21g geom=connectivity -------------------------------- 1/18=20,38=1,57=2/1,3; 2/9=110,17=6,18=5,40=1/2; 3/5=5,11=9,16=1,25=1,30=1/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/18=20/3(1); 99//99; 2/9=110/2; 3/5=5,11=9,16=1,25=1,30=1/1,2,3; 4/5=5,16=3/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/18=20/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ----- anti1 ----- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C H 1 B1 H 1 B2 2 A1 C 1 B3 2 A2 3 D1 0 H 4 B4 1 A3 2 D2 0 C 4 B5 1 A4 2 D3 0 H 6 B6 4 A5 1 D4 0 H 6 B7 4 A6 1 D5 0 C 6 B8 4 A7 1 D6 0 H 9 B9 6 A8 4 D7 0 H 9 B10 6 A9 4 D8 0 C 9 B11 6 A10 4 D9 0 H 12 B12 9 A11 6 D10 0 C 12 B13 9 A12 6 D11 0 H 14 B14 12 A13 9 D12 0 H 14 B15 12 A14 9 D13 0 Variables: B1 1.07339 B2 1.07459 B3 1.31608 B4 1.07703 B5 1.50888 B6 1.08363 B7 1.08688 B8 1.55231 B9 1.08688 B10 1.08363 B11 1.50888 B12 1.07703 B13 1.31608 B14 1.07459 B15 1.07339 A1 116.33035 A2 121.8618 A3 119.69846 A4 124.75456 A5 110.31503 A6 109.61155 A7 111.3735 A8 108.76954 A9 108.99982 A10 111.3735 A11 115.53913 A12 124.75456 A13 121.80762 A14 121.8618 D1 -179.82912 D2 -0.21337 D3 -179.14679 D4 -6.03856 D5 -124.44705 D6 115.13851 D7 55.96651 D8 -61.18274 D9 176.87529 D10 -63.83468 D11 115.13851 D12 1.03342 D13 -179.14679 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0734 estimate D2E/DX2 ! ! R2 R(1,3) 1.0746 estimate D2E/DX2 ! ! R3 R(1,4) 1.3161 estimate D2E/DX2 ! ! R4 R(4,5) 1.077 estimate D2E/DX2 ! ! R5 R(4,6) 1.5089 estimate D2E/DX2 ! ! R6 R(6,7) 1.0836 estimate D2E/DX2 ! ! R7 R(6,8) 1.0869 estimate D2E/DX2 ! ! R8 R(6,9) 1.5523 estimate D2E/DX2 ! ! R9 R(9,10) 1.0869 estimate D2E/DX2 ! ! R10 R(9,11) 1.0836 estimate D2E/DX2 ! ! R11 R(9,12) 1.5089 estimate D2E/DX2 ! ! R12 R(12,13) 1.077 estimate D2E/DX2 ! ! R13 R(12,14) 1.3161 estimate D2E/DX2 ! ! R14 R(14,15) 1.0746 estimate D2E/DX2 ! ! R15 R(14,16) 1.0734 estimate D2E/DX2 ! ! A1 A(2,1,3) 116.3303 estimate D2E/DX2 ! ! A2 A(2,1,4) 121.8618 estimate D2E/DX2 ! ! A3 A(3,1,4) 121.8076 estimate D2E/DX2 ! ! A4 A(1,4,5) 119.6985 estimate D2E/DX2 ! ! A5 A(1,4,6) 124.7546 estimate D2E/DX2 ! ! A6 A(5,4,6) 115.5391 estimate D2E/DX2 ! ! A7 A(4,6,7) 110.315 estimate D2E/DX2 ! ! A8 A(4,6,8) 109.6116 estimate D2E/DX2 ! ! A9 A(4,6,9) 111.3735 estimate D2E/DX2 ! ! A10 A(7,6,8) 107.683 estimate D2E/DX2 ! ! A11 A(7,6,9) 108.9998 estimate D2E/DX2 ! ! A12 A(8,6,9) 108.7695 estimate D2E/DX2 ! ! A13 A(6,9,10) 108.7695 estimate D2E/DX2 ! ! A14 A(6,9,11) 108.9998 estimate D2E/DX2 ! ! A15 A(6,9,12) 111.3735 estimate D2E/DX2 ! ! A16 A(10,9,11) 107.683 estimate D2E/DX2 ! ! A17 A(10,9,12) 109.6116 estimate D2E/DX2 ! ! A18 A(11,9,12) 110.315 estimate D2E/DX2 ! ! A19 A(9,12,13) 115.5391 estimate D2E/DX2 ! ! A20 A(9,12,14) 124.7546 estimate D2E/DX2 ! ! A21 A(13,12,14) 119.6985 estimate D2E/DX2 ! ! A22 A(12,14,15) 121.8076 estimate D2E/DX2 ! ! A23 A(12,14,16) 121.8618 estimate D2E/DX2 ! ! A24 A(15,14,16) 116.3303 estimate D2E/DX2 ! ! D1 D(2,1,4,5) -0.2134 estimate D2E/DX2 ! ! D2 D(2,1,4,6) -179.1468 estimate D2E/DX2 ! ! D3 D(3,1,4,5) 179.9668 estimate D2E/DX2 ! ! D4 D(3,1,4,6) 1.0334 estimate D2E/DX2 ! ! D5 D(1,4,6,7) -6.0386 estimate D2E/DX2 ! ! D6 D(1,4,6,8) -124.447 estimate D2E/DX2 ! ! D7 D(1,4,6,9) 115.1385 estimate D2E/DX2 ! ! D8 D(5,4,6,7) 174.9882 estimate D2E/DX2 ! ! D9 D(5,4,6,8) 56.5798 estimate D2E/DX2 ! ! D10 D(5,4,6,9) -63.8347 estimate D2E/DX2 ! ! D11 D(4,6,9,10) 55.9665 estimate D2E/DX2 ! ! D12 D(4,6,9,11) -61.1827 estimate D2E/DX2 ! ! D13 D(4,6,9,12) 176.8753 estimate D2E/DX2 ! ! D14 D(7,6,9,10) 177.9085 estimate D2E/DX2 ! ! D15 D(7,6,9,11) 60.7592 estimate D2E/DX2 ! ! D16 D(7,6,9,12) -61.1827 estimate D2E/DX2 ! ! D17 D(8,6,9,10) -64.9423 estimate D2E/DX2 ! ! D18 D(8,6,9,11) 177.9085 estimate D2E/DX2 ! ! D19 D(8,6,9,12) 55.9665 estimate D2E/DX2 ! ! D20 D(6,9,12,13) -63.8347 estimate D2E/DX2 ! ! D21 D(6,9,12,14) 115.1385 estimate D2E/DX2 ! ! D22 D(10,9,12,13) 56.5798 estimate D2E/DX2 ! ! D23 D(10,9,12,14) -124.447 estimate D2E/DX2 ! ! D24 D(11,9,12,13) 174.9882 estimate D2E/DX2 ! ! D25 D(11,9,12,14) -6.0386 estimate D2E/DX2 ! ! D26 D(9,12,14,15) 1.0334 estimate D2E/DX2 ! ! D27 D(9,12,14,16) -179.1468 estimate D2E/DX2 ! ! D28 D(13,12,14,15) 179.9668 estimate D2E/DX2 ! ! D29 D(13,12,14,16) -0.2134 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 78 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 1 0 0.000000 0.000000 1.073385 3 1 0 0.963100 0.000000 -0.476629 4 6 0 -1.117772 0.003334 -0.694721 5 1 0 -2.064830 0.002674 -0.181807 6 6 0 -1.194048 -0.014899 -2.201561 7 1 0 -0.202670 0.075856 -2.629568 8 1 0 -1.781685 0.831519 -2.547353 9 6 0 -1.850093 -1.323142 -2.719021 10 1 0 -2.828967 -1.429284 -2.258744 11 1 0 -1.246609 -2.167571 -2.407571 12 6 0 -1.995493 -1.308709 -4.220809 13 1 0 -2.650559 -0.550943 -4.616635 14 6 0 -1.373846 -2.127362 -5.042652 15 1 0 -0.712517 -2.895009 -4.684741 16 1 0 -1.501540 -2.067019 -6.106705 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.073385 0.000000 3 H 1.074587 1.824858 0.000000 4 C 1.316079 2.091800 2.092273 0.000000 5 H 2.072820 2.416410 3.042251 1.077033 0.000000 6 C 2.504564 3.485864 2.762047 1.508879 2.199540 7 H 2.638458 3.709271 2.449474 2.141566 3.076447 8 H 3.217893 4.120142 3.537396 2.135162 2.522492 9 C 3.544944 4.422205 3.833156 2.528561 2.870776 10 H 3.892021 4.598803 4.427026 2.725205 2.635920 11 H 3.471138 4.285960 3.648249 2.768263 3.214572 12 C 4.848705 5.807168 4.948219 3.863307 4.247125 13 H 5.351852 6.301217 5.522837 4.247125 4.507469 14 C 5.642824 6.619595 5.552977 4.848705 5.351852 15 H 5.552977 6.484194 5.375591 4.948219 5.522837 16 H 6.619595 7.621081 6.484194 5.807168 6.301217 6 7 8 9 10 6 C 0.000000 7 H 1.083631 0.000000 8 H 1.086883 1.752448 0.000000 9 C 1.552308 2.163146 2.162571 0.000000 10 H 2.162571 3.049654 2.508251 1.086883 0.000000 11 H 2.163146 2.484363 3.049654 1.083631 1.752448 12 C 2.528561 2.768263 2.725205 1.508879 2.135162 13 H 2.870776 3.214572 2.635920 2.199540 2.522492 14 C 3.544944 3.471138 3.892021 2.504564 3.217893 15 H 3.833156 3.648249 4.427026 2.762047 3.537396 16 H 4.422205 4.285960 4.598803 3.485864 4.120142 11 12 13 14 15 11 H 0.000000 12 C 2.141566 0.000000 13 H 3.076447 1.077033 0.000000 14 C 2.638458 1.316079 2.072820 0.000000 15 H 2.449474 2.092273 3.042251 1.074587 0.000000 16 H 3.709271 2.091800 2.416410 1.073385 1.824858 16 16 H 0.000000 Stoichiometry C6H10 Framework group C2[X(C6H10)] Deg. of freedom 22 Full point group C2 NOp 2 Largest Abelian subgroup C2 NOp 2 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.051615 2.820940 0.617245 2 1 0 -0.407250 3.788716 0.546474 3 1 0 0.602590 2.619376 1.517543 4 6 0 -0.051615 1.930964 -0.346783 5 1 0 -0.612865 2.168805 -1.234719 6 6 0 0.549934 0.547711 -0.308473 7 1 0 1.165556 0.429529 0.575438 8 1 0 1.187598 0.403039 -1.176671 9 6 0 -0.549934 -0.547711 -0.308473 10 1 0 -1.187598 -0.403039 -1.176671 11 1 0 -1.165556 -0.429529 0.575438 12 6 0 0.051615 -1.930964 -0.346783 13 1 0 0.612865 -2.168805 -1.234719 14 6 0 -0.051615 -2.820940 0.617245 15 1 0 -0.602590 -2.619376 1.517543 16 1 0 0.407250 -3.788716 0.546474 --------------------------------------------------------------------- Rotational constants (GHZ): 12.4186831 1.4219791 1.3774945 Standard basis: 3-21G (6D, 7F) There are 37 symmetry adapted basis functions of A symmetry. There are 37 symmetry adapted basis functions of B symmetry. Integral buffers will be 262144 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 74 basis functions, 120 primitive gaussians, 74 cartesian basis functions 23 alpha electrons 23 beta electrons nuclear repulsion energy 213.2983569365 Hartrees. NAtoms= 16 NActive= 16 NUniq= 8 SFac= 5.66D+00 NAtFMM= 60 Big=F One-electron integrals computed using PRISM. NBasis= 74 RedAO= T NBF= 37 37 NBsUse= 74 1.00D-06 NBFU= 37 37 Harris functional with IExCor= 205 diagonalized for initial guess. ExpMin= 1.83D-01 ExpMax= 1.72D+02 ExpMxC= 1.72D+02 IAcc=1 IRadAn= 1 AccDes= 1.00D-06 HarFok: IExCor= 205 AccDes= 1.00D-06 IRadAn= 1 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Initial guess orbital symmetries: Occupied (A) (B) (B) (A) (B) (A) (A) (B) (A) (B) (B) (A) (A) (B) (B) (A) (A) (A) (B) (B) (A) (B) (A) Virtual (B) (A) (A) (B) (A) (B) (A) (B) (A) (B) (B) (B) (A) (B) (A) (A) (B) (A) (B) (B) (A) (B) (A) (A) (B) (B) (A) (A) (B) (B) (A) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (A) (A) (B) (B) (A) (B) (A) (B) (A) (B) The electronic state of the initial guess is 1-A. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 integrals in memory in canonical form, NReq= 4495620. SCF Done: E(RHF) = -231.692602352 A.U. after 11 cycles Convg = 0.5980D-08 -V/T = 2.0018 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (B) (A) (B) (A) (A) (B) (A) (B) (A) (B) (B) (A) (A) (B) (B) (A) (A) (A) (B) (B) (A) (B) (A) Virtual (B) (A) (A) (A) (B) (B) (A) (B) (A) (B) (B) (A) (B) (A) (B) (B) (A) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (B) (A) (B) (A) (A) (B) (A) (B) (A) (A) (B) (A) (B) (B) (A) (A) (B) (B) (A) (B) (A) (B) (A) (B) The electronic state is 1-A. Alpha occ. eigenvalues -- -11.17262 -11.17239 -11.16818 -11.16797 -11.15762 Alpha occ. eigenvalues -- -11.15762 -1.09902 -1.05386 -0.97654 -0.86589 Alpha occ. eigenvalues -- -0.75996 -0.75536 -0.66086 -0.63386 -0.60300 Alpha occ. eigenvalues -- -0.59557 -0.54874 -0.51610 -0.50737 -0.48283 Alpha occ. eigenvalues -- -0.46331 -0.37325 -0.35182 Alpha virt. eigenvalues -- 0.18370 0.19669 0.27887 0.29808 0.30483 Alpha virt. eigenvalues -- 0.30702 0.33669 0.35885 0.36287 0.36854 Alpha virt. eigenvalues -- 0.38328 0.39351 0.43979 0.51376 0.52702 Alpha virt. eigenvalues -- 0.60495 0.60506 0.86231 0.89313 0.93990 Alpha virt. eigenvalues -- 0.94998 0.97505 0.99922 1.01451 1.02004 Alpha virt. eigenvalues -- 1.08618 1.10575 1.12087 1.12154 1.12708 Alpha virt. eigenvalues -- 1.16559 1.19382 1.28794 1.31663 1.34270 Alpha virt. eigenvalues -- 1.36629 1.38630 1.39103 1.41124 1.41352 Alpha virt. eigenvalues -- 1.45480 1.47157 1.62023 1.64193 1.73397 Alpha virt. eigenvalues -- 1.73436 1.79838 1.99839 2.14847 2.23389 Alpha virt. eigenvalues -- 2.53135 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.194373 0.396084 0.399774 0.545274 -0.040752 -0.079776 2 H 0.396084 0.466466 -0.021613 -0.051330 -0.002133 0.002631 3 H 0.399774 -0.021613 0.468199 -0.054735 0.002314 -0.001870 4 C 0.545274 -0.051330 -0.054735 5.269494 0.397888 0.272597 5 H -0.040752 -0.002133 0.002314 0.397888 0.460062 -0.040287 6 C -0.079776 0.002631 -0.001870 0.272597 -0.040287 5.464922 7 H 0.001737 0.000057 0.002200 -0.047365 0.002133 0.389221 8 H 0.000965 -0.000062 0.000058 -0.048113 -0.000487 0.385504 9 C 0.000822 -0.000068 0.000055 -0.081862 -0.000070 0.233623 10 H 0.000193 0.000000 0.000004 0.000337 0.001577 -0.050106 11 H 0.000842 -0.000009 0.000054 0.000413 0.000191 -0.042670 12 C -0.000035 0.000001 -0.000002 0.004571 -0.000063 -0.081862 13 H 0.000000 0.000000 0.000000 -0.000063 0.000002 -0.000070 14 C 0.000000 0.000000 0.000000 -0.000035 0.000000 0.000822 15 H 0.000000 0.000000 0.000000 -0.000002 0.000000 0.000055 16 H 0.000000 0.000000 0.000000 0.000001 0.000000 -0.000068 7 8 9 10 11 12 1 C 0.001737 0.000965 0.000822 0.000193 0.000842 -0.000035 2 H 0.000057 -0.000062 -0.000068 0.000000 -0.000009 0.000001 3 H 0.002200 0.000058 0.000055 0.000004 0.000054 -0.000002 4 C -0.047365 -0.048113 -0.081862 0.000337 0.000413 0.004571 5 H 0.002133 -0.000487 -0.000070 0.001577 0.000191 -0.000063 6 C 0.389221 0.385504 0.233623 -0.050106 -0.042670 -0.081862 7 H 0.488030 -0.022513 -0.042670 0.003075 -0.001123 0.000413 8 H -0.022513 0.512186 -0.050106 -0.000964 0.003075 0.000337 9 C -0.042670 -0.050106 5.464922 0.385504 0.389221 0.272597 10 H 0.003075 -0.000964 0.385504 0.512186 -0.022513 -0.048113 11 H -0.001123 0.003075 0.389221 -0.022513 0.488030 -0.047365 12 C 0.000413 0.000337 0.272597 -0.048113 -0.047365 5.269494 13 H 0.000191 0.001577 -0.040287 -0.000487 0.002133 0.397888 14 C 0.000842 0.000193 -0.079776 0.000965 0.001737 0.545274 15 H 0.000054 0.000004 -0.001870 0.000058 0.002200 -0.054735 16 H -0.000009 0.000000 0.002631 -0.000062 0.000057 -0.051330 13 14 15 16 1 C 0.000000 0.000000 0.000000 0.000000 2 H 0.000000 0.000000 0.000000 0.000000 3 H 0.000000 0.000000 0.000000 0.000000 4 C -0.000063 -0.000035 -0.000002 0.000001 5 H 0.000002 0.000000 0.000000 0.000000 6 C -0.000070 0.000822 0.000055 -0.000068 7 H 0.000191 0.000842 0.000054 -0.000009 8 H 0.001577 0.000193 0.000004 0.000000 9 C -0.040287 -0.079776 -0.001870 0.002631 10 H -0.000487 0.000965 0.000058 -0.000062 11 H 0.002133 0.001737 0.002200 0.000057 12 C 0.397888 0.545274 -0.054735 -0.051330 13 H 0.460062 -0.040752 0.002314 -0.002133 14 C -0.040752 5.194373 0.399774 0.396084 15 H 0.002314 0.399774 0.468199 -0.021613 16 H -0.002133 0.396084 -0.021613 0.466466 Mulliken atomic charges: 1 1 C -0.419501 2 H 0.209976 3 H 0.205564 4 C -0.207070 5 H 0.219624 6 C -0.452667 7 H 0.225727 8 H 0.218346 9 C -0.452667 10 H 0.218346 11 H 0.225727 12 C -0.207070 13 H 0.219624 14 C -0.419501 15 H 0.205564 16 H 0.209976 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 C -0.003961 2 H 0.000000 3 H 0.000000 4 C 0.012555 5 H 0.000000 6 C -0.008593 7 H 0.000000 8 H 0.000000 9 C -0.008593 10 H 0.000000 11 H 0.000000 12 C 0.012555 13 H 0.000000 14 C -0.003961 15 H 0.000000 16 H 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 894.9558 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.2022 Tot= 0.2022 Quadrupole moment (field-independent basis, Debye-Ang): XX= -40.7760 YY= -39.1217 ZZ= -37.1308 XY= -1.8384 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -1.7665 YY= -0.1122 ZZ= 1.8787 XY= -1.8384 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -0.0824 XYY= 0.0000 XXY= 0.0000 XXZ= -0.5296 XZZ= 0.0000 YZZ= 0.0000 YYZ= 4.6101 XYZ= 5.1255 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -95.3719 YYYY= -982.8572 ZZZZ= -120.6123 XXXY= -10.8332 XXXZ= 0.0000 YYYX= -48.9281 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -200.2152 XXZZ= -33.6210 YYZZ= -185.2732 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= -0.9526 N-N= 2.132983569365D+02 E-N=-9.647776488715D+02 KE= 2.312831823152D+02 Symmetry A KE= 1.169401352880D+02 Symmetry B KE= 1.143430470272D+02 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000033314 0.000017301 0.000030512 2 1 0.000002795 -0.000005635 -0.000000177 3 1 0.000001961 -0.000007173 0.000000904 4 6 -0.000015374 -0.000007873 -0.000041649 5 1 -0.000003166 -0.000001344 -0.000006557 6 6 0.000012625 0.000057173 0.000031381 7 1 -0.000005780 0.000000614 0.000008688 8 1 0.000001309 0.000002586 -0.000004130 9 6 -0.000039787 -0.000044338 -0.000029396 10 1 -0.000000676 -0.000002885 0.000004084 11 1 -0.000005135 0.000004544 -0.000007890 12 6 0.000001359 0.000014496 0.000042673 13 1 -0.000000173 0.000002922 0.000006801 14 6 0.000003976 -0.000034923 -0.000033237 15 1 0.000006641 0.000003108 -0.000001533 16 1 0.000006111 0.000001427 -0.000000474 ------------------------------------------------------------------- Cartesian Forces: Max 0.000057173 RMS 0.000019442 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000064924 RMS 0.000012825 Search for a local minimum. Step number 1 out of a maximum of 78 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- first step. Eigenvalues --- 0.00230 0.00648 0.00648 0.01716 0.01716 Eigenvalues --- 0.03199 0.03199 0.03199 0.03199 0.04203 Eigenvalues --- 0.04203 0.05447 0.05447 0.09098 0.09098 Eigenvalues --- 0.12679 0.12679 0.15998 0.15998 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.21957 0.21957 Eigenvalues --- 0.22000 0.22000 0.27456 0.31463 0.31463 Eigenvalues --- 0.35175 0.35175 0.35559 0.35559 0.36355 Eigenvalues --- 0.36355 0.36656 0.36656 0.36806 0.36806 Eigenvalues --- 0.62919 0.629191000.000001000.000001000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.000001000.000001000.00000 RFO step: Lambda=-5.26334579D-08. Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00051556 RMS(Int)= 0.00000006 Iteration 2 RMS(Cart)= 0.00000012 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.02840 0.00000 0.00000 0.00000 0.00000 2.02840 R2 2.03068 0.00000 0.00000 0.00000 0.00000 2.03068 R3 2.48703 0.00005 0.00000 0.00008 0.00008 2.48711 R4 2.03530 0.00000 0.00000 0.00000 0.00000 2.03530 R5 2.85137 -0.00002 0.00000 -0.00005 -0.00005 2.85132 R6 2.04777 -0.00001 0.00000 -0.00002 -0.00002 2.04774 R7 2.05391 0.00000 0.00000 0.00001 0.00001 2.05392 R8 2.93344 0.00006 0.00000 0.00024 0.00024 2.93367 R9 2.05391 0.00000 0.00000 0.00001 0.00001 2.05392 R10 2.04777 -0.00001 0.00000 -0.00002 -0.00002 2.04774 R11 2.85137 -0.00002 0.00000 -0.00005 -0.00005 2.85132 R12 2.03530 0.00000 0.00000 0.00000 0.00000 2.03530 R13 2.48703 0.00005 0.00000 0.00008 0.00008 2.48711 R14 2.03068 0.00000 0.00000 0.00000 0.00000 2.03068 R15 2.02840 0.00000 0.00000 0.00000 0.00000 2.02840 A1 2.03035 0.00000 0.00000 -0.00002 -0.00002 2.03033 A2 2.12689 0.00000 0.00000 0.00002 0.00002 2.12691 A3 2.12594 0.00000 0.00000 0.00000 0.00000 2.12595 A4 2.08913 0.00000 0.00000 0.00001 0.00001 2.08915 A5 2.17738 0.00001 0.00000 0.00006 0.00006 2.17744 A6 2.01654 -0.00001 0.00000 -0.00008 -0.00008 2.01646 A7 1.92536 -0.00001 0.00000 -0.00011 -0.00011 1.92525 A8 1.91308 0.00001 0.00000 0.00009 0.00009 1.91317 A9 1.94383 0.00000 0.00000 0.00000 0.00000 1.94383 A10 1.87942 0.00000 0.00000 -0.00001 -0.00001 1.87941 A11 1.90241 0.00000 0.00000 -0.00001 -0.00001 1.90239 A12 1.89839 0.00000 0.00000 0.00005 0.00005 1.89843 A13 1.89839 0.00000 0.00000 0.00005 0.00005 1.89843 A14 1.90241 0.00000 0.00000 -0.00001 -0.00001 1.90239 A15 1.94383 0.00000 0.00000 0.00000 0.00000 1.94383 A16 1.87942 0.00000 0.00000 -0.00001 -0.00001 1.87941 A17 1.91308 0.00001 0.00000 0.00009 0.00009 1.91317 A18 1.92536 -0.00001 0.00000 -0.00011 -0.00011 1.92525 A19 2.01654 -0.00001 0.00000 -0.00008 -0.00008 2.01646 A20 2.17738 0.00001 0.00000 0.00006 0.00006 2.17744 A21 2.08913 0.00000 0.00000 0.00001 0.00001 2.08915 A22 2.12594 0.00000 0.00000 0.00000 0.00000 2.12595 A23 2.12689 0.00000 0.00000 0.00002 0.00002 2.12691 A24 2.03035 0.00000 0.00000 -0.00002 -0.00002 2.03033 D1 -0.00372 0.00000 0.00000 0.00013 0.00013 -0.00359 D2 -3.12670 0.00001 0.00000 0.00017 0.00017 -3.12653 D3 3.14101 -0.00001 0.00000 -0.00021 -0.00021 3.14080 D4 0.01804 -0.00001 0.00000 -0.00018 -0.00018 0.01786 D5 -0.10539 0.00000 0.00000 -0.00003 -0.00003 -0.10542 D6 -2.17201 0.00000 0.00000 0.00000 0.00000 -2.17201 D7 2.00955 0.00000 0.00000 -0.00012 -0.00012 2.00943 D8 3.05412 0.00000 0.00000 0.00001 0.00001 3.05413 D9 0.98750 0.00000 0.00000 0.00003 0.00003 0.98753 D10 -1.11413 0.00000 0.00000 -0.00008 -0.00008 -1.11421 D11 0.97680 0.00000 0.00000 0.00068 0.00068 0.97748 D12 -1.06784 0.00000 0.00000 0.00067 0.00067 -1.06717 D13 3.08706 0.00001 0.00000 0.00082 0.00082 3.08787 D14 3.10509 0.00000 0.00000 0.00054 0.00054 3.10563 D15 1.06045 0.00000 0.00000 0.00053 0.00053 1.06098 D16 -1.06784 0.00000 0.00000 0.00067 0.00067 -1.06717 D17 -1.13346 0.00000 0.00000 0.00055 0.00055 -1.13291 D18 3.10509 0.00000 0.00000 0.00054 0.00054 3.10563 D19 0.97680 0.00000 0.00000 0.00068 0.00068 0.97748 D20 -1.11413 0.00000 0.00000 -0.00008 -0.00008 -1.11421 D21 2.00955 0.00000 0.00000 -0.00012 -0.00012 2.00943 D22 0.98750 0.00000 0.00000 0.00003 0.00003 0.98753 D23 -2.17201 0.00000 0.00000 0.00000 0.00000 -2.17201 D24 3.05412 0.00000 0.00000 0.00001 0.00001 3.05413 D25 -0.10539 0.00000 0.00000 -0.00003 -0.00003 -0.10542 D26 0.01804 -0.00001 0.00000 -0.00018 -0.00018 0.01786 D27 -3.12670 0.00001 0.00000 0.00017 0.00017 -3.12653 D28 3.14101 -0.00001 0.00000 -0.00021 -0.00021 3.14080 D29 -0.00372 0.00000 0.00000 0.00013 0.00013 -0.00359 Item Value Threshold Converged? Maximum Force 0.000065 0.000450 YES RMS Force 0.000013 0.000300 YES Maximum Displacement 0.001512 0.001800 YES RMS Displacement 0.000516 0.001200 YES Predicted change in Energy=-2.631678D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0734 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0746 -DE/DX = 0.0 ! ! R3 R(1,4) 1.3161 -DE/DX = 0.0 ! ! R4 R(4,5) 1.077 -DE/DX = 0.0 ! ! R5 R(4,6) 1.5089 -DE/DX = 0.0 ! ! R6 R(6,7) 1.0836 -DE/DX = 0.0 ! ! R7 R(6,8) 1.0869 -DE/DX = 0.0 ! ! R8 R(6,9) 1.5523 -DE/DX = 0.0001 ! ! R9 R(9,10) 1.0869 -DE/DX = 0.0 ! ! R10 R(9,11) 1.0836 -DE/DX = 0.0 ! ! R11 R(9,12) 1.5089 -DE/DX = 0.0 ! ! R12 R(12,13) 1.077 -DE/DX = 0.0 ! ! R13 R(12,14) 1.3161 -DE/DX = 0.0 ! ! R14 R(14,15) 1.0746 -DE/DX = 0.0 ! ! R15 R(14,16) 1.0734 -DE/DX = 0.0 ! ! A1 A(2,1,3) 116.3303 -DE/DX = 0.0 ! ! A2 A(2,1,4) 121.8618 -DE/DX = 0.0 ! ! A3 A(3,1,4) 121.8076 -DE/DX = 0.0 ! ! A4 A(1,4,5) 119.6985 -DE/DX = 0.0 ! ! A5 A(1,4,6) 124.7546 -DE/DX = 0.0 ! ! A6 A(5,4,6) 115.5391 -DE/DX = 0.0 ! ! A7 A(4,6,7) 110.315 -DE/DX = 0.0 ! ! A8 A(4,6,8) 109.6116 -DE/DX = 0.0 ! ! A9 A(4,6,9) 111.3735 -DE/DX = 0.0 ! ! A10 A(7,6,8) 107.683 -DE/DX = 0.0 ! ! A11 A(7,6,9) 108.9998 -DE/DX = 0.0 ! ! A12 A(8,6,9) 108.7695 -DE/DX = 0.0 ! ! A13 A(6,9,10) 108.7695 -DE/DX = 0.0 ! ! A14 A(6,9,11) 108.9998 -DE/DX = 0.0 ! ! A15 A(6,9,12) 111.3735 -DE/DX = 0.0 ! ! A16 A(10,9,11) 107.683 -DE/DX = 0.0 ! ! A17 A(10,9,12) 109.6116 -DE/DX = 0.0 ! ! A18 A(11,9,12) 110.315 -DE/DX = 0.0 ! ! A19 A(9,12,13) 115.5391 -DE/DX = 0.0 ! ! A20 A(9,12,14) 124.7546 -DE/DX = 0.0 ! ! A21 A(13,12,14) 119.6985 -DE/DX = 0.0 ! ! A22 A(12,14,15) 121.8076 -DE/DX = 0.0 ! ! A23 A(12,14,16) 121.8618 -DE/DX = 0.0 ! ! A24 A(15,14,16) 116.3303 -DE/DX = 0.0 ! ! D1 D(2,1,4,5) -0.2134 -DE/DX = 0.0 ! ! D2 D(2,1,4,6) -179.1468 -DE/DX = 0.0 ! ! D3 D(3,1,4,5) 179.9668 -DE/DX = 0.0 ! ! D4 D(3,1,4,6) 1.0334 -DE/DX = 0.0 ! ! D5 D(1,4,6,7) -6.0386 -DE/DX = 0.0 ! ! D6 D(1,4,6,8) -124.447 -DE/DX = 0.0 ! ! D7 D(1,4,6,9) 115.1385 -DE/DX = 0.0 ! ! D8 D(5,4,6,7) 174.9882 -DE/DX = 0.0 ! ! D9 D(5,4,6,8) 56.5798 -DE/DX = 0.0 ! ! D10 D(5,4,6,9) -63.8347 -DE/DX = 0.0 ! ! D11 D(4,6,9,10) 55.9665 -DE/DX = 0.0 ! ! D12 D(4,6,9,11) -61.1827 -DE/DX = 0.0 ! ! D13 D(4,6,9,12) 176.8753 -DE/DX = 0.0 ! ! D14 D(7,6,9,10) 177.9085 -DE/DX = 0.0 ! ! D15 D(7,6,9,11) 60.7592 -DE/DX = 0.0 ! ! D16 D(7,6,9,12) -61.1827 -DE/DX = 0.0 ! ! D17 D(8,6,9,10) -64.9423 -DE/DX = 0.0 ! ! D18 D(8,6,9,11) 177.9085 -DE/DX = 0.0 ! ! D19 D(8,6,9,12) 55.9665 -DE/DX = 0.0 ! ! D20 D(6,9,12,13) -63.8347 -DE/DX = 0.0 ! ! D21 D(6,9,12,14) 115.1385 -DE/DX = 0.0 ! ! D22 D(10,9,12,13) 56.5798 -DE/DX = 0.0 ! ! D23 D(10,9,12,14) -124.447 -DE/DX = 0.0 ! ! D24 D(11,9,12,13) 174.9882 -DE/DX = 0.0 ! ! D25 D(11,9,12,14) -6.0386 -DE/DX = 0.0 ! ! D26 D(9,12,14,15) 1.0334 -DE/DX = 0.0 ! ! D27 D(9,12,14,16) -179.1468 -DE/DX = 0.0 ! ! D28 D(13,12,14,15) 179.9668 -DE/DX = 0.0 ! ! D29 D(13,12,14,16) -0.2134 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Final structure in terms of initial Z-matrix: C H,1,B1 H,1,B2,2,A1 C,1,B3,2,A2,3,D1,0 H,4,B4,1,A3,2,D2,0 C,4,B5,1,A4,2,D3,0 H,6,B6,4,A5,1,D4,0 H,6,B7,4,A6,1,D5,0 C,6,B8,4,A7,1,D6,0 H,9,B9,6,A8,4,D7,0 H,9,B10,6,A9,4,D8,0 C,9,B11,6,A10,4,D9,0 H,12,B12,9,A11,6,D10,0 C,12,B13,9,A12,6,D11,0 H,14,B14,12,A13,9,D12,0 H,14,B15,12,A14,9,D13,0 Variables: B1=1.07338532 B2=1.07458715 B3=1.31607885 B4=1.07703294 B5=1.50887895 B6=1.08363094 B7=1.08688263 B8=1.55230801 B9=1.08688263 B10=1.08363094 B11=1.50887895 B12=1.07703294 B13=1.31607885 B14=1.07458715 B15=1.07338532 A1=116.33034555 A2=121.86180315 A3=119.69845653 A4=124.75456293 A5=110.31503001 A6=109.61155176 A7=111.37349818 A8=108.76953523 A9=108.99982054 A10=111.37349818 A11=115.53912826 A12=124.75456293 A13=121.80762306 A14=121.86180315 D1=-179.82912241 D2=-0.21337492 D3=-179.14679134 D4=-6.03856144 D5=-124.44704786 D6=115.13850892 D7=55.96650744 D8=-61.18274145 D9=176.87528896 D10=-63.83468448 D11=115.13850892 D12=1.03342198 D13=-179.14679134 1|1|UNPC-UNK|FOpt|RHF|3-21G|C6H10|PCUSER|13-Feb-2012|0||# OPT HF/3-21G GEOM=CONNECTIVITY||anti1||0,1|C,0.,0.,0.|H,0.9683674434,-0.4576155645 ,-0.070771003|H,-0.0827770283,1.0016299745,-0.3802931772|C,-1.02894346 18,-0.6292684547,0.5266498873|H,-0.9078033716,-1.6333070043,0.89709775 59|C,-2.4201753469,-0.0566908865,0.6421680945|H,-2.4273922685,0.980496 6334,0.328407073|H,-2.7434658277,-0.0901156764,1.6793179872|C,-3.43346 57459,-0.8534073473,-0.2227860119|H,-3.3962730424,-1.8995544942,0.0696 292768|H,-3.1349731342,-0.7914844023,-1.2626531783|C,-4.8373219483,-0. 3284668451,-0.0485995659|H,-5.2510640893,-0.4285436987,0.9407446704|C, -5.5485887212,0.2409976704,-0.9982696574|H,-5.1691359836,0.3588547929, -1.9966998561|H,-6.5402773732,0.6106121238,-0.8191193891||Version=IA32 W-G03RevC.01|State=1-A|HF=-231.6926024|RMSD=5.980e-009|RMSF=1.944e-005 |Dipole=-0.0717788,0.0339201,0.0052458|PG=C02 [X(C6H10)]||@ THE ONE-EYED VIEW OF OUR UNIVERSE SAYS YOU MUST NOT LOOK FAR AFIELD FOR PROBLEMS. SUCH PROBLEMS MAY NEVER ARRIVE. INSTEAD, TEND TO THE WOLF WITHIN YOUR FENCES. THE PACKS RANGING OUTSIDE MAY NOT EVEN EXIST. -- THE AZHAR BOOK SHAMRA I:4 CHILDREN OF DUNE, BY FRANK HERBERT Job cpu time: 0 days 0 hours 0 minutes 6.0 seconds. File lengths (MBytes): RWF= 16 Int= 0 D2E= 0 Chk= 10 Scr= 1 Normal termination of Gaussian 03 at Mon Feb 13 19:52:17 2012.