Entering Link 1 = C:\G03W\l1.exe PID= 3912. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2004,2007, Gaussian, Inc. All Rights Reserved. This is the Gaussian(R) 03 program. It is based on the the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. ****************************************** Gaussian 03: IA32W-G03RevE.01 11-Sep-2007 11-Feb-2009 ****************************************** %chk=hcrawford_bh3nh3_opt %mem=6MW %nproc=1 Will use up to 1 processors via shared memory. --------------------------------------- # opt mp2/6-311g(d,p) geom=connectivity --------------------------------------- 1/18=20,38=1,57=2/1,3; 2/9=110,17=6,18=5,40=1/2; 3/5=4,6=6,7=101,11=9,16=1,25=1,30=1/1,2,3; 4//1; 5/5=2,38=5/2; 8/6=4,10=2/1; 9/15=2,16=-3/6; 10/5=1/2; 6/7=2,8=2,9=2,10=2/1; 7/12=2/1,2,3,16; 1/18=20/3(3); 2/9=110/2; 6/7=2,8=2,9=2,10=2/1; 99//99; 2/9=110/2; 3/5=4,6=6,7=101,11=9,16=1,25=1,30=1/1,2,3; 4/5=5,16=3/1; 5/5=2,38=5/2; 8/6=4,10=2/1; 9/15=2,16=-3/6; 10/5=1/2; 7/12=2/1,2,3,16; 1/18=20/3(-8); 2/9=110/2; 6/7=2,8=2,9=2,10=2/1; 99//99; ------------------- NH3BH3 Optimisation ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 H H 1 B1 H 2 B2 1 A1 H 2 B3 1 A2 3 D1 0 H 4 B4 2 A3 1 D2 0 H 5 B5 4 A4 2 D3 0 B 2 B6 1 A5 3 D4 0 N 7 B7 2 A6 1 D5 0 Variables: B1 2.02481 B2 2.02481 B3 2.56304 B4 1.64312 B5 1.64312 B6 1.20865 B7 1.6539 A1 60. A2 85.72986 A3 71.30432 A4 60. A5 33.10879 A6 104.71135 D1 -65.52674 D2 -56.31761 D3 106.62707 D4 -27.70458 D5 -113.74247 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,7) 1.2086 estimate D2E/DX2 ! ! R2 R(2,7) 1.2086 estimate D2E/DX2 ! ! R3 R(3,7) 1.2086 estimate D2E/DX2 ! ! R4 R(4,8) 1.0166 estimate D2E/DX2 ! ! R5 R(5,8) 1.0166 estimate D2E/DX2 ! ! R6 R(6,8) 1.0166 estimate D2E/DX2 ! ! R7 R(7,8) 1.6539 estimate D2E/DX2 ! ! A1 A(1,7,2) 113.7824 estimate D2E/DX2 ! ! A2 A(1,7,3) 113.7824 estimate D2E/DX2 ! ! A3 A(1,7,8) 104.7114 estimate D2E/DX2 ! ! A4 A(2,7,3) 113.7824 estimate D2E/DX2 ! ! A5 A(2,7,8) 104.7114 estimate D2E/DX2 ! ! A6 A(3,7,8) 104.7114 estimate D2E/DX2 ! ! A7 A(4,8,5) 107.828 estimate D2E/DX2 ! ! A8 A(4,8,6) 107.828 estimate D2E/DX2 ! ! A9 A(4,8,7) 111.0683 estimate D2E/DX2 ! ! A10 A(5,8,6) 107.828 estimate D2E/DX2 ! ! A11 A(5,8,7) 111.0683 estimate D2E/DX2 ! ! A12 A(6,8,7) 111.0683 estimate D2E/DX2 ! ! D1 D(1,7,8,4) -180.0 estimate D2E/DX2 ! ! D2 D(1,7,8,5) -60.0 estimate D2E/DX2 ! ! D3 D(1,7,8,6) 60.0 estimate D2E/DX2 ! ! D4 D(2,7,8,4) -60.0 estimate D2E/DX2 ! ! D5 D(2,7,8,5) 60.0 estimate D2E/DX2 ! ! D6 D(2,7,8,6) 180.0 estimate D2E/DX2 ! ! D7 D(3,7,8,4) 60.0 estimate D2E/DX2 ! ! D8 D(3,7,8,5) 180.0 estimate D2E/DX2 ! ! D9 D(3,7,8,6) -60.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 38 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.000000 2 1 0 0.000000 0.000000 2.024808 3 1 0 1.753536 0.000000 1.012404 4 1 0 1.058841 -2.326291 1.833966 5 1 0 -0.364147 -2.326291 1.012404 6 1 0 1.058841 -2.326291 0.190842 7 5 0 0.584512 -0.306935 1.012404 8 7 0 0.584512 -1.960838 1.012404 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 H 0.000000 2 H 2.024808 0.000000 3 H 2.024808 2.024808 0.000000 4 H 3.145824 2.563044 2.563044 0.000000 5 H 2.563044 2.563044 3.145824 1.643125 0.000000 6 H 2.563044 3.145824 2.563044 1.643125 1.643125 7 B 1.208646 1.208646 1.208646 2.231088 2.231088 8 N 2.282872 2.282872 2.282872 1.016616 1.016616 6 7 8 6 H 0.000000 7 B 2.231088 0.000000 8 N 1.016616 1.653903 0.000000 Stoichiometry BH6N Framework group C3V[C3(BN),3SGV(H2)] Deg. of freedom 5 Full point group C3V Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 -1.169024 -1.235523 2 1 0 -1.012404 0.584512 -1.235523 3 1 0 1.012404 0.584512 -1.235523 4 1 0 0.000000 0.948658 1.090768 5 1 0 -0.821562 -0.474329 1.090768 6 1 0 0.821562 -0.474329 1.090768 7 5 0 0.000000 0.000000 -0.928588 8 7 0 0.000000 0.000000 0.725315 --------------------------------------------------------------------- Rotational constants (GHZ): 73.7465690 17.7383613 17.7383613 Standard basis: 6-311G(d,p) (5D, 7F) There are 48 symmetry adapted basis functions of A' symmetry. There are 24 symmetry adapted basis functions of A" symmetry. Integral buffers will be 262144 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 72 basis functions, 112 primitive gaussians, 74 cartesian basis functions 9 alpha electrons 9 beta electrons nuclear repulsion energy 40.6162264384 Hartrees. NAtoms= 8 NActive= 8 NUniq= 4 SFac= 3.00D+00 NAtFMM= 80 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 72 RedAO= T NBF= 48 24 NBsUse= 72 1.00D-06 NBFU= 48 24 Harris functional with IExCor= 205 diagonalized for initial guess. ExpMin= 9.89D-02 ExpMax= 6.29D+03 ExpMxC= 9.49D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Initial guess orbital symmetries: Occupied (A1) (A1) (A1) (A1) (E) (E) (A1) (E) (E) Virtual (A1) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (A1) (E) (E) (A2) (A2) (E) (E) (A1) (E) (E) (E) (E) (A1) (E) (E) (E) (E) (A1) (A1) (A1) (E) (E) (E) (E) (A1) (E) (E) (E) (E) (A1) (A1) (E) (E) (A1) (E) (E) (A1) (A1) The electronic state of the initial guess is 1-A1. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 integrals in memory in canonical form, NReq= 4915674. SCF Done: E(RHF) = -82.6432603790 A.U. after 10 cycles Convg = 0.5818D-08 -V/T = 2.0008 S**2 = 0.0000 ExpMin= 9.89D-02 ExpMax= 6.29D+03 ExpMxC= 9.49D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 72 NBasis= 72 NAE= 9 NBE= 9 NFC= 2 NFV= 0 NROrb= 70 NOA= 7 NOB= 7 NVA= 63 NVB= 63 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 3 to 9 NPSUse= 1 ParTrn=F ParDer=F DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1050833396D-01 E2= -0.3239337088D-01 alpha-beta T2 = 0.7969003580D-01 E2= -0.2517244880D+00 beta-beta T2 = 0.1050833396D-01 E2= -0.3239337088D-01 ANorm= 0.1049145702D+01 E2 = -0.3165112297D+00 EUMP2 = -0.82959771608749D+02 DoAtom=TTTTTTTT Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Store integrals in memory, NReq= 4672358. There are 1 degrees of freedom in the 1st order CPHF. 1 vectors were produced by pass 0. AX will form 1 AO Fock derivatives at one time. 1 vectors were produced by pass 1. 1 vectors were produced by pass 2. 1 vectors were produced by pass 3. 1 vectors were produced by pass 4. 1 vectors were produced by pass 5. 1 vectors were produced by pass 6. 1 vectors were produced by pass 7. 1 vectors were produced by pass 8. 1 vectors were produced by pass 9. Inv2: IOpt= 1 Iter= 1 AM= 2.53D-16 Conv= 1.00D-12. Inverted reduced A of dimension 10 with in-core refinement. End of Minotr Frequency-dependent properties file 721 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (A1) (A1) (E) (E) (A1) (A1) (E) (E) Virtual (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (A1) (A1) (E) (E) (A1) (A1) (E) (E) (E) (E) (A1) (E) (E) (E) (E) (A1) (A2) (A2) (E) (E) (A1) (E) (E) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (A1) (E) (E) (A1) (E) (E) (A1) (A1) The electronic state is 1-A1. Alpha occ. eigenvalues -- -15.64051 -7.52527 -1.24775 -0.72554 -0.72554 Alpha occ. eigenvalues -- -0.71072 -0.51033 -0.41356 -0.41356 Alpha virt. eigenvalues -- 0.11189 0.18476 0.18476 0.23937 0.27410 Alpha virt. eigenvalues -- 0.27410 0.28555 0.39604 0.39604 0.46939 Alpha virt. eigenvalues -- 0.46939 0.47915 0.62555 0.71974 0.75344 Alpha virt. eigenvalues -- 0.75344 0.81403 0.86416 0.86825 0.86825 Alpha virt. eigenvalues -- 1.05350 1.05350 1.30821 1.35603 1.35603 Alpha virt. eigenvalues -- 1.47269 1.47269 1.49224 1.69273 1.71226 Alpha virt. eigenvalues -- 1.87637 1.87637 1.96168 1.96331 1.96331 Alpha virt. eigenvalues -- 2.05525 2.05525 2.13337 2.36412 2.36412 Alpha virt. eigenvalues -- 2.41727 2.44229 2.44229 2.46913 2.65708 Alpha virt. eigenvalues -- 2.65708 2.70672 2.85840 2.85840 2.97253 Alpha virt. eigenvalues -- 2.99008 2.99008 3.05621 3.05621 3.19437 Alpha virt. eigenvalues -- 3.27875 3.46312 3.46312 4.77792 5.15492 Alpha virt. eigenvalues -- 5.15492 15.50815 36.94864 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 H 0.787290 -0.034851 -0.034851 0.006107 -0.005072 -0.005072 2 H -0.034851 0.787290 -0.034851 -0.005072 -0.005072 0.006107 3 H -0.034851 -0.034851 0.787290 -0.005072 0.006107 -0.005072 4 H 0.006107 -0.005072 -0.005072 0.453197 -0.021416 -0.021416 5 H -0.005072 -0.005072 0.006107 -0.021416 0.453197 -0.021416 6 H -0.005072 0.006107 -0.005072 -0.021416 -0.021416 0.453197 7 B 0.432534 0.432534 0.432534 -0.020497 -0.020497 -0.020497 8 N -0.022637 -0.022637 -0.022637 0.375490 0.375490 0.375490 7 8 1 H 0.432534 -0.022637 2 H 0.432534 -0.022637 3 H 0.432534 -0.022637 4 H -0.020497 0.375490 5 H -0.020497 0.375490 6 H -0.020497 0.375490 7 B 3.558900 0.192338 8 N 0.192338 6.107458 Mulliken atomic charges: 1 1 H -0.123446 2 H -0.123446 3 H -0.123446 4 H 0.238680 5 H 0.238680 6 H 0.238680 7 B 0.012651 8 N -0.358355 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 H 0.000000 3 H 0.000000 4 H 0.000000 5 H 0.000000 6 H 0.000000 7 B -0.357686 8 N 0.357686 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 118.5191 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 5.5726 Tot= 5.5726 Quadrupole moment (field-independent basis, Debye-Ang): XX= -16.2585 YY= -16.2585 ZZ= -16.6976 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.1464 YY= 0.1464 ZZ= -0.2927 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 1.9186 ZZZ= 19.3351 XYY= 0.0000 XXY= -1.9186 XXZ= 9.0851 XZZ= 0.0000 YZZ= 0.0000 YYZ= 9.0851 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -38.0457 YYYY= -38.0457 ZZZZ= -110.9527 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.6298 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -12.6819 XXZZ= -25.1905 YYZZ= -25.1905 XXYZ= -0.6298 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 4.061622643837D+01 E-N=-2.732693228929D+02 KE= 8.257586468154D+01 Symmetry A' KE= 7.849018279065D+01 Symmetry A" KE= 4.085681890884D+00 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 -0.000011401 0.000015261 -0.000019747 2 1 -0.000011401 0.000015261 0.000019747 3 1 0.000022802 0.000015261 0.000000000 4 1 0.000016754 -0.000047568 0.000029019 5 1 -0.000033508 -0.000047568 0.000000000 6 1 0.000016754 -0.000047568 -0.000029019 7 5 0.000000000 -0.000049405 0.000000000 8 7 0.000000000 0.000146327 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000146327 RMS 0.000038874 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000048368 RMS 0.000023362 Search for a local minimum. Step number 1 out of a maximum of 38 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- first step. Eigenvalues --- 0.00230 0.05420 0.05420 0.06582 0.06582 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.20412 0.24045 0.24045 0.24045 Eigenvalues --- 0.44882 0.44882 0.448821000.000001000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.000001000.000001000.00000 RFO step: Lambda=-6.30514252D-08. Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00013025 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000001 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.28401 0.00003 0.00000 0.00011 0.00011 2.28412 R2 2.28401 0.00003 0.00000 0.00011 0.00011 2.28412 R3 2.28401 0.00003 0.00000 0.00011 0.00011 2.28412 R4 1.92113 0.00005 0.00000 0.00011 0.00011 1.92123 R5 1.92113 0.00005 0.00000 0.00011 0.00011 1.92123 R6 1.92113 0.00005 0.00000 0.00011 0.00011 1.92123 R7 3.12542 0.00000 0.00000 -0.00002 -0.00002 3.12541 A1 1.98588 -0.00001 0.00000 -0.00006 -0.00006 1.98582 A2 1.98588 -0.00001 0.00000 -0.00006 -0.00006 1.98582 A3 1.82756 0.00001 0.00000 0.00008 0.00008 1.82764 A4 1.98588 -0.00001 0.00000 -0.00006 -0.00006 1.98582 A5 1.82756 0.00001 0.00000 0.00008 0.00008 1.82764 A6 1.82756 0.00001 0.00000 0.00008 0.00008 1.82764 A7 1.88195 -0.00003 0.00000 -0.00019 -0.00019 1.88176 A8 1.88195 -0.00003 0.00000 -0.00019 -0.00019 1.88176 A9 1.93851 0.00003 0.00000 0.00018 0.00018 1.93869 A10 1.88195 -0.00003 0.00000 -0.00019 -0.00019 1.88176 A11 1.93851 0.00003 0.00000 0.00018 0.00018 1.93869 A12 1.93851 0.00003 0.00000 0.00018 0.00018 1.93869 D1 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D2 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D3 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D4 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D5 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D6 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D7 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D8 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D9 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 Item Value Threshold Converged? Maximum Force 0.000048 0.000450 YES RMS Force 0.000023 0.000300 YES Maximum Displacement 0.000295 0.001800 YES RMS Displacement 0.000130 0.001200 YES Predicted change in Energy=-3.152571D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,7) 1.2086 -DE/DX = 0.0 ! ! R2 R(2,7) 1.2086 -DE/DX = 0.0 ! ! R3 R(3,7) 1.2086 -DE/DX = 0.0 ! ! R4 R(4,8) 1.0166 -DE/DX = 0.0 ! ! R5 R(5,8) 1.0166 -DE/DX = 0.0 ! ! R6 R(6,8) 1.0166 -DE/DX = 0.0 ! ! R7 R(7,8) 1.6539 -DE/DX = 0.0 ! ! A1 A(1,7,2) 113.7824 -DE/DX = 0.0 ! ! A2 A(1,7,3) 113.7824 -DE/DX = 0.0 ! ! A3 A(1,7,8) 104.7114 -DE/DX = 0.0 ! ! A4 A(2,7,3) 113.7824 -DE/DX = 0.0 ! ! A5 A(2,7,8) 104.7114 -DE/DX = 0.0 ! ! A6 A(3,7,8) 104.7114 -DE/DX = 0.0 ! ! A7 A(4,8,5) 107.828 -DE/DX = 0.0 ! ! A8 A(4,8,6) 107.828 -DE/DX = 0.0 ! ! A9 A(4,8,7) 111.0683 -DE/DX = 0.0 ! ! A10 A(5,8,6) 107.828 -DE/DX = 0.0 ! ! A11 A(5,8,7) 111.0683 -DE/DX = 0.0 ! ! A12 A(6,8,7) 111.0683 -DE/DX = 0.0 ! ! D1 D(1,7,8,4) -180.0 -DE/DX = 0.0 ! ! D2 D(1,7,8,5) -60.0 -DE/DX = 0.0 ! ! D3 D(1,7,8,6) 60.0 -DE/DX = 0.0 ! ! D4 D(2,7,8,4) -60.0 -DE/DX = 0.0 ! ! D5 D(2,7,8,5) 60.0 -DE/DX = 0.0 ! ! D6 D(2,7,8,6) 180.0 -DE/DX = 0.0 ! ! D7 D(3,7,8,4) 60.0 -DE/DX = 0.0 ! ! D8 D(3,7,8,5) 180.0 -DE/DX = 0.0 ! ! D9 D(3,7,8,6) -60.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.000000 2 1 0 0.000000 0.000000 2.024808 3 1 0 1.753536 0.000000 1.012404 4 1 0 1.058841 -2.326291 1.833966 5 1 0 -0.364147 -2.326291 1.012404 6 1 0 1.058841 -2.326291 0.190842 7 5 0 0.584512 -0.306935 1.012404 8 7 0 0.584512 -1.960838 1.012404 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 H 0.000000 2 H 2.024808 0.000000 3 H 2.024808 2.024808 0.000000 4 H 3.145824 2.563044 2.563044 0.000000 5 H 2.563044 2.563044 3.145824 1.643125 0.000000 6 H 2.563044 3.145824 2.563044 1.643125 1.643125 7 B 1.208646 1.208646 1.208646 2.231088 2.231088 8 N 2.282872 2.282872 2.282872 1.016616 1.016616 6 7 8 6 H 0.000000 7 B 2.231088 0.000000 8 N 1.016616 1.653903 0.000000 Stoichiometry BH6N Framework group C3V[C3(BN),3SGV(H2)] Deg. of freedom 5 Full point group C3V Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 -1.169024 -1.235523 2 1 0 -1.012404 0.584512 -1.235523 3 1 0 1.012404 0.584512 -1.235523 4 1 0 0.000000 0.948658 1.090768 5 1 0 -0.821562 -0.474329 1.090768 6 1 0 0.821562 -0.474329 1.090768 7 5 0 0.000000 0.000000 -0.928588 8 7 0 0.000000 0.000000 0.725315 --------------------------------------------------------------------- Rotational constants (GHZ): 73.7465690 17.7383613 17.7383613 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (A1) (A1) (E) (E) (A1) (A1) (E) (E) Virtual (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (A1) (A1) (E) (E) (A1) (A1) (E) (E) (E) (E) (A1) (E) (E) (E) (E) (A1) (A2) (A2) (E) (E) (A1) (E) (E) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (A1) (E) (E) (A1) (E) (E) (A1) (A1) The electronic state is 1-A1. Alpha occ. eigenvalues -- -15.64051 -7.52527 -1.24775 -0.72554 -0.72554 Alpha occ. eigenvalues -- -0.71072 -0.51033 -0.41356 -0.41356 Alpha virt. eigenvalues -- 0.11189 0.18476 0.18476 0.23937 0.27410 Alpha virt. eigenvalues -- 0.27410 0.28555 0.39604 0.39604 0.46939 Alpha virt. eigenvalues -- 0.46939 0.47915 0.62555 0.71974 0.75344 Alpha virt. eigenvalues -- 0.75344 0.81403 0.86416 0.86825 0.86825 Alpha virt. eigenvalues -- 1.05350 1.05350 1.30821 1.35603 1.35603 Alpha virt. eigenvalues -- 1.47269 1.47269 1.49224 1.69273 1.71226 Alpha virt. eigenvalues -- 1.87637 1.87637 1.96168 1.96331 1.96331 Alpha virt. eigenvalues -- 2.05525 2.05525 2.13337 2.36412 2.36412 Alpha virt. eigenvalues -- 2.41727 2.44229 2.44229 2.46913 2.65708 Alpha virt. eigenvalues -- 2.65708 2.70672 2.85840 2.85840 2.97253 Alpha virt. eigenvalues -- 2.99008 2.99008 3.05621 3.05621 3.19437 Alpha virt. eigenvalues -- 3.27875 3.46312 3.46312 4.77792 5.15492 Alpha virt. eigenvalues -- 5.15492 15.50815 36.94864 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 H 0.787290 -0.034851 -0.034851 0.006107 -0.005072 -0.005072 2 H -0.034851 0.787290 -0.034851 -0.005072 -0.005072 0.006107 3 H -0.034851 -0.034851 0.787290 -0.005072 0.006107 -0.005072 4 H 0.006107 -0.005072 -0.005072 0.453197 -0.021416 -0.021416 5 H -0.005072 -0.005072 0.006107 -0.021416 0.453197 -0.021416 6 H -0.005072 0.006107 -0.005072 -0.021416 -0.021416 0.453197 7 B 0.432534 0.432534 0.432534 -0.020497 -0.020497 -0.020497 8 N -0.022637 -0.022637 -0.022637 0.375490 0.375490 0.375490 7 8 1 H 0.432534 -0.022637 2 H 0.432534 -0.022637 3 H 0.432534 -0.022637 4 H -0.020497 0.375490 5 H -0.020497 0.375490 6 H -0.020497 0.375490 7 B 3.558900 0.192338 8 N 0.192338 6.107458 Mulliken atomic charges: 1 1 H -0.123446 2 H -0.123446 3 H -0.123446 4 H 0.238680 5 H 0.238680 6 H 0.238680 7 B 0.012651 8 N -0.358355 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 H 0.000000 3 H 0.000000 4 H 0.000000 5 H 0.000000 6 H 0.000000 7 B -0.357686 8 N 0.357686 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 118.5191 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 5.5726 Tot= 5.5726 Quadrupole moment (field-independent basis, Debye-Ang): XX= -16.2585 YY= -16.2585 ZZ= -16.6976 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.1464 YY= 0.1464 ZZ= -0.2927 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 1.9186 ZZZ= 19.3351 XYY= 0.0000 XXY= -1.9186 XXZ= 9.0851 XZZ= 0.0000 YZZ= 0.0000 YYZ= 9.0851 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -38.0457 YYYY= -38.0457 ZZZZ= -110.9527 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.6298 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -12.6819 XXZZ= -25.1905 YYZZ= -25.1905 XXYZ= -0.6298 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 4.061622643837D+01 E-N=-2.732693228929D+02 KE= 8.257586468154D+01 Symmetry A' KE= 7.849018279065D+01 Symmetry A" KE= 4.085681890884D+00 Final structure in terms of initial Z-matrix: H H,1,B1 H,2,B2,1,A1 H,2,B3,1,A2,3,D1,0 H,4,B4,2,A3,1,D2,0 H,5,B5,4,A4,2,D3,0 B,2,B6,1,A5,3,D4,0 N,7,B7,2,A6,1,D5,0 Variables: B1=2.02480848 B2=2.02480848 B3=2.56304443 B4=1.64312451 B5=1.64312451 B6=1.20864622 B7=1.653903 A1=60. A2=85.72985588 A3=71.30432077 A4=60. A5=33.10879441 A6=104.71135297 D1=-65.5267428 D2=-56.31761133 D3=106.62707031 D4=-27.70458256 D5=-113.74246706 1|1|UNPC-UNK|FOpt|RMP2-FC|6-311G(d,p)|B1H6N1|PCUSER|11-Feb-2009|0||# o pt mp2/6-311g(d,p) geom=connectivity||NH3BH3 Optimisation||0,1|H,0.000 0000021,0.,-0.0000000012|H,0.0000000037,-0.0000000014,2.0248084752|H,1 .7535355813,0.0000000007,1.0124042356|H,1.058841055,-2.3262914075,1.83 39664914|H,-0.3641465161,-2.326291408,1.0124042356|H,1.0588410537,-2.3 262914063,0.1908419777|B,0.5845118626,-0.3069352253,1.0124042363|N,0.5 845118639,-1.9608382253,1.0124042351||Version=IA32W-G03RevE.01|State=1 -A1|HF=-82.6432604|MP2=-82.9597716|RMSD=5.818e-009|RMSF=3.887e-005|The rmal=0.|Dipole=0.,-2.1847709,0.|PG=C03V [C3(B1N1),3SGV(H2)]||@ "TIGER, TIGER BURNING BRIGHT IN THE FOREST OF THE NIGHT. WHAT IMMORTAL HAND OR EYE CAN FRAME THY FEARFUL SYMMETRYE?" - WILLIAM BLAKE Job cpu time: 0 days 0 hours 0 minutes 20.0 seconds. File lengths (MBytes): RWF= 16 Int= 0 D2E= 0 Chk= 8 Scr= 1 Normal termination of Gaussian 03 at Wed Feb 11 11:39:26 2009.