Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 7844. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 07-Mar-2018 ****************************************** %chk=\\icnas2.cc.ic.ac.uk\jdn15\Desktop\Gauss\EX3\SO2.chk Default route: MaxDisk=10GB ---------------------------------------------------------------------- # opt freq pm6 geom=connectivity integral=grid=ultrafine pop=full gfpr int ---------------------------------------------------------------------- 1/14=-1,18=20,19=15,26=1,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=2,16=1,24=100,25=1,41=3900000,71=1,75=-5/1,2,3; 4/35=1/1; 5/5=2,35=1,38=5/2; 6/7=3,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=1/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=2,16=1,25=1,41=3900000,71=1,75=-5,135=20/1,2,3; 4/5=5,16=3,35=1/1; 5/5=2,35=1,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=1/3(-5); 2/9=110/2; 6/7=3,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 S 0. 0. 0.24509 O 0. 1.316 -0.24509 O 0. -1.316 -0.24509 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.4043 estimate D2E/DX2 ! ! R2 R(1,3) 1.4043 estimate D2E/DX2 ! ! A1 A(2,1,3) 139.142 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.245087 2 8 0 0.000000 1.315999 -0.245087 3 8 0 0.000000 -1.315999 -0.245087 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 S 0.000000 2 O 1.404323 0.000000 3 O 1.404323 2.631998 0.000000 Stoichiometry O2S Framework group C2V[C2(S),SGV(O2)] Deg. of freedom 2 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.245087 2 8 0 0.000000 1.315999 -0.245087 3 8 0 0.000000 -1.315999 -0.245087 --------------------------------------------------------------------- Rotational constants (GHZ): 131.5392358 9.1220858 8.5305057 Standard basis: VSTO-6G (5D, 7F) AO basis set (Overlap normalization): Atom S1 Shell 1 SPD 6 bf 1 - 9 0.000000000000 0.000000000000 0.463147308731 0.1312982083D+02 -0.9737395526D-02 -0.8104943356D-02 0.6633434386D-02 0.3780719926D+01 -0.7265876782D-01 -0.1715478915D-01 0.5958177963D-01 0.1487051804D+01 -0.1716155198D+00 0.7369785762D-01 0.2401949582D+00 0.6796332161D+00 0.1289776243D+00 0.3965149986D+00 0.4648114679D+00 0.3382303503D+00 0.7288614510D+00 0.4978084880D+00 0.3434092326D+00 0.1737022754D+00 0.3013317422D+00 0.1174825823D+00 0.5389056980D-01 Atom O2 Shell 2 SP 6 bf 10 - 13 0.000000000000 2.486877701151 -0.463147308731 0.8026430740D+02 -0.9737395526D-02 -0.8104943356D-02 0.2311203406D+02 -0.7265876782D-01 -0.1715478915D-01 0.9090541650D+01 -0.1716155198D+00 0.7369785762D-01 0.4154686502D+01 0.1289776243D+00 0.3965149986D+00 0.2067646250D+01 0.7288614510D+00 0.4978084880D+00 0.1061864667D+01 0.3013317422D+00 0.1174825823D+00 Atom O3 Shell 3 SP 6 bf 14 - 17 0.000000000000 -2.486877701151 -0.463147308731 0.8026430740D+02 -0.9737395526D-02 -0.8104943356D-02 0.2311203406D+02 -0.7265876782D-01 -0.1715478915D-01 0.9090541650D+01 -0.1716155198D+00 0.7369785762D-01 0.4154686502D+01 0.1289776243D+00 0.3965149986D+00 0.2067646250D+01 0.7288614510D+00 0.4978084880D+00 0.1061864667D+01 0.3013317422D+00 0.1174825823D+00 There are 8 symmetry adapted cartesian basis functions of A1 symmetry. There are 2 symmetry adapted cartesian basis functions of A2 symmetry. There are 3 symmetry adapted cartesian basis functions of B1 symmetry. There are 5 symmetry adapted cartesian basis functions of B2 symmetry. There are 7 symmetry adapted basis functions of A1 symmetry. There are 2 symmetry adapted basis functions of A2 symmetry. There are 3 symmetry adapted basis functions of B1 symmetry. There are 5 symmetry adapted basis functions of B2 symmetry. 17 basis functions, 108 primitive gaussians, 18 cartesian basis functions 9 alpha electrons 9 beta electrons nuclear repulsion energy 54.2430750146 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 17 RedAO= T EigKep= 1.00D+00 NBF= 7 2 3 5 NBsUse= 17 1.00D-06 EigRej= -1.00D+00 NBFU= 7 2 3 5 Nonelectrostatic core Hamiltonian diagonalized for initial guess. Initial guess orbital symmetries: Occupied (A1) (B2) (A1) (B1) (A1) (B2) (A2) (B2) (A1) Virtual (B1) (A1) (B1) (B2) (A1) (A2) (A1) (B2) The electronic state of the initial guess is 1-A1. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=1872484. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Fock symm off for IB=2 I1= 1 I= 8 J= 2 Cut=1.00D-07 Err=4.21D-04 Fock matrix is not symmetric: symmetry in diagonalization turned off. SCF Done: E(RPM6) = -0.100137768902 A.U. after 15 cycles NFock= 14 Conv=0.10D-08 -V/T= 0.9869 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (B2) (A1) (B1) (A1) (B2) (A2) (B2) (A1) Virtual (B1) (A1) (B2) (A1) (B1) (A1) (A2) (B2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -1.19678 -1.12965 -0.74431 -0.56855 -0.55394 Alpha occ. eigenvalues -- -0.54778 -0.44871 -0.44785 -0.36034 Alpha virt. eigenvalues -- -0.02178 0.00739 0.10698 0.30009 0.30764 Alpha virt. eigenvalues -- 0.31068 0.32313 0.34854 Molecular Orbital Coefficients: 1 2 3 4 5 (A1)--O (B2)--O (A1)--O (B1)--O (A1)--O Eigenvalues -- -1.19678 -1.12965 -0.74431 -0.56855 -0.55394 1 1 S 1S 0.63682 0.00000 -0.51944 0.00000 0.11760 2 1PX 0.00000 0.00000 0.00000 0.61598 0.00000 3 1PY 0.00000 0.49623 0.00000 0.00000 0.00000 4 1PZ -0.20233 0.00000 -0.06810 0.00000 0.55905 5 1D 0 -0.04933 0.00000 -0.00739 0.00000 -0.09116 6 1D+1 0.00000 0.00000 0.00000 -0.04434 0.00000 7 1D-1 0.00000 -0.07501 0.00000 0.00000 0.00000 8 1D+2 -0.11160 0.00000 -0.02021 0.00000 -0.07428 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.44939 0.58458 0.52152 0.00000 0.08589 11 1PX 0.00000 0.00000 0.00000 0.55615 0.00000 12 1PY -0.25182 -0.16148 0.27725 0.00000 0.23210 13 1PZ 0.06284 0.07908 -0.11701 0.00000 0.51832 14 3 O 1S 0.44939 -0.58458 0.52152 0.00000 0.08589 15 1PX 0.00000 0.00000 0.00000 0.55615 0.00000 16 1PY 0.25182 -0.16148 -0.27725 0.00000 -0.23210 17 1PZ 0.06284 -0.07908 -0.11701 0.00000 0.51832 6 7 8 9 10 (B2)--O (A2)--O (B2)--O (A1)--O (B1)--V Eigenvalues -- -0.54778 -0.44871 -0.44785 -0.36034 -0.02178 1 1 S 1S 0.00000 0.00000 0.00000 0.51206 0.00000 2 1PX 0.00000 0.00000 0.00000 0.00000 0.78695 3 1PY -0.36999 0.00000 0.07140 0.00000 0.00000 4 1PZ 0.00000 0.00000 0.00000 0.29418 0.00000 5 1D 0 0.00000 0.00000 0.00000 0.18711 0.00000 6 1D+1 0.00000 0.00000 0.00000 0.00000 0.07986 7 1D-1 0.05396 0.00000 0.20717 0.00000 0.00000 8 1D+2 0.00000 0.00000 0.00000 0.33060 0.00000 9 1D-2 0.00000 0.21125 0.00000 0.00000 0.00000 10 2 O 1S 0.33367 0.00000 0.00258 0.00913 0.00000 11 1PX 0.00000 0.69115 0.00000 0.00000 -0.43263 12 1PY 0.48699 0.00000 0.35935 0.36837 0.00000 13 1PZ -0.28567 0.00000 0.58894 -0.34306 0.00000 14 3 O 1S -0.33367 0.00000 -0.00258 0.00913 0.00000 15 1PX 0.00000 -0.69115 0.00000 0.00000 -0.43263 16 1PY 0.48699 0.00000 0.35935 -0.36837 0.00000 17 1PZ 0.28567 0.00000 -0.58894 -0.34306 0.00000 11 12 13 14 15 (A1)--V (B2)--V (A1)--V (B1)--V (A1)--V Eigenvalues -- 0.00739 0.10698 0.30009 0.30764 0.31068 1 1 S 1S -0.15775 0.00000 -0.12914 0.00000 -0.08398 2 1PX 0.00000 0.00000 0.00000 -0.03568 0.00000 3 1PY 0.00000 0.75969 0.00000 0.00000 0.00000 4 1PZ 0.74314 0.00000 0.00818 0.00000 0.05496 5 1D 0 0.01344 0.00000 0.79653 0.00000 -0.56529 6 1D+1 0.00000 0.00000 0.00000 0.99582 0.00000 7 1D-1 0.00000 0.28403 0.00000 0.00000 0.00000 8 1D+2 -0.17076 0.00000 0.46961 0.00000 0.78907 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.09695 -0.19813 0.07819 0.00000 0.05562 11 1PX 0.00000 0.00000 0.00000 0.05946 0.00000 12 1PY -0.35151 0.25980 -0.16544 0.00000 -0.13861 13 1PZ -0.25258 -0.25366 0.17505 0.00000 0.03957 14 3 O 1S 0.09695 0.19813 0.07819 0.00000 0.05562 15 1PX 0.00000 0.00000 0.00000 0.05946 0.00000 16 1PY 0.35151 0.25980 0.16544 0.00000 0.13861 17 1PZ -0.25258 0.25366 0.17505 0.00000 0.03957 16 17 (A2)--V (B2)--V Eigenvalues -- 0.32313 0.34854 1 1 S 1S 0.00000 0.00000 2 1PX 0.00000 0.00000 3 1PY 0.00000 -0.18611 4 1PZ 0.00000 0.00000 5 1D 0 0.00000 0.00000 6 1D+1 0.00000 0.00000 7 1D-1 0.00000 0.93159 8 1D+2 0.00000 0.00000 9 1D-2 0.97743 0.00000 10 2 O 1S 0.00000 0.08758 11 1PX -0.14938 0.00000 12 1PY 0.00000 -0.20033 13 1PZ 0.00000 -0.03072 14 3 O 1S 0.00000 -0.08758 15 1PX 0.14938 0.00000 16 1PY 0.00000 -0.20033 17 1PZ 0.00000 0.03072 Density Matrix: 1 2 3 4 5 1 1 S 1S 1.90277 2 1PX 0.00000 0.75887 3 1PY 0.00000 0.00000 0.77647 4 1PZ 0.24581 0.00000 0.00000 0.88931 5 1D 0 0.11502 0.00000 0.00000 0.02914 0.09161 6 1D+1 0.00000 -0.05463 0.00000 0.00000 0.00000 7 1D-1 0.00000 0.00000 -0.08479 0.00000 0.00000 8 1D+2 0.19995 0.00000 0.00000 0.15938 0.14857 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.06013 0.00000 0.33363 -0.15149 -0.06429 11 1PX 0.00000 0.68515 0.00000 0.00000 0.00000 12 1PY -0.17692 0.00000 -0.46931 0.54039 0.11629 13 1PZ -0.02783 0.00000 0.37398 0.36819 -0.22735 14 3 O 1S 0.06013 0.00000 -0.33363 -0.15149 -0.06429 15 1PX 0.00000 0.68515 0.00000 0.00000 0.00000 16 1PY 0.17692 0.00000 -0.46931 -0.54039 -0.11629 17 1PZ -0.02783 0.00000 -0.37398 0.36819 -0.22735 6 7 8 9 10 6 1D+1 0.00393 7 1D-1 0.00000 0.10292 8 1D+2 0.00000 0.00000 0.25535 9 1D-2 0.00000 0.00000 0.00000 0.08926 10 2 O 1S 0.00000 -0.05062 -0.12811 0.00000 1.86894 11 1PX -0.04932 0.00000 0.00000 0.29202 0.00000 12 1PY 0.00000 0.22568 0.25409 0.00000 0.24749 13 1PZ 0.00000 0.20133 -0.31313 0.00000 -0.07794 14 3 O 1S 0.00000 0.05062 -0.12811 0.00000 0.05664 15 1PX -0.04932 0.00000 0.00000 -0.29202 0.00000 16 1PY 0.00000 0.22568 -0.25409 0.00000 0.02859 17 1PZ 0.00000 -0.20133 -0.31313 0.00000 0.11233 11 12 13 14 15 11 1PX 1.57397 12 1PY 0.00000 1.44445 13 1PZ 0.00000 0.01082 1.67740 14 3 O 1S 0.00000 -0.02859 0.11233 1.86894 15 1PX -0.33677 0.00000 0.00000 0.00000 1.57397 16 1PY 0.00000 0.12503 0.22818 -0.24749 0.00000 17 1PZ 0.00000 -0.22818 -0.06144 -0.07794 0.00000 16 17 16 1PY 1.44445 17 1PZ -0.01082 1.67740 Full Mulliken population analysis: 1 2 3 4 5 1 1 S 1S 1.90277 2 1PX 0.00000 0.75887 3 1PY 0.00000 0.00000 0.77647 4 1PZ 0.00000 0.00000 0.00000 0.88931 5 1D 0 0.00000 0.00000 0.00000 0.00000 0.09161 6 1D+1 0.00000 0.00000 0.00000 0.00000 0.00000 7 1D-1 0.00000 0.00000 0.00000 0.00000 0.00000 8 1D+2 0.00000 0.00000 0.00000 0.00000 0.00000 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.00000 0.00000 0.00000 0.00000 0.00000 11 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 12 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 13 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 14 3 O 1S 0.00000 0.00000 0.00000 0.00000 0.00000 15 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 16 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 17 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 6 7 8 9 10 6 1D+1 0.00393 7 1D-1 0.00000 0.10292 8 1D+2 0.00000 0.00000 0.25535 9 1D-2 0.00000 0.00000 0.00000 0.08926 10 2 O 1S 0.00000 0.00000 0.00000 0.00000 1.86894 11 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 12 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 13 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 14 3 O 1S 0.00000 0.00000 0.00000 0.00000 0.00000 15 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 16 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 17 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 11 12 13 14 15 11 1PX 1.57397 12 1PY 0.00000 1.44445 13 1PZ 0.00000 0.00000 1.67740 14 3 O 1S 0.00000 0.00000 0.00000 1.86894 15 1PX 0.00000 0.00000 0.00000 0.00000 1.57397 16 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 17 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 16 17 16 1PY 1.44445 17 1PZ 0.00000 1.67740 Gross orbital populations: 1 1 1 S 1S 1.90277 2 1PX 0.75887 3 1PY 0.77647 4 1PZ 0.88931 5 1D 0 0.09161 6 1D+1 0.00393 7 1D-1 0.10292 8 1D+2 0.25535 9 1D-2 0.08926 10 2 O 1S 1.86894 11 1PX 1.57397 12 1PY 1.44445 13 1PZ 1.67740 14 3 O 1S 1.86894 15 1PX 1.57397 16 1PY 1.44445 17 1PZ 1.67740 Condensed to atoms (all electrons): 1 2 3 1 S 4.870484 0.000000 0.000000 2 O 0.000000 6.564758 0.000000 3 O 0.000000 0.000000 6.564758 Mulliken charges: 1 1 S 1.129516 2 O -0.564758 3 O -0.564758 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 S 1.129516 2 O -0.564758 3 O -0.564758 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 1.9409 Tot= 1.9409 N-N= 5.424307501460D+01 E-N=-8.904527192149D+01 KE=-7.645337269230D+00 Symmetry A1 KE=-3.813692324230D+00 Symmetry A2 KE=-4.431949850638D-01 Symmetry B1 KE=-6.627201872689D-01 Symmetry B2 KE=-2.725729772667D+00 Orbital energies and kinetic energies (alpha): 1 2 1 (A1)--O -1.196775 -0.852140 2 (B2)--O -1.129651 -0.830149 3 (A1)--O -0.744305 -0.538169 4 (B1)--O -0.568546 -0.331360 5 (A1)--O -0.553939 -0.325290 6 (B2)--O -0.547780 -0.313898 7 (A2)--O -0.448714 -0.221597 8 (B2)--O -0.447854 -0.218818 9 (A1)--O -0.360342 -0.191247 10 (B1)--V -0.021780 -0.065371 11 (A1)--V 0.007387 -0.031899 12 (B2)--V 0.106976 0.051032 13 (A1)--V 0.300090 0.010195 14 (B1)--V 0.307642 -0.064451 15 (A1)--V 0.310680 -0.036165 16 (A2)--V 0.323132 -0.041365 17 (B2)--V 0.348540 0.009844 Total kinetic energy from orbitals=-7.645337269230D+00 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.000000000 0.000000000 0.000001328 2 8 0.000000000 -0.000000007 -0.000000664 3 8 0.000000000 0.000000007 -0.000000664 ------------------------------------------------------------------- Cartesian Forces: Max 0.000001328 RMS 0.000000542 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000001658 RMS 0.000000975 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 A1 R1 1.19607 R2 0.00000 1.19607 A1 0.00000 0.00000 0.25000 ITU= 0 Eigenvalues --- 0.25000 1.19607 1.19607 RFO step: Lambda= 0.00000000D+00 EMin= 2.50000000D-01 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00000458 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 5.02D-17 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.65379 0.00000 0.00000 0.00000 0.00000 2.65379 R2 2.65379 0.00000 0.00000 0.00000 0.00000 2.65379 A1 2.42849 0.00000 0.00000 -0.00001 -0.00001 2.42848 Item Value Threshold Converged? Maximum Force 0.000002 0.000450 YES RMS Force 0.000001 0.000300 YES Maximum Displacement 0.000006 0.001800 YES RMS Displacement 0.000005 0.001200 YES Predicted change in Energy=-5.541298D-12 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.4043 -DE/DX = 0.0 ! ! R2 R(1,3) 1.4043 -DE/DX = 0.0 ! ! A1 A(2,1,3) 139.142 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.245087 2 8 0 0.000000 1.315999 -0.245087 3 8 0 0.000000 -1.315999 -0.245087 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 S 0.000000 2 O 1.404323 0.000000 3 O 1.404323 2.631998 0.000000 Stoichiometry O2S Framework group C2V[C2(S),SGV(O2)] Deg. of freedom 2 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.245087 2 8 0 0.000000 1.315999 -0.245087 3 8 0 0.000000 -1.315999 -0.245087 --------------------------------------------------------------------- Rotational constants (GHZ): 131.5392358 9.1220858 8.5305057 1|1| IMPERIAL COLLEGE-CHWS-293|FOpt|RPM6|ZDO|O2S1|JDN15|07-Mar-2018|0| |# opt freq pm6 geom=connectivity integral=grid=ultrafine pop=full gfp rint||Title Card Required||0,1|S,0.,0.,0.245087|O,0.,1.315999,-0.24508 7|O,0.,-1.315999,-0.245087||Version=EM64W-G09RevD.01|State=1-A1|HF=-0. 1001378|RMSD=1.021e-009|RMSF=5.423e-007|Dipole=0.,0.,0.7636028|PG=C02V [C2(S1),SGV(O2)]||@ LIFE CAN ONLY BE UNDERSTOOD BACKWARD, BUT MUST BE LIVED FORWARD. -- KIRKEGAARD Job cpu time: 0 days 0 hours 0 minutes 3.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Wed Mar 07 13:05:10 2018. Link1: Proceeding to internal job step number 2. ------------------------------------------------------------- #N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RPM6/ZDO Freq ------------------------------------------------------------- 1/10=4,29=7,30=1,38=1,40=1/1,3; 2/12=2,40=1/2; 3/5=2,14=-4,16=1,24=100,25=1,41=3900000,70=2,71=2,75=-5,116=1,135=40,140=1/1,2,3; 4/5=101,35=1/1; 5/5=2,35=1,98=1/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1/2; 6/7=3,18=1,28=1/1; 7/8=1,10=1,25=1/1,2,3,16; 1/10=4,30=1/3; 99//99; Structure from the checkpoint file: "\\icnas2.cc.ic.ac.uk\jdn15\Desktop\Gauss\EX3\SO2.chk" ------------------- Title Card Required ------------------- Charge = 0 Multiplicity = 1 Redundant internal coordinates found in file. S,0,0.,0.,0.245087 O,0,0.,1.315999,-0.245087 O,0,0.,-1.315999,-0.245087 Recover connectivity data from disk. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.4043 calculate D2E/DX2 analytically ! ! R2 R(1,3) 1.4043 calculate D2E/DX2 analytically ! ! A1 A(2,1,3) 139.142 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 2 maximum allowed number of steps= 2. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.245087 2 8 0 0.000000 1.315999 -0.245087 3 8 0 0.000000 -1.315999 -0.245087 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 S 0.000000 2 O 1.404323 0.000000 3 O 1.404323 2.631998 0.000000 Stoichiometry O2S Framework group C2V[C2(S),SGV(O2)] Deg. of freedom 2 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.245087 2 8 0 0.000000 1.315999 -0.245087 3 8 0 0.000000 -1.315999 -0.245087 --------------------------------------------------------------------- Rotational constants (GHZ): 131.5392358 9.1220858 8.5305057 Standard basis: VSTO-6G (5D, 7F) AO basis set (Overlap normalization): Atom S1 Shell 1 SPD 6 bf 1 - 9 0.000000000000 0.000000000000 0.463147308731 0.1312982083D+02 -0.9737395526D-02 -0.8104943356D-02 0.6633434386D-02 0.3780719926D+01 -0.7265876782D-01 -0.1715478915D-01 0.5958177963D-01 0.1487051804D+01 -0.1716155198D+00 0.7369785762D-01 0.2401949582D+00 0.6796332161D+00 0.1289776243D+00 0.3965149986D+00 0.4648114679D+00 0.3382303503D+00 0.7288614510D+00 0.4978084880D+00 0.3434092326D+00 0.1737022754D+00 0.3013317422D+00 0.1174825823D+00 0.5389056980D-01 Atom O2 Shell 2 SP 6 bf 10 - 13 0.000000000000 2.486877701151 -0.463147308731 0.8026430740D+02 -0.9737395526D-02 -0.8104943356D-02 0.2311203406D+02 -0.7265876782D-01 -0.1715478915D-01 0.9090541650D+01 -0.1716155198D+00 0.7369785762D-01 0.4154686502D+01 0.1289776243D+00 0.3965149986D+00 0.2067646250D+01 0.7288614510D+00 0.4978084880D+00 0.1061864667D+01 0.3013317422D+00 0.1174825823D+00 Atom O3 Shell 3 SP 6 bf 14 - 17 0.000000000000 -2.486877701151 -0.463147308731 0.8026430740D+02 -0.9737395526D-02 -0.8104943356D-02 0.2311203406D+02 -0.7265876782D-01 -0.1715478915D-01 0.9090541650D+01 -0.1716155198D+00 0.7369785762D-01 0.4154686502D+01 0.1289776243D+00 0.3965149986D+00 0.2067646250D+01 0.7288614510D+00 0.4978084880D+00 0.1061864667D+01 0.3013317422D+00 0.1174825823D+00 There are 8 symmetry adapted cartesian basis functions of A1 symmetry. There are 2 symmetry adapted cartesian basis functions of A2 symmetry. There are 3 symmetry adapted cartesian basis functions of B1 symmetry. There are 5 symmetry adapted cartesian basis functions of B2 symmetry. There are 7 symmetry adapted basis functions of A1 symmetry. There are 2 symmetry adapted basis functions of A2 symmetry. There are 3 symmetry adapted basis functions of B1 symmetry. There are 5 symmetry adapted basis functions of B2 symmetry. 17 basis functions, 108 primitive gaussians, 18 cartesian basis functions 9 alpha electrons 9 beta electrons nuclear repulsion energy 54.2430750146 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 17 RedAO= T EigKep= 1.00D+00 NBF= 7 2 3 5 NBsUse= 17 1.00D-06 EigRej= -1.00D+00 NBFU= 7 2 3 5 Initial guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\jdn15\Desktop\Gauss\EX3\SO2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1) (B2) (A1) (B1) (A1) (B2) (A2) (B2) (A1) Virtual (B1) (A1) (B2) (A1) (B1) (A1) (A2) (B2) Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=1872484. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = -0.100137768902 A.U. after 2 cycles NFock= 1 Conv=0.34D-09 -V/T= 0.9869 Range of M.O.s used for correlation: 1 17 NBasis= 17 NAE= 9 NBE= 9 NFC= 0 NFV= 0 NROrb= 17 NOA= 9 NOB= 9 NVA= 8 NVB= 8 Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 4 centers at a time, making 1 passes. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. End of G2Drv F.D. properties file 721 does not exist. End of G2Drv F.D. properties file 722 does not exist. End of G2Drv F.D. properties file 788 does not exist. IDoAtm=111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Electric field/nuclear overlap derivatives assumed to be zero. Keep J ints in memory in canonical form, NReq=1855126. There are 9 degrees of freedom in the 1st order CPHF. IDoFFX=4 NUNeed= 9. LinEq1: Iter= 0 NonCon= 9 RMS=6.61D-01 Max=3.27D+00 NDo= 9 AX will form 9 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 9 RMS=1.54D-01 Max=1.05D+00 NDo= 9 LinEq1: Iter= 2 NonCon= 9 RMS=2.35D-02 Max=1.18D-01 NDo= 9 LinEq1: Iter= 3 NonCon= 9 RMS=4.32D-03 Max=1.82D-02 NDo= 9 LinEq1: Iter= 4 NonCon= 9 RMS=6.11D-04 Max=3.12D-03 NDo= 9 LinEq1: Iter= 5 NonCon= 9 RMS=6.48D-05 Max=2.94D-04 NDo= 9 LinEq1: Iter= 6 NonCon= 9 RMS=6.25D-06 Max=2.28D-05 NDo= 9 LinEq1: Iter= 7 NonCon= 9 RMS=1.40D-06 Max=4.89D-06 NDo= 9 LinEq1: Iter= 8 NonCon= 5 RMS=2.73D-07 Max=1.10D-06 NDo= 9 LinEq1: Iter= 9 NonCon= 2 RMS=4.03D-08 Max=1.53D-07 NDo= 9 LinEq1: Iter= 10 NonCon= 0 RMS=5.13D-09 Max=1.42D-08 NDo= 9 Linear equations converged to 1.000D-08 1.000D-07 after 10 iterations. Isotropic polarizability for W= 0.000000 24.44 Bohr**3. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (B2) (A1) (B1) (A1) (B2) (A2) (B2) (A1) Virtual (B1) (A1) (B2) (A1) (B1) (A1) (A2) (B2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -1.19678 -1.12965 -0.74431 -0.56855 -0.55394 Alpha occ. eigenvalues -- -0.54778 -0.44871 -0.44785 -0.36034 Alpha virt. eigenvalues -- -0.02178 0.00739 0.10698 0.30009 0.30764 Alpha virt. eigenvalues -- 0.31068 0.32313 0.34854 Molecular Orbital Coefficients: 1 2 3 4 5 (A1)--O (B2)--O (A1)--O (B1)--O (A1)--O Eigenvalues -- -1.19678 -1.12965 -0.74431 -0.56855 -0.55394 1 1 S 1S 0.63682 0.00000 -0.51944 0.00000 0.11760 2 1PX 0.00000 0.00000 0.00000 0.61598 0.00000 3 1PY 0.00000 0.49623 0.00000 0.00000 0.00000 4 1PZ -0.20233 0.00000 -0.06810 0.00000 0.55905 5 1D 0 -0.04933 0.00000 -0.00739 0.00000 -0.09116 6 1D+1 0.00000 0.00000 0.00000 -0.04434 0.00000 7 1D-1 0.00000 -0.07501 0.00000 0.00000 0.00000 8 1D+2 -0.11160 0.00000 -0.02021 0.00000 -0.07428 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.44939 0.58458 0.52152 0.00000 0.08589 11 1PX 0.00000 0.00000 0.00000 0.55615 0.00000 12 1PY -0.25182 -0.16148 0.27725 0.00000 0.23210 13 1PZ 0.06284 0.07908 -0.11701 0.00000 0.51832 14 3 O 1S 0.44939 -0.58458 0.52152 0.00000 0.08589 15 1PX 0.00000 0.00000 0.00000 0.55615 0.00000 16 1PY 0.25182 -0.16148 -0.27725 0.00000 -0.23210 17 1PZ 0.06284 -0.07908 -0.11701 0.00000 0.51832 6 7 8 9 10 (B2)--O (A2)--O (B2)--O (A1)--O (B1)--V Eigenvalues -- -0.54778 -0.44871 -0.44785 -0.36034 -0.02178 1 1 S 1S 0.00000 0.00000 0.00000 0.51206 0.00000 2 1PX 0.00000 0.00000 0.00000 0.00000 0.78695 3 1PY -0.36999 0.00000 0.07140 0.00000 0.00000 4 1PZ 0.00000 0.00000 0.00000 0.29418 0.00000 5 1D 0 0.00000 0.00000 0.00000 0.18711 0.00000 6 1D+1 0.00000 0.00000 0.00000 0.00000 0.07986 7 1D-1 0.05396 0.00000 0.20717 0.00000 0.00000 8 1D+2 0.00000 0.00000 0.00000 0.33060 0.00000 9 1D-2 0.00000 0.21125 0.00000 0.00000 0.00000 10 2 O 1S 0.33367 0.00000 0.00258 0.00913 0.00000 11 1PX 0.00000 0.69115 0.00000 0.00000 -0.43263 12 1PY 0.48699 0.00000 0.35935 0.36837 0.00000 13 1PZ -0.28567 0.00000 0.58894 -0.34306 0.00000 14 3 O 1S -0.33367 0.00000 -0.00258 0.00913 0.00000 15 1PX 0.00000 -0.69115 0.00000 0.00000 -0.43263 16 1PY 0.48699 0.00000 0.35935 -0.36837 0.00000 17 1PZ 0.28567 0.00000 -0.58894 -0.34306 0.00000 11 12 13 14 15 (A1)--V (B2)--V (A1)--V (B1)--V (A1)--V Eigenvalues -- 0.00739 0.10698 0.30009 0.30764 0.31068 1 1 S 1S -0.15775 0.00000 -0.12914 0.00000 -0.08398 2 1PX 0.00000 0.00000 0.00000 -0.03568 0.00000 3 1PY 0.00000 0.75969 0.00000 0.00000 0.00000 4 1PZ 0.74314 0.00000 0.00818 0.00000 0.05496 5 1D 0 0.01344 0.00000 0.79653 0.00000 -0.56529 6 1D+1 0.00000 0.00000 0.00000 0.99582 0.00000 7 1D-1 0.00000 0.28403 0.00000 0.00000 0.00000 8 1D+2 -0.17076 0.00000 0.46961 0.00000 0.78907 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.09695 -0.19813 0.07819 0.00000 0.05562 11 1PX 0.00000 0.00000 0.00000 0.05946 0.00000 12 1PY -0.35151 0.25980 -0.16544 0.00000 -0.13861 13 1PZ -0.25258 -0.25366 0.17505 0.00000 0.03957 14 3 O 1S 0.09695 0.19813 0.07819 0.00000 0.05562 15 1PX 0.00000 0.00000 0.00000 0.05946 0.00000 16 1PY 0.35151 0.25980 0.16544 0.00000 0.13861 17 1PZ -0.25258 0.25366 0.17505 0.00000 0.03957 16 17 (A2)--V (B2)--V Eigenvalues -- 0.32313 0.34854 1 1 S 1S 0.00000 0.00000 2 1PX 0.00000 0.00000 3 1PY 0.00000 -0.18611 4 1PZ 0.00000 0.00000 5 1D 0 0.00000 0.00000 6 1D+1 0.00000 0.00000 7 1D-1 0.00000 0.93159 8 1D+2 0.00000 0.00000 9 1D-2 0.97743 0.00000 10 2 O 1S 0.00000 0.08758 11 1PX -0.14938 0.00000 12 1PY 0.00000 -0.20033 13 1PZ 0.00000 -0.03072 14 3 O 1S 0.00000 -0.08758 15 1PX 0.14938 0.00000 16 1PY 0.00000 -0.20033 17 1PZ 0.00000 0.03072 Density Matrix: 1 2 3 4 5 1 1 S 1S 1.90277 2 1PX 0.00000 0.75887 3 1PY 0.00000 0.00000 0.77647 4 1PZ 0.24581 0.00000 0.00000 0.88931 5 1D 0 0.11502 0.00000 0.00000 0.02914 0.09161 6 1D+1 0.00000 -0.05463 0.00000 0.00000 0.00000 7 1D-1 0.00000 0.00000 -0.08479 0.00000 0.00000 8 1D+2 0.19995 0.00000 0.00000 0.15938 0.14857 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.06013 0.00000 0.33363 -0.15149 -0.06429 11 1PX 0.00000 0.68515 0.00000 0.00000 0.00000 12 1PY -0.17692 0.00000 -0.46931 0.54039 0.11629 13 1PZ -0.02783 0.00000 0.37398 0.36819 -0.22735 14 3 O 1S 0.06013 0.00000 -0.33363 -0.15149 -0.06429 15 1PX 0.00000 0.68515 0.00000 0.00000 0.00000 16 1PY 0.17692 0.00000 -0.46931 -0.54039 -0.11629 17 1PZ -0.02783 0.00000 -0.37398 0.36819 -0.22735 6 7 8 9 10 6 1D+1 0.00393 7 1D-1 0.00000 0.10292 8 1D+2 0.00000 0.00000 0.25535 9 1D-2 0.00000 0.00000 0.00000 0.08926 10 2 O 1S 0.00000 -0.05062 -0.12811 0.00000 1.86894 11 1PX -0.04932 0.00000 0.00000 0.29202 0.00000 12 1PY 0.00000 0.22568 0.25409 0.00000 0.24749 13 1PZ 0.00000 0.20133 -0.31313 0.00000 -0.07794 14 3 O 1S 0.00000 0.05062 -0.12811 0.00000 0.05664 15 1PX -0.04932 0.00000 0.00000 -0.29202 0.00000 16 1PY 0.00000 0.22568 -0.25409 0.00000 0.02859 17 1PZ 0.00000 -0.20133 -0.31313 0.00000 0.11233 11 12 13 14 15 11 1PX 1.57397 12 1PY 0.00000 1.44445 13 1PZ 0.00000 0.01082 1.67740 14 3 O 1S 0.00000 -0.02859 0.11233 1.86894 15 1PX -0.33677 0.00000 0.00000 0.00000 1.57397 16 1PY 0.00000 0.12503 0.22818 -0.24749 0.00000 17 1PZ 0.00000 -0.22818 -0.06144 -0.07794 0.00000 16 17 16 1PY 1.44445 17 1PZ -0.01082 1.67740 Full Mulliken population analysis: 1 2 3 4 5 1 1 S 1S 1.90277 2 1PX 0.00000 0.75887 3 1PY 0.00000 0.00000 0.77647 4 1PZ 0.00000 0.00000 0.00000 0.88931 5 1D 0 0.00000 0.00000 0.00000 0.00000 0.09161 6 1D+1 0.00000 0.00000 0.00000 0.00000 0.00000 7 1D-1 0.00000 0.00000 0.00000 0.00000 0.00000 8 1D+2 0.00000 0.00000 0.00000 0.00000 0.00000 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.00000 0.00000 0.00000 0.00000 0.00000 11 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 12 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 13 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 14 3 O 1S 0.00000 0.00000 0.00000 0.00000 0.00000 15 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 16 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 17 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 6 7 8 9 10 6 1D+1 0.00393 7 1D-1 0.00000 0.10292 8 1D+2 0.00000 0.00000 0.25535 9 1D-2 0.00000 0.00000 0.00000 0.08926 10 2 O 1S 0.00000 0.00000 0.00000 0.00000 1.86894 11 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 12 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 13 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 14 3 O 1S 0.00000 0.00000 0.00000 0.00000 0.00000 15 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 16 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 17 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 11 12 13 14 15 11 1PX 1.57397 12 1PY 0.00000 1.44445 13 1PZ 0.00000 0.00000 1.67740 14 3 O 1S 0.00000 0.00000 0.00000 1.86894 15 1PX 0.00000 0.00000 0.00000 0.00000 1.57397 16 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 17 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 16 17 16 1PY 1.44445 17 1PZ 0.00000 1.67740 Gross orbital populations: 1 1 1 S 1S 1.90277 2 1PX 0.75887 3 1PY 0.77647 4 1PZ 0.88931 5 1D 0 0.09161 6 1D+1 0.00393 7 1D-1 0.10292 8 1D+2 0.25535 9 1D-2 0.08926 10 2 O 1S 1.86894 11 1PX 1.57397 12 1PY 1.44445 13 1PZ 1.67740 14 3 O 1S 1.86894 15 1PX 1.57397 16 1PY 1.44445 17 1PZ 1.67740 Condensed to atoms (all electrons): 1 2 3 1 S 4.870484 0.000000 0.000000 2 O 0.000000 6.564758 0.000000 3 O 0.000000 0.000000 6.564758 Mulliken charges: 1 1 S 1.129516 2 O -0.564758 3 O -0.564758 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 S 1.129516 2 O -0.564758 3 O -0.564758 APT charges: 1 1 S 1.168216 2 O -0.584107 3 O -0.584107 Sum of APT charges = 0.00000 APT charges with hydrogens summed into heavy atoms: 1 1 S 1.168216 2 O -0.584107 3 O -0.584107 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 1.9409 Tot= 1.9409 N-N= 5.424307501460D+01 E-N=-8.904527192024D+01 KE=-7.645337267598D+00 Symmetry A1 KE=-3.813692323344D+00 Symmetry A2 KE=-4.431949847341D-01 Symmetry B1 KE=-6.627201871141D-01 Symmetry B2 KE=-2.725729772405D+00 Orbital energies and kinetic energies (alpha): 1 2 1 (A1)--O -1.196775 -0.852140 2 (B2)--O -1.129651 -0.830149 3 (A1)--O -0.744305 -0.538169 4 (B1)--O -0.568546 -0.331360 5 (A1)--O -0.553939 -0.325290 6 (B2)--O -0.547780 -0.313898 7 (A2)--O -0.448714 -0.221597 8 (B2)--O -0.447854 -0.218818 9 (A1)--O -0.360342 -0.191247 10 (B1)--V -0.021780 -0.065371 11 (A1)--V 0.007387 -0.031899 12 (B2)--V 0.106976 0.051032 13 (A1)--V 0.300090 0.010195 14 (B1)--V 0.307642 -0.064451 15 (A1)--V 0.310680 -0.036165 16 (A2)--V 0.323132 -0.041365 17 (B2)--V 0.348540 0.009844 Total kinetic energy from orbitals=-7.645337267598D+00 Exact polarizability: 11.288 0.000 52.570 0.000 0.000 9.463 Approx polarizability: 8.350 0.000 60.489 0.000 0.000 8.523 Calling FoFJK, ICntrl= 100127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. Full mass-weighted force constant matrix: Low frequencies --- -1.5404 -0.5186 -0.0013 0.0213 0.0576 0.0713 Low frequencies --- 224.4178 992.7251 1284.3037 Diagonal vibrational polarizability: 0.0000000 3.3448566 39.2432137 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates: 1 2 3 A1 A1 B2 Frequencies -- 224.4178 992.7251 1284.3037 Red. masses -- 20.3587 16.5851 20.8735 Frc consts -- 0.6041 9.6300 20.2853 IR Inten -- 73.0097 8.4637 205.0123 Atom AN X Y Z X Y Z X Y Z 1 16 0.00 0.00 0.52 0.00 0.00 0.19 0.00 0.55 0.00 2 8 0.00 -0.30 -0.52 0.00 0.67 -0.19 0.00 -0.55 0.21 3 8 0.00 0.30 -0.52 0.00 -0.67 -0.19 0.00 -0.55 -0.21 ------------------- - Thermochemistry - ------------------- Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 16 and mass 31.97207 Atom 2 has atomic number 8 and mass 15.99491 Atom 3 has atomic number 8 and mass 15.99491 Molecular mass: 63.96190 amu. Principal axes and moments of inertia in atomic units: 1 2 3 Eigenvalues -- 13.72017 197.84304 211.56321 X 0.00000 0.00000 1.00000 Y 1.00000 0.00000 0.00000 Z 0.00000 1.00000 0.00000 This molecule is an asymmetric top. Rotational symmetry number 2. Rotational temperatures (Kelvin) 6.31288 0.43779 0.40940 Rotational constants (GHZ): 131.53924 9.12209 8.53051 Zero-point vibrational energy 14962.0 (Joules/Mol) 3.57600 (Kcal/Mol) Warning -- explicit consideration of 1 degrees of freedom as vibrations may cause significant error Vibrational temperatures: 322.89 1428.31 1847.82 (Kelvin) Zero-point correction= 0.005699 (Hartree/Particle) Thermal correction to Energy= 0.009105 Thermal correction to Enthalpy= 0.010049 Thermal correction to Gibbs Free Energy= -0.018476 Sum of electronic and zero-point Energies= -0.094439 Sum of electronic and thermal Energies= -0.091033 Sum of electronic and thermal Enthalpies= -0.090089 Sum of electronic and thermal Free Energies= -0.118614 E (Thermal) CV S KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin Total 5.713 8.307 60.036 Electronic 0.000 0.000 0.000 Translational 0.889 2.981 38.386 Rotational 0.889 2.981 19.602 Vibrational 3.936 2.345 2.049 Vibration 1 0.649 1.804 1.923 Q Log10(Q) Ln(Q) Total Bot 0.315158D+09 8.498529 19.568586 Total V=0 0.131750D+12 11.119750 25.604171 Vib (Bot) 0.365439D-02 -2.437185 -5.611826 Vib (Bot) 1 0.879762D+00 -0.055635 -0.128104 Vib (V=0) 0.152769D+01 0.184036 0.423759 Vib (V=0) 1 0.151192D+01 0.179529 0.413380 Electronic 0.100000D+01 0.000000 0.000000 Translational 0.201065D+08 7.303337 16.816555 Rotational 0.428920D+04 3.632377 8.363856 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.000000000 0.000000000 0.000001330 2 8 0.000000000 -0.000000006 -0.000000665 3 8 0.000000000 0.000000006 -0.000000665 ------------------------------------------------------------------- Cartesian Forces: Max 0.000001330 RMS 0.000000543 FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000001659 RMS 0.000000976 Search for a local minimum. Step number 1 out of a maximum of 2 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- analytic derivatives used. The second derivative matrix: R1 R2 A1 R1 0.54139 R2 0.00994 0.54139 A1 0.05948 0.05948 0.07089 ITU= 0 Eigenvalues --- 0.05659 0.53145 0.56562 Angle between quadratic step and forces= 1.17 degrees. Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00001971 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.94D-15 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.65379 0.00000 0.00000 0.00000 0.00000 2.65379 R2 2.65379 0.00000 0.00000 0.00000 0.00000 2.65379 A1 2.42849 0.00000 0.00000 -0.00003 -0.00003 2.42846 Item Value Threshold Converged? Maximum Force 0.000002 0.000450 YES RMS Force 0.000001 0.000300 YES Maximum Displacement 0.000025 0.001800 YES RMS Displacement 0.000020 0.001200 YES Predicted change in Energy=-2.522818D-11 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.4043 -DE/DX = 0.0 ! ! R2 R(1,3) 1.4043 -DE/DX = 0.0 ! ! A1 A(2,1,3) 139.142 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad 1|1| IMPERIAL COLLEGE-CHWS-293|Freq|RPM6|ZDO|O2S1|JDN15|07-Mar-2018|0| |#N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RPM6/ZDO Freq||Title Card Required||0,1|S,0.,0.,0.245087|O,0.,1.315999,-0.245087|O,0.,-1.31 5999,-0.245087||Version=EM64W-G09RevD.01|State=1-A1|HF=-0.1001378|RMSD =3.383e-010|RMSF=5.431e-007|ZeroPoint=0.0056987|Thermal=0.0091045|Dipo le=0.,0.,0.7636028|DipoleDeriv=0.5839899,0.,0.,0.,1.7666382,0.,0.,0.,1 .1540194,-0.2919934,0.,0.,0.,-0.8833191,-0.0480111,0.,0.3481792,-0.577 0092,-0.2919934,0.,0.,0.,-0.8833191,0.0480111,0.,-0.3481792,-0.5770092 |Polar=11.2880901,0.,52.5703639,0.,0.,9.4630159|HyperPolar=0.,0.,0.,0. ,-4.8686479,0.,86.4192413,0.,0.,-6.9178656|PG=C02V [C2(S1),SGV(O2)]|NI mag=0||-0.00000148,0.,0.93340234,0.,0.,0.11105258,0.00000072,0.,0.,-0. 00000035,0.,-0.46670110,0.13984877,0.,0.49131559,0.,0.17383372,-0.0555 2644,0.,-0.15684115,0.06013741,0.00000072,0.,0.,-0.00000035,0.,0.,-0.0 0000035,0.,-0.46670110,-0.13984877,0.,-0.02461457,-0.01699251,0.,0.491 31559,0.,-0.17383372,-0.05552644,0.,0.01699251,-0.00461082,0.,0.156841 15,0.06013741||0.,0.,-0.00000133,0.,0.,0.00000067,0.,0.,0.00000067|||@ LIFE CAN ONLY BE UNDERSTOOD BACKWARD, BUT MUST BE LIVED FORWARD. -- KIRKEGAARD Job cpu time: 0 days 0 hours 0 minutes 3.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Wed Mar 07 13:05:14 2018.