Double Bond Equivalents (D.B.E)

To calculate the number of double bonds or rings with a given formula, where one DBE is a double bond or a ring structure (it is not possible to determine whether it is a double bond or a ring – other evidence is necessary). Two DBEs are two double bonds or a triple bond or a double bond and a ring structure etc. Four DBEs is possible an aromatic ring structure e.g. benzene

```
Take No of C atoms = n; Take No of H atoms = m
Calculate a = 2n+2; x = a-m
DBE = x/2
e.g. benzene C_6H_6, (n = 6, m = 6); Therefore a = 14; x = 8; DBE = 4
Therefore benzene has 4 DBE. 3 double bonds and 1 ring.
e.g. cyclohexane C_6H_{12}, (n = 6,m = 12); Therefore a = 14; x = 2; DBE = 1
Therefore cyclohexane has 1 DBE. Therefore cyclohexane 1 ring.
e.g. hexane C_6H_{14}, (n = 6,m = 14); Therefore a = 14; x = 0; DBE = 0
Therefore hexane has 0 DBE. Therefore hexane no rings or double bonds.
e.g. naphthalene C_{10}H_8, (n = 10,m = 8); Therefore a = 22; x = 14; DBE = 7
Therefore naphthalene has 7 DBE. Therefore naphthalene 2 rings and 5 double bonds.
For heterosystems containing nitrogen
Take No of C atoms = n
Take No of H atoms = m
Take No of N atoms = p
Calculate a = 2n+2
x = a-(m-p)
DBE = x/2
e.g. pyrrole C_4H_5N, (n = 4,m = 5, p=1); Therefore a = 10; x = 6; DBE = 3
Therefore pyrrole has 3 DBE. 2 double bonds and 1 ring.
e.g. pyridine C_5H_5N, (n = 5,m = 5, p=1); Therefore a = 12; x = 4; DBE = 4
Therefore pyridine has 4 DBE. 3 double bonds and 1 ring.
```

For heterosystems containing halogens, X Take No of C atoms = n Take No of H atoms = m Take No of X atoms = q Calculate a = 2n+2 x = a-(m+q)DBE = x/2

e.g. chlorobenzene C_6H_5Cl , (n = 6, m = 5, q=1); Therefore a = 14; x = 6; DBE = 4 Therefore chlorobenzene has 4 DBE. 3 double bonds and 1 ring.

For oxygen or sulphur compounds - ignore the O or S.

Therefore $C_{19}H_{21}NO$, (n = 19, m = 21, p=1); Therefore a = 40; x = 20; DBE = 10 Therefore $C_{19}H_{21}NO$ has 10 DBE.