Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_d01/g09/l1.exe "/home/scan-user-1/run/90886/Gau-24728.inp" -scrdir="/home/scan-user-1/run/90886/" Entering Link 1 = /apps/gaussian/g09_d01/g09/l1.exe PID= 24729. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: ES64L-G09RevD.01 24-Apr-2013 20-Mar-2014 ****************************************** %nprocshared=8 Will use up to 8 processors via shared memory. %mem=13000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.6741074.cx1b/rwf ---------------------------------------------------------------------- # CAM-B3LYP/6-311++g(2df,p) polar(optrot) scrf(cpcm,solvent=benzene) C PHF=RdFreq ---------------------------------------------------------------------- 1/38=1,83=21/1; 2/12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=1114,11=2,16=1,25=1,30=1,36=2,70=2101,72=12,74=-40/1,2,3; 4//1; 5/5=2,38=5,53=12,96=-2,98=1/2; 8/6=4,10=90,11=11/1; 10/6=1,13=10,46=8,60=-2,72=3/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; -------------------- ss stilbene jq411 or -------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C -3.98427 0.40928 -0.96305 C -4.61343 -0.5624 -0.1794 C -3.90522 -1.18881 0.84893 C -2.57413 -0.84643 1.09156 C -1.93721 0.11957 0.30254 C -2.65312 0.74914 -0.72444 C -0.50515 0.44567 0.54673 C 0.50515 0.44567 -0.54673 C 1.93721 0.11957 -0.30254 C 2.65312 0.74914 0.72443 C 3.98427 0.40929 0.96305 C 4.61343 -0.5624 0.17941 C 3.90522 -1.18881 -0.84892 C 2.57413 -0.84644 -1.09156 O 0. 1.67614 0. H -4.53309 0.9056 -1.75808 H -5.65046 -0.82531 -0.36551 H -4.38991 -1.93977 1.4658 H -2.02615 -1.33028 1.89607 H -2.16089 1.51371 -1.31728 H -0.1304 0.21541 1.54541 H 0.1304 0.21541 -1.54541 H 2.16089 1.51372 1.31727 H 4.53309 0.90561 1.75808 H 5.65046 -0.82531 0.36552 H 4.38991 -1.93978 -1.46579 H 2.02614 -1.33029 -1.89606 Using perturbation frequencies: 0.077357 0.124831 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.984268 0.409282 -0.963053 2 6 0 -4.613431 -0.562402 -0.179403 3 6 0 -3.905224 -1.188806 0.848929 4 6 0 -2.574131 -0.846434 1.091561 5 6 0 -1.937214 0.119568 0.302537 6 6 0 -2.653122 0.749137 -0.724441 7 6 0 -0.505151 0.445672 0.546727 8 6 0 0.505151 0.445673 -0.546730 9 6 0 1.937214 0.119568 -0.302538 10 6 0 2.653124 0.749144 0.724434 11 6 0 3.984270 0.409288 0.963048 12 6 0 4.613430 -0.562403 0.179405 13 6 0 3.905222 -1.188813 -0.848922 14 6 0 2.574129 -0.846441 -1.091555 15 8 0 0.000000 1.676135 -0.000001 16 1 0 -4.533089 0.905598 -1.758084 17 1 0 -5.650455 -0.825313 -0.365513 18 1 0 -4.389909 -1.939768 1.465798 19 1 0 -2.026145 -1.330277 1.896072 20 1 0 -2.160889 1.513712 -1.317280 21 1 0 -0.130396 0.215412 1.545409 22 1 0 0.130397 0.215412 -1.545411 23 1 0 2.160893 1.513723 1.317268 24 1 0 4.533093 0.905609 1.758075 25 1 0 5.650455 -0.825314 0.365516 26 1 0 4.389905 -1.939781 -1.465785 27 1 0 2.026141 -1.330289 -1.896062 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.397900 0.000000 3 C 2.417315 1.396927 0.000000 4 C 2.790474 2.419663 1.395671 0.000000 5 C 2.424063 2.803478 2.425582 1.400493 0.000000 6 C 1.394413 2.420746 2.792647 2.418667 1.401273 7 C 3.792758 4.292021 3.784619 2.499412 1.488884 8 C 4.508828 5.229821 4.906199 3.719612 2.606290 9 C 5.965246 6.587199 6.096868 4.819637 3.921391 10 C 6.856974 7.439079 6.839816 5.477668 4.652480 11 C 8.198016 8.727533 8.050531 6.678771 5.965248 12 C 8.727531 9.233835 8.567853 7.250775 6.587198 13 C 8.050527 8.567852 7.992857 6.772349 6.096866 14 C 6.678767 7.250774 6.772349 5.592010 4.819635 15 O 4.290312 5.130982 4.917250 3.765768 2.503443 16 H 1.086098 2.157247 3.402537 3.876546 3.406254 17 H 2.158114 1.085900 2.157041 3.404009 3.889377 18 H 3.403219 2.157263 1.085998 2.152320 3.407309 19 H 3.877487 3.404597 2.155797 1.087028 2.156227 20 H 2.161007 3.408809 3.877985 3.397583 2.148831 21 H 4.602423 4.865961 4.087327 2.702838 2.195110 22 H 4.160192 4.997487 4.898054 3.923724 2.774728 23 H 6.647004 7.241670 6.657385 5.295445 4.446103 24 H 8.955240 9.464025 8.741757 7.350274 6.678422 25 H 9.803939 10.281703 9.574801 8.256597 7.646534 26 H 8.711923 9.198479 8.644711 7.498881 6.884789 27 H 6.326265 6.900760 6.537284 5.506588 4.758582 6 7 8 9 10 6 C 0.000000 7 C 2.514307 0.000000 8 C 3.177792 1.488744 0.000000 9 C 4.652477 2.606289 1.488885 0.000000 10 C 5.500499 3.177794 2.514307 1.401272 0.000000 11 C 6.856974 4.508830 3.792759 2.424064 1.394413 12 C 7.439076 5.229820 4.292021 2.803477 2.420746 13 C 6.839812 4.906197 3.784620 2.425583 2.792647 14 C 5.477663 3.719609 2.499412 1.400493 2.418667 15 O 2.902274 1.438099 1.438098 2.503443 2.902272 16 H 2.151087 4.663472 5.202189 6.678419 7.604540 17 H 3.404663 5.377893 6.288063 7.646534 8.521521 18 H 3.878632 4.650415 5.805360 6.884792 7.575235 19 H 3.403550 2.699657 3.940652 4.758587 5.252836 20 H 1.085507 2.712324 2.973588 4.446098 5.284684 21 H 3.435292 1.091250 2.198633 2.774726 2.950738 22 H 2.950734 2.198632 1.091249 2.195110 3.435290 23 H 5.284686 2.973593 2.712324 2.148830 1.085507 24 H 7.604542 5.202193 4.663473 3.406255 2.151088 25 H 8.521519 6.288062 5.377895 3.889377 3.404663 26 H 7.575229 5.805356 4.650416 3.407309 3.878632 27 H 5.252829 3.940646 2.699657 2.156226 3.403549 11 12 13 14 15 11 C 0.000000 12 C 1.397899 0.000000 13 C 2.417315 1.396927 0.000000 14 C 2.790474 2.419662 1.395671 0.000000 15 O 4.290311 5.130982 4.917251 3.765769 0.000000 16 H 8.955238 9.464021 8.741752 7.350269 4.922751 17 H 9.803940 10.281702 9.574799 8.256595 6.190192 18 H 8.711928 9.198481 8.644713 7.498883 5.873212 19 H 6.326271 6.900763 6.537287 5.506590 4.091316 20 H 6.647001 7.241665 6.657380 5.295439 2.535951 21 H 4.160193 4.997484 4.898049 3.923718 2.130495 22 H 4.602422 4.865960 4.087328 2.702840 2.130495 23 H 2.161007 3.408808 3.877984 3.397582 2.535948 24 H 1.086098 2.157246 3.402537 3.876546 4.922751 25 H 2.158115 1.085901 2.157042 3.404010 6.190193 26 H 3.403218 2.157263 1.085997 2.152320 5.873214 27 H 3.877487 3.404596 2.155798 1.087029 4.091318 16 17 18 19 20 16 H 0.000000 17 H 2.486727 0.000000 18 H 4.302328 2.486903 0.000000 19 H 4.963543 4.301788 2.478708 0.000000 20 H 2.488261 4.307432 4.963928 4.293258 0.000000 21 H 5.547353 5.933446 4.774368 2.471029 3.742121 22 H 4.719077 5.991120 5.843402 4.345530 2.643410 23 H 7.391685 8.325863 7.406866 5.094569 5.061486 24 H 9.724147 10.545633 9.370249 6.931222 7.391684 25 H 10.545630 11.324530 10.161768 7.843964 8.325860 26 H 9.370242 10.161765 9.256312 7.269063 7.406860 27 H 6.931214 7.843960 7.269062 5.549892 5.094561 21 22 23 24 25 21 H 0.000000 22 H 3.101803 0.000000 23 H 2.643419 3.742119 0.000000 24 H 4.719081 5.547353 2.488262 0.000000 25 H 5.991118 5.933447 4.307432 2.486727 0.000000 26 H 5.843395 4.774370 4.963927 4.302327 2.486903 27 H 4.345523 2.471031 4.293257 4.963544 4.301789 26 27 26 H 0.000000 27 H 2.478709 0.000000 Stoichiometry C14H12O Framework group C1[X(C14H12O)] Deg. of freedom 75 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -3.984268 0.409282 -0.963053 2 6 0 -4.613431 -0.562402 -0.179403 3 6 0 -3.905224 -1.188806 0.848929 4 6 0 -2.574131 -0.846434 1.091561 5 6 0 -1.937214 0.119568 0.302537 6 6 0 -2.653122 0.749137 -0.724441 7 6 0 -0.505151 0.445672 0.546727 8 6 0 0.505151 0.445673 -0.546730 9 6 0 1.937214 0.119568 -0.302538 10 6 0 2.653124 0.749144 0.724434 11 6 0 3.984270 0.409288 0.963048 12 6 0 4.613430 -0.562403 0.179405 13 6 0 3.905222 -1.188813 -0.848922 14 6 0 2.574129 -0.846441 -1.091555 15 8 0 0.000000 1.676135 -0.000001 16 1 0 -4.533089 0.905598 -1.758084 17 1 0 -5.650455 -0.825313 -0.365513 18 1 0 -4.389909 -1.939768 1.465798 19 1 0 -2.026145 -1.330277 1.896072 20 1 0 -2.160889 1.513712 -1.317280 21 1 0 -0.130396 0.215412 1.545409 22 1 0 0.130397 0.215412 -1.545411 23 1 0 2.160893 1.513723 1.317268 24 1 0 4.533093 0.905609 1.758075 25 1 0 5.650455 -0.825314 0.365516 26 1 0 4.389905 -1.939781 -1.465785 27 1 0 2.026141 -1.330289 -1.896062 --------------------------------------------------------------------- Rotational constants (GHZ): 1.9263388 0.2576378 0.2540346 Standard basis: 6-311++G(2df,p) (5D, 7F) There are 669 symmetry adapted cartesian basis functions of A symmetry. There are 594 symmetry adapted basis functions of A symmetry. 594 basis functions, 888 primitive gaussians, 669 cartesian basis functions 52 alpha electrons 52 beta electrons nuclear repulsion energy 861.8661815759 Hartrees. NAtoms= 27 NActive= 27 NUniq= 27 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. ------------------------------------------------------------------------------ Polarizable Continuum Model (PCM) ================================= Model : C-PCM. Atomic radii : UFF (Universal Force Field). Polarization charges : Total charges. Charge compensation : None. Solution method : On-the-fly selection. Cavity type : Scaled VdW (van der Waals Surface) (Alpha=1.100). Cavity algorithm : GePol (No added spheres) Default sphere list used, NSphG= 27. Lebedev-Laikov grids with approx. 5.0 points / Ang**2. Smoothing algorithm: Karplus/York (Gamma=1.0000). Polarization charges: spherical gaussians, with point-specific exponents (IZeta= 3). Self-potential: point-specific (ISelfS= 7). Self-field : sphere-specific E.n sum rule (ISelfD= 2). Solvent : Benzene, Eps= 2.270600 Eps(inf)= 2.253301 ------------------------------------------------------------------------------ One-electron integrals computed using PRISM. NBasis= 594 RedAO= T EigKep= 1.20D-06 NBF= 594 NBsUse= 592 1.00D-06 EigRej= 6.46D-07 NBFU= 592 ExpMin= 3.60D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor=20419 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor=20419 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Inv3: Mode=1 IEnd= 13572387. Iteration 1 A*A^-1 deviation from unit magnitude is 5.33D-15 for 2124. Iteration 1 A*A^-1 deviation from orthogonality is 3.80D-15 for 2114 382. Iteration 1 A^-1*A deviation from unit magnitude is 5.33D-15 for 2124. Iteration 1 A^-1*A deviation from orthogonality is 2.57D-15 for 2120 1348. Error on total polarization charges = 0.01102 SCF Done: E(RCAM-B3LYP) = -615.760492634 A.U. after 15 cycles NFock= 15 Conv=0.21D-08 -V/T= 2.0043 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 592 NBasis= 594 NAE= 52 NBE= 52 NFC= 0 NFV= 0 NROrb= 592 NOA= 52 NOB= 52 NVA= 540 NVB= 540 **** Warning!!: The largest alpha MO coefficient is 0.13862509D+03 NEqPCM: Using non-equilibrium solvation (IEInf=1, Eps= 2.2706, EpsInf= 2.2533) Inv3: Mode=1 IEnd= 13572387. Iteration 1 A*A^-1 deviation from unit magnitude is 5.33D-15 for 2124. Iteration 1 A*A^-1 deviation from orthogonality is 3.80D-15 for 2114 382. Iteration 1 A^-1*A deviation from unit magnitude is 5.33D-15 for 2124. Iteration 1 A^-1*A deviation from orthogonality is 2.57D-15 for 2120 1348. Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=T KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. CalDSu exits because no D1Ps are significant. There are 6 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 6. LinEq1: Iter= 0 NonCon= 6 RMS=7.67D-02 Max=2.91D+00 NDo= 6 AX will form 6 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 6 RMS=1.25D-02 Max=7.50D-01 NDo= 6 LinEq1: Iter= 2 NonCon= 6 RMS=1.32D-02 Max=1.33D+00 NDo= 6 LinEq1: Iter= 3 NonCon= 6 RMS=3.81D-03 Max=1.55D-01 NDo= 6 LinEq1: Iter= 4 NonCon= 6 RMS=1.77D-03 Max=8.03D-02 NDo= 6 LinEq1: Iter= 5 NonCon= 6 RMS=1.20D-03 Max=4.87D-02 NDo= 6 LinEq1: Iter= 6 NonCon= 6 RMS=4.89D-04 Max=3.26D-02 NDo= 6 LinEq1: Iter= 7 NonCon= 6 RMS=1.83D-04 Max=1.29D-02 NDo= 6 LinEq1: Iter= 8 NonCon= 6 RMS=9.92D-05 Max=1.01D-02 NDo= 6 LinEq1: Iter= 9 NonCon= 6 RMS=6.56D-05 Max=4.49D-03 NDo= 6 LinEq1: Iter= 10 NonCon= 6 RMS=2.87D-05 Max=1.71D-03 NDo= 6 LinEq1: Iter= 11 NonCon= 6 RMS=1.73D-05 Max=1.03D-03 NDo= 6 LinEq1: Iter= 12 NonCon= 6 RMS=6.48D-06 Max=3.31D-04 NDo= 6 LinEq1: Iter= 13 NonCon= 6 RMS=3.21D-06 Max=1.68D-04 NDo= 6 LinEq1: Iter= 14 NonCon= 6 RMS=1.53D-06 Max=9.82D-05 NDo= 6 LinEq1: Iter= 15 NonCon= 6 RMS=5.63D-07 Max=2.38D-05 NDo= 6 LinEq1: Iter= 16 NonCon= 6 RMS=3.16D-07 Max=1.18D-05 NDo= 6 LinEq1: Iter= 17 NonCon= 6 RMS=8.86D-08 Max=4.77D-06 NDo= 6 LinEq1: Iter= 18 NonCon= 5 RMS=3.13D-08 Max=1.79D-06 NDo= 6 LinEq1: Iter= 19 NonCon= 3 RMS=1.85D-08 Max=1.34D-06 NDo= 5 LinEq1: Iter= 20 NonCon= 2 RMS=7.89D-09 Max=3.50D-07 NDo= 3 LinEq1: Iter= 21 NonCon= 1 RMS=2.87D-09 Max=1.66D-07 NDo= 2 LinEq1: Iter= 22 NonCon= 0 RMS=8.53D-10 Max=3.66D-08 NDo= 1 Linear equations converged to 1.000D-08 1.000D-07 after 22 iterations. Dipole-magnetic dipole polarizability for W= 0.077357: 1 2 3 1 0.173487D+02 0.445280D-04 0.166383D+02 2 0.396963D-03 0.125078D+03 -0.101602D-02 3 0.788009D+02 -0.108002D-02 -0.137796D+03 w= 0.077357 a.u., Optical Rotation Beta= -1.5435 au. Molar Mass = 196.2482 grams/mole, [Alpha] ( 5890.0 A) = -304.31 deg. Dipole-magnetic dipole polarizability for W= 0.124831: 1 2 3 1 0.215406D+02 0.590922D-04 0.194316D+02 2 0.424676D-03 0.147583D+03 -0.120640D-02 3 0.993910D+02 -0.126219D-02 -0.161602D+03 w= 0.124831 a.u., Optical Rotation Beta= -2.5071 au. Molar Mass = 196.2482 grams/mole, [Alpha] ( 3650.0 A) = -1287.15 deg. End of Minotr F.D. properties on file 721 Mask= 2 NFrqRd= 2 NDeriv= 1 ND12= 1 LenFil= 22: Frequencies= 0.077357 0.124831 Property number 2 -- FD Optical Rotation Tensor frequency 1 0.077357: 1 2 3 1 0.173487D+02 0.445280D-04 0.166383D+02 2 0.396963D-03 0.125078D+03 -0.101602D-02 3 0.788009D+02 -0.108002D-02 -0.137796D+03 Property number 2 -- FD Optical Rotation Tensor frequency 2 0.124831: 1 2 3 1 0.215406D+02 0.590922D-04 0.194316D+02 2 0.424676D-03 0.147583D+03 -0.120640D-02 3 0.993910D+02 -0.126219D-02 -0.161602D+03 End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -19.22196 -10.31348 -10.31320 -10.26543 -10.26543 Alpha occ. eigenvalues -- -10.25588 -10.25588 -10.25477 -10.25477 -10.25438 Alpha occ. eigenvalues -- -10.25438 -10.25319 -10.25319 -10.25274 -10.25274 Alpha occ. eigenvalues -- -1.16797 -0.95010 -0.94840 -0.85421 -0.85375 Alpha occ. eigenvalues -- -0.83494 -0.83410 -0.76127 -0.73626 -0.69499 Alpha occ. eigenvalues -- -0.68776 -0.66865 -0.65755 -0.61164 -0.60132 Alpha occ. eigenvalues -- -0.56082 -0.55428 -0.53177 -0.53154 -0.51482 Alpha occ. eigenvalues -- -0.51252 -0.49514 -0.49499 -0.47211 -0.46975 Alpha occ. eigenvalues -- -0.46148 -0.44797 -0.42595 -0.41705 -0.41251 Alpha occ. eigenvalues -- -0.41228 -0.40104 -0.36246 -0.32041 -0.31848 Alpha occ. eigenvalues -- -0.31662 -0.29468 Alpha virt. eigenvalues -- 0.00451 0.01420 0.01988 0.02070 0.02279 Alpha virt. eigenvalues -- 0.02748 0.02913 0.03211 0.03498 0.04626 Alpha virt. eigenvalues -- 0.04854 0.04876 0.06290 0.07016 0.07738 Alpha virt. eigenvalues -- 0.08064 0.08286 0.08668 0.09384 0.10071 Alpha virt. eigenvalues -- 0.10565 0.11575 0.12658 0.12807 0.12960 Alpha virt. eigenvalues -- 0.13118 0.13775 0.13836 0.13936 0.14216 Alpha virt. eigenvalues -- 0.14313 0.14491 0.14604 0.15144 0.15364 Alpha virt. eigenvalues -- 0.15576 0.15937 0.16156 0.16631 0.17020 Alpha virt. eigenvalues -- 0.17193 0.17692 0.17698 0.18105 0.19050 Alpha virt. eigenvalues -- 0.19315 0.19569 0.19792 0.20026 0.20397 Alpha virt. eigenvalues -- 0.21009 0.21485 0.21847 0.21869 0.22505 Alpha virt. eigenvalues -- 0.22809 0.23097 0.23762 0.24458 0.24634 Alpha virt. eigenvalues -- 0.24722 0.25080 0.25937 0.26261 0.26471 Alpha virt. eigenvalues -- 0.27152 0.28200 0.28478 0.28876 0.29066 Alpha virt. eigenvalues -- 0.30206 0.30289 0.31014 0.31204 0.31872 Alpha virt. eigenvalues -- 0.32131 0.32356 0.32815 0.33516 0.33668 Alpha virt. eigenvalues -- 0.33839 0.34287 0.34929 0.35389 0.36028 Alpha virt. eigenvalues -- 0.36492 0.36517 0.38055 0.38842 0.39562 Alpha virt. eigenvalues -- 0.40138 0.40190 0.40451 0.41340 0.41833 Alpha virt. eigenvalues -- 0.42863 0.44074 0.45166 0.47100 0.49207 Alpha virt. eigenvalues -- 0.49234 0.52033 0.52822 0.53523 0.54700 Alpha virt. eigenvalues -- 0.54874 0.55280 0.56359 0.57411 0.57443 Alpha virt. eigenvalues -- 0.57924 0.58347 0.58375 0.58707 0.59168 Alpha virt. eigenvalues -- 0.59245 0.59863 0.60386 0.60656 0.61112 Alpha virt. eigenvalues -- 0.61840 0.62456 0.62926 0.63964 0.64544 Alpha virt. eigenvalues -- 0.65472 0.66521 0.67500 0.68305 0.68983 Alpha virt. eigenvalues -- 0.69110 0.69304 0.70023 0.70653 0.71002 Alpha virt. eigenvalues -- 0.71055 0.71523 0.71623 0.73034 0.73424 Alpha virt. eigenvalues -- 0.73592 0.74702 0.76392 0.77155 0.77394 Alpha virt. eigenvalues -- 0.78367 0.78425 0.79881 0.80171 0.80518 Alpha virt. eigenvalues -- 0.82110 0.82343 0.83032 0.84710 0.85512 Alpha virt. eigenvalues -- 0.85811 0.86223 0.86419 0.87329 0.87662 Alpha virt. eigenvalues -- 0.88151 0.88482 0.88819 0.89158 0.89521 Alpha virt. eigenvalues -- 0.89734 0.90076 0.90887 0.91091 0.91457 Alpha virt. eigenvalues -- 0.91635 0.93059 0.93650 0.95718 0.96562 Alpha virt. eigenvalues -- 0.97859 0.99218 0.99758 1.00278 1.02282 Alpha virt. eigenvalues -- 1.05224 1.06344 1.07638 1.08563 1.09920 Alpha virt. eigenvalues -- 1.10513 1.12082 1.15828 1.16040 1.18079 Alpha virt. eigenvalues -- 1.18321 1.19032 1.21571 1.22149 1.23797 Alpha virt. eigenvalues -- 1.24504 1.24695 1.25439 1.26732 1.27904 Alpha virt. eigenvalues -- 1.30576 1.31732 1.32661 1.33507 1.34024 Alpha virt. eigenvalues -- 1.35713 1.36386 1.37732 1.37747 1.38216 Alpha virt. eigenvalues -- 1.38771 1.39115 1.39987 1.41668 1.41836 Alpha virt. eigenvalues -- 1.42692 1.42827 1.43946 1.44278 1.47298 Alpha virt. eigenvalues -- 1.49090 1.50839 1.53060 1.53232 1.54210 Alpha virt. eigenvalues -- 1.54418 1.56658 1.57991 1.59342 1.60439 Alpha virt. eigenvalues -- 1.60996 1.61717 1.62925 1.66759 1.67346 Alpha virt. eigenvalues -- 1.68109 1.68126 1.70568 1.72652 1.72813 Alpha virt. eigenvalues -- 1.74107 1.76720 1.77533 1.79918 1.80787 Alpha virt. eigenvalues -- 1.82152 1.83239 1.83826 1.87984 1.90287 Alpha virt. eigenvalues -- 1.93371 1.95989 1.97761 1.98873 1.99584 Alpha virt. eigenvalues -- 2.04118 2.04922 2.06287 2.11821 2.15516 Alpha virt. eigenvalues -- 2.21258 2.22132 2.23189 2.25417 2.31143 Alpha virt. eigenvalues -- 2.32602 2.33619 2.34952 2.37802 2.38040 Alpha virt. eigenvalues -- 2.38292 2.38891 2.39676 2.44185 2.44694 Alpha virt. eigenvalues -- 2.50166 2.51201 2.54537 2.55112 2.56178 Alpha virt. eigenvalues -- 2.57415 2.57739 2.58358 2.60073 2.61325 Alpha virt. eigenvalues -- 2.63039 2.63726 2.64585 2.64897 2.65400 Alpha virt. eigenvalues -- 2.66066 2.67319 2.68233 2.69042 2.70447 Alpha virt. eigenvalues -- 2.70949 2.71153 2.71522 2.72683 2.77483 Alpha virt. eigenvalues -- 2.77831 2.78179 2.79639 2.79777 2.81397 Alpha virt. eigenvalues -- 2.81472 2.82376 2.82663 2.84516 2.84937 Alpha virt. eigenvalues -- 2.85471 2.85988 2.86975 2.87207 2.87823 Alpha virt. eigenvalues -- 2.88159 2.89032 2.90431 2.91232 2.91375 Alpha virt. eigenvalues -- 2.91755 2.92465 2.92713 2.92771 2.93208 Alpha virt. eigenvalues -- 2.93256 2.93965 2.95323 2.95673 2.96839 Alpha virt. eigenvalues -- 2.97853 2.98194 2.98687 2.99339 2.99817 Alpha virt. eigenvalues -- 3.01079 3.01384 3.01430 3.02013 3.02998 Alpha virt. eigenvalues -- 3.04106 3.05337 3.06293 3.07624 3.08528 Alpha virt. eigenvalues -- 3.08623 3.10895 3.16823 3.17347 3.17440 Alpha virt. eigenvalues -- 3.18483 3.18568 3.21075 3.21709 3.22487 Alpha virt. eigenvalues -- 3.22967 3.24243 3.24868 3.25886 3.28188 Alpha virt. eigenvalues -- 3.28400 3.30008 3.30134 3.32426 3.33380 Alpha virt. eigenvalues -- 3.34012 3.35053 3.35821 3.35990 3.37128 Alpha virt. eigenvalues -- 3.37705 3.38032 3.39544 3.40574 3.42359 Alpha virt. eigenvalues -- 3.42508 3.42997 3.44134 3.44675 3.46468 Alpha virt. eigenvalues -- 3.46890 3.47334 3.47672 3.48436 3.51104 Alpha virt. eigenvalues -- 3.51530 3.52113 3.53700 3.53993 3.54725 Alpha virt. eigenvalues -- 3.56432 3.57100 3.57546 3.58275 3.58827 Alpha virt. eigenvalues -- 3.59935 3.60990 3.61221 3.61467 3.61772 Alpha virt. eigenvalues -- 3.63107 3.64214 3.65615 3.66444 3.66775 Alpha virt. eigenvalues -- 3.68775 3.70431 3.70439 3.72449 3.73469 Alpha virt. eigenvalues -- 3.74499 3.75459 3.77582 3.78365 3.78780 Alpha virt. eigenvalues -- 3.80120 3.80447 3.81343 3.82611 3.83388 Alpha virt. eigenvalues -- 3.84589 3.85571 3.89006 3.89311 3.91384 Alpha virt. eigenvalues -- 3.91528 3.92652 3.93604 3.95096 3.95211 Alpha virt. eigenvalues -- 3.96171 3.99062 4.00364 4.00441 4.01068 Alpha virt. eigenvalues -- 4.02965 4.03034 4.07907 4.09495 4.13437 Alpha virt. eigenvalues -- 4.14898 4.15571 4.19000 4.21006 4.23401 Alpha virt. eigenvalues -- 4.23650 4.25013 4.25251 4.28218 4.32897 Alpha virt. eigenvalues -- 4.33407 4.34379 4.35943 4.36896 4.38004 Alpha virt. eigenvalues -- 4.41187 4.41305 4.43883 4.45533 4.49344 Alpha virt. eigenvalues -- 4.49896 4.51088 4.51120 4.52571 4.53083 Alpha virt. eigenvalues -- 4.53632 4.54475 4.54722 4.55417 4.57561 Alpha virt. eigenvalues -- 4.58464 4.59157 4.62439 4.63158 4.64837 Alpha virt. eigenvalues -- 4.65415 4.71471 4.76560 4.78940 4.78964 Alpha virt. eigenvalues -- 4.81823 4.86532 4.87182 4.96762 4.97261 Alpha virt. eigenvalues -- 4.99115 4.99118 5.02878 5.11294 5.13118 Alpha virt. eigenvalues -- 5.18652 5.19308 5.20716 5.24855 5.26000 Alpha virt. eigenvalues -- 5.28423 5.30585 5.31964 5.36176 5.37580 Alpha virt. eigenvalues -- 5.38264 5.40023 5.42380 5.46864 5.51326 Alpha virt. eigenvalues -- 5.52333 5.52496 5.56621 5.63421 5.65793 Alpha virt. eigenvalues -- 5.66224 5.72406 5.84197 5.89540 6.02733 Alpha virt. eigenvalues -- 6.03574 6.47691 6.47779 6.52298 6.62682 Alpha virt. eigenvalues -- 7.15275 7.26571 7.41559 7.72315 7.82322 Alpha virt. eigenvalues -- 23.97272 23.97889 24.44114 24.44665 24.44971 Alpha virt. eigenvalues -- 24.46036 24.53341 24.55370 24.69422 24.71599 Alpha virt. eigenvalues -- 24.73200 24.73306 25.07036 25.07482 50.15065 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 8.017937 -0.291191 0.258575 1.135953 -0.262234 -3.543875 2 C -0.291191 6.014308 0.119487 -0.046400 -0.164894 0.989927 3 C 0.258575 0.119487 5.597914 0.205599 -0.345640 -0.443286 4 C 1.135953 -0.046400 0.205599 9.002578 -0.436772 -2.910790 5 C -0.262234 -0.164894 -0.345640 -0.436772 8.442715 0.146058 6 C -3.543875 0.989927 -0.443286 -2.910790 0.146058 12.975561 7 C 0.810768 -0.681438 0.581545 -1.009975 -2.251532 -1.438066 8 C -0.033223 0.041637 -0.056612 0.422755 0.277152 -0.108392 9 C 0.013495 0.019113 -0.037457 0.012148 -0.113604 0.060776 10 C -0.014369 -0.011412 0.021452 0.116266 0.060792 -0.148924 11 C -0.014490 -0.000304 0.000369 -0.046280 0.013493 -0.014370 12 C -0.000304 0.000887 -0.000745 0.016454 0.019115 -0.011412 13 C 0.000370 -0.000745 0.003236 -0.016083 -0.037460 0.021452 14 C -0.046283 0.016454 -0.016083 -0.118799 0.012143 0.116268 15 O 0.078041 -0.004888 0.005499 0.090570 0.021561 -0.191738 16 H 0.471708 -0.081635 0.018998 0.018236 0.019333 -0.143722 17 H -0.076724 0.432217 -0.059520 -0.011614 0.034619 0.025277 18 H 0.024665 -0.083896 0.441790 -0.076021 0.009355 -0.020711 19 H 0.028619 0.016164 -0.049714 0.457417 -0.085097 -0.010394 20 H -0.142053 0.024846 0.009556 -0.032339 -0.055381 0.565488 21 H -0.030638 -0.001633 -0.002618 -0.080075 -0.035681 0.069857 22 H 0.029341 -0.012774 0.014159 0.025711 -0.032135 -0.083526 23 H 0.002692 -0.000270 0.000534 0.010167 -0.006610 -0.007420 24 H -0.000188 -0.000017 0.000043 -0.001023 0.000027 0.000256 25 H 0.000031 0.000014 -0.000049 0.000403 0.000261 -0.000199 26 H -0.000003 -0.000064 0.000113 -0.000869 -0.000747 0.000887 27 H -0.004757 0.001533 -0.002490 -0.002799 0.008940 0.003325 7 8 9 10 11 12 1 C 0.810768 -0.033223 0.013495 -0.014369 -0.014490 -0.000304 2 C -0.681438 0.041637 0.019113 -0.011412 -0.000304 0.000887 3 C 0.581545 -0.056612 -0.037457 0.021452 0.000369 -0.000745 4 C -1.009975 0.422755 0.012148 0.116266 -0.046280 0.016454 5 C -2.251532 0.277152 -0.113604 0.060792 0.013493 0.019115 6 C -1.438066 -0.108392 0.060776 -0.148924 -0.014370 -0.011412 7 C 12.935863 -3.806907 0.277152 -0.108429 -0.033225 0.041636 8 C -3.806907 12.935856 -2.251534 -1.438040 0.810777 -0.681443 9 C 0.277152 -2.251534 8.442738 0.146077 -0.262240 -0.164898 10 C -0.108429 -1.438040 0.146077 12.975501 -3.543827 0.989908 11 C -0.033225 0.810777 -0.262240 -3.543827 8.017891 -0.291180 12 C 0.041636 -0.681443 -0.164898 0.989908 -0.291180 6.014309 13 C -0.056604 0.581547 -0.345634 -0.443271 0.258568 0.119486 14 C 0.422781 -1.010015 -0.436801 -2.910800 1.135944 -0.046382 15 O 0.131348 0.131345 0.021563 -0.191740 0.078041 -0.004888 16 H 0.022594 -0.003052 0.000027 0.000256 -0.000188 -0.000017 17 H -0.008239 -0.001832 0.000261 -0.000199 0.000031 0.000014 18 H 0.024985 0.001643 -0.000747 0.000887 -0.000003 -0.000064 19 H -0.019983 -0.010980 0.008939 0.003325 -0.004756 0.001533 20 H -0.053021 0.019505 -0.006611 -0.007420 0.002693 -0.000270 21 H 0.310278 0.107448 -0.032136 -0.083524 0.029340 -0.012774 22 H 0.107446 0.310281 -0.035679 0.069856 -0.030638 -0.001633 23 H 0.019506 -0.053021 -0.055381 0.565485 -0.142051 0.024845 24 H -0.003052 0.022594 0.019333 -0.143721 0.471708 -0.081635 25 H -0.001832 -0.008240 0.034619 0.025277 -0.076724 0.432217 26 H 0.001643 0.024985 0.009355 -0.020711 0.024665 -0.083896 27 H -0.010980 -0.019983 -0.085098 -0.010394 0.028619 0.016164 13 14 15 16 17 18 1 C 0.000370 -0.046283 0.078041 0.471708 -0.076724 0.024665 2 C -0.000745 0.016454 -0.004888 -0.081635 0.432217 -0.083896 3 C 0.003236 -0.016083 0.005499 0.018998 -0.059520 0.441790 4 C -0.016083 -0.118799 0.090570 0.018236 -0.011614 -0.076021 5 C -0.037460 0.012143 0.021561 0.019333 0.034619 0.009355 6 C 0.021452 0.116268 -0.191738 -0.143722 0.025277 -0.020711 7 C -0.056604 0.422781 0.131348 0.022594 -0.008239 0.024985 8 C 0.581547 -1.010015 0.131345 -0.003052 -0.001832 0.001643 9 C -0.345634 -0.436801 0.021563 0.000027 0.000261 -0.000747 10 C -0.443271 -2.910800 -0.191740 0.000256 -0.000199 0.000887 11 C 0.258568 1.135944 0.078041 -0.000188 0.000031 -0.000003 12 C 0.119486 -0.046382 -0.004888 -0.000017 0.000014 -0.000064 13 C 5.597916 0.205578 0.005499 0.000043 -0.000049 0.000113 14 C 0.205578 9.002651 0.090570 -0.001023 0.000403 -0.000869 15 O 0.005499 0.090570 8.052400 0.001778 -0.000119 0.000130 16 H 0.000043 -0.001023 0.001778 0.508258 -0.009972 -0.000547 17 H -0.000049 0.000403 -0.000119 -0.009972 0.505308 -0.010982 18 H 0.000113 -0.000869 0.000130 -0.000547 -0.010982 0.512337 19 H -0.002490 -0.002799 -0.000318 0.001106 -0.000677 -0.013497 20 H 0.000534 0.010167 -0.010348 -0.011757 -0.000506 0.000859 21 H 0.014159 0.025711 -0.041631 0.000214 -0.000112 0.000057 22 H -0.002618 -0.080077 -0.041631 0.000803 -0.000512 0.000525 23 H 0.009556 -0.032339 -0.010348 0.000019 -0.000011 0.000022 24 H 0.018998 0.018236 0.001778 -0.000001 0.000000 0.000001 25 H -0.059519 -0.011614 -0.000119 0.000000 0.000000 -0.000002 26 H 0.441789 -0.076022 0.000130 0.000001 -0.000002 0.000005 27 H -0.049714 0.457419 -0.000318 -0.000100 0.000053 -0.000079 19 20 21 22 23 24 1 C 0.028619 -0.142053 -0.030638 0.029341 0.002692 -0.000188 2 C 0.016164 0.024846 -0.001633 -0.012774 -0.000270 -0.000017 3 C -0.049714 0.009556 -0.002618 0.014159 0.000534 0.000043 4 C 0.457417 -0.032339 -0.080075 0.025711 0.010167 -0.001023 5 C -0.085097 -0.055381 -0.035681 -0.032135 -0.006610 0.000027 6 C -0.010394 0.565488 0.069857 -0.083526 -0.007420 0.000256 7 C -0.019983 -0.053021 0.310278 0.107446 0.019506 -0.003052 8 C -0.010980 0.019505 0.107448 0.310281 -0.053021 0.022594 9 C 0.008939 -0.006611 -0.032136 -0.035679 -0.055381 0.019333 10 C 0.003325 -0.007420 -0.083524 0.069856 0.565485 -0.143721 11 C -0.004756 0.002693 0.029340 -0.030638 -0.142051 0.471708 12 C 0.001533 -0.000270 -0.012774 -0.001633 0.024845 -0.081635 13 C -0.002490 0.000534 0.014159 -0.002618 0.009556 0.018998 14 C -0.002799 0.010167 0.025711 -0.080077 -0.032339 0.018236 15 O -0.000318 -0.010348 -0.041631 -0.041631 -0.010348 0.001778 16 H 0.001106 -0.011757 0.000214 0.000803 0.000019 -0.000001 17 H -0.000677 -0.000506 -0.000112 -0.000512 -0.000011 0.000000 18 H -0.013497 0.000859 0.000057 0.000525 0.000022 0.000001 19 H 0.509384 -0.001016 0.007646 -0.001505 0.000386 -0.000100 20 H -0.001016 0.480063 0.001395 -0.002868 -0.000226 0.000019 21 H 0.007646 0.001395 0.549454 0.004848 -0.002868 0.000803 22 H -0.001505 -0.002868 0.004848 0.549455 0.001395 0.000214 23 H 0.000386 -0.000226 -0.002868 0.001395 0.480063 -0.011757 24 H -0.000100 0.000019 0.000803 0.000214 -0.011757 0.508258 25 H 0.000053 -0.000011 -0.000512 -0.000112 -0.000506 -0.009972 26 H -0.000079 0.000022 0.000525 0.000057 0.000859 -0.000547 27 H 0.000291 0.000386 -0.001505 0.007646 -0.001016 0.001106 25 26 27 1 C 0.000031 -0.000003 -0.004757 2 C 0.000014 -0.000064 0.001533 3 C -0.000049 0.000113 -0.002490 4 C 0.000403 -0.000869 -0.002799 5 C 0.000261 -0.000747 0.008940 6 C -0.000199 0.000887 0.003325 7 C -0.001832 0.001643 -0.010980 8 C -0.008240 0.024985 -0.019983 9 C 0.034619 0.009355 -0.085098 10 C 0.025277 -0.020711 -0.010394 11 C -0.076724 0.024665 0.028619 12 C 0.432217 -0.083896 0.016164 13 C -0.059519 0.441789 -0.049714 14 C -0.011614 -0.076022 0.457419 15 O -0.000119 0.000130 -0.000318 16 H 0.000000 0.000001 -0.000100 17 H 0.000000 -0.000002 0.000053 18 H -0.000002 0.000005 -0.000079 19 H 0.000053 -0.000079 0.000291 20 H -0.000011 0.000022 0.000386 21 H -0.000512 0.000525 -0.001505 22 H -0.000112 0.000057 0.007646 23 H -0.000506 0.000859 -0.001016 24 H -0.009972 -0.000547 0.001106 25 H 0.505308 -0.010982 -0.000677 26 H -0.010982 0.512337 -0.013497 27 H -0.000677 -0.013497 0.509384 Mulliken charges: 1 1 C -0.411863 2 C -0.295025 3 C -0.264655 4 C -0.724416 5 C 0.762221 6 C 0.101696 7 C -0.204261 8 C -0.204253 9 C 0.762221 10 C 0.101702 11 C -0.411861 12 C -0.295027 13 C -0.264656 14 C -0.724422 15 O -0.212165 16 H 0.188637 17 H 0.182888 18 H 0.190044 19 H 0.168543 20 H 0.208296 21 H 0.203974 22 H 0.203974 23 H 0.208296 24 H 0.188638 25 H 0.182888 26 H 0.190044 27 H 0.168543 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.223225 2 C -0.112138 3 C -0.074611 4 C -0.555873 5 C 0.762221 6 C 0.309992 7 C -0.000288 8 C -0.000279 9 C 0.762221 10 C 0.309998 11 C -0.223223 12 C -0.112140 13 C -0.074611 14 C -0.555879 15 O -0.212165 Electronic spatial extent (au): = 4314.3245 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= -2.1665 Z= 0.0000 Tot= 2.1665 Quadrupole moment (field-independent basis, Debye-Ang): XX= -76.8983 YY= -92.4428 ZZ= -83.1705 XY= 0.0000 XZ= 2.6732 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 7.2722 YY= -8.2723 ZZ= 1.0000 XY= 0.0000 XZ= 2.6732 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.0002 YYY= -3.3854 ZZZ= 0.0000 XYY= 0.0002 XXY= -21.9106 XXZ= 0.0001 XZZ= -0.0002 YZZ= 1.6287 YYZ= 0.0000 XYZ= 25.5501 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -4670.5574 YYYY= -517.2224 ZZZZ= -443.5156 XXXY= 0.0005 XXXZ= 122.5901 YYYX= -0.0002 YYYZ= 0.0003 ZZZX= 9.3292 ZZZY= -0.0002 XXYY= -930.9591 XXZZ= -920.1599 YYZZ= -137.9382 XXYZ= 0.0000 YYXZ= -18.6234 ZZXY= 0.0002 N-N= 8.618661815759D+02 E-N=-3.155544613908D+03 KE= 6.131035513874D+02 AllDun F.D. properties on file 20721 Mask= 2 NFrqRd= 2 NDeriv= 1 ND12= 1 LenFil= 22: Frequencies= 0.077357 0.124831 Property number 2 -- FD Optical Rotation Tensor frequency 1 0.077357: 1 2 3 1 0.173487D+02 0.434329D-04 0.166383D+02 2 0.395868D-03 0.125078D+03 -0.101585D-02 3 0.788009D+02 -0.107922D-02 -0.137796D+03 Property number 2 -- FD Optical Rotation Tensor frequency 2 0.124831: 1 2 3 1 0.215406D+02 0.578108D-04 0.194316D+02 2 0.423394D-03 0.147583D+03 -0.120620D-02 3 0.993910D+02 -0.126118D-02 -0.161602D+03 1\1\GINC-CX1-15-34-1\SP\RCAM-B3LYP\6-311++G(2df,p)\C14H12O1\SCAN-USER- 1\20-Mar-2014\0\\# CAM-B3LYP/6-311++g(2df,p) polar(optrot) scrf(cpcm,s olvent=benzene) CPHF=RdFreq\\ss stilbene jq411 or\\0,1\C,0,-3.984268,0 .409282,-0.963053\C,0,-4.613431,-0.562402,-0.179403\C,0,-3.905224,-1.1 88806,0.848929\C,0,-2.574131,-0.846434,1.091561\C,0,-1.937214,0.119568 ,0.302537\C,0,-2.653122,0.749137,-0.724441\C,0,-0.505151,0.445672,0.54 6727\C,0,0.505151,0.445673,-0.54673\C,0,1.937214,0.119568,-0.302538\C, 0,2.653124,0.749144,0.724434\C,0,3.98427,0.409288,0.963048\C,0,4.61343 ,-0.562403,0.179405\C,0,3.905222,-1.188813,-0.848922\C,0,2.574129,-0.8 46441,-1.091555\O,0,0.,1.676135,-0.000001\H,0,-4.533089,0.905598,-1.75 8084\H,0,-5.650455,-0.825313,-0.365513\H,0,-4.389909,-1.939768,1.46579 8\H,0,-2.026145,-1.330277,1.896072\H,0,-2.160889,1.513712,-1.31728\H,0 ,-0.130396,0.215412,1.545409\H,0,0.130397,0.215412,-1.545411\H,0,2.160 893,1.513723,1.317268\H,0,4.533093,0.905609,1.758075\H,0,5.650455,-0.8 25314,0.365516\H,0,4.389905,-1.939781,-1.465785\H,0,2.026141,-1.330289 ,-1.896062\\Version=ES64L-G09RevD.01\State=1-A\HF=-615.7604926\RMSD=2. 115e-09\Dipole=-0.000002,-0.8523766,-0.0000001\Quadrupole=5.4067299,-6 .1502413,0.7435114,0.0000089,1.9874556,0.0000037\PG=C01 [X(C14H12O1)]\ \@ ALTHOUGH J.J. COULD DIAGNOSE THE FAULTS OF AN APPARATUS WITH UNCANNY ACCURACY, IT WAS JUST AS WELL NOT TO LET HIM HANDLE IT. -- GEORGE THOMPSON, ABOUT HIS FATHER Job cpu time: 0 days 14 hours 27 minutes 34.7 seconds. File lengths (MBytes): RWF= 636 Int= 0 D2E= 0 Chk= 17 Scr= 1 Normal termination of Gaussian 09 at Thu Mar 20 17:56:20 2014.