Entering Gaussian System, Link 0=gdv Initial command: /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l1.exe /tmp/pbs.688265.cx1b/Gau-30713.inp -scrdir=/tmp/pbs.688265.cx1b/ Entering Link 1 = /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l1.exe PID= 30714. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is the private, development version of the Gaussian(R) DV system of programs. It is based on the Gaussian(R) 09 system (copyright 2009, Gaussian, Inc.), the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian Development Version, Revision H.08, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, P. V. Parandekar, N. J. Mayhall, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009. ****************************************** Gaussian DV: EM64L-GDVRevH.08 14-Mar-2010 14-Feb-2012 ****************************************** %chk=/work/jjserran/MMVB/benzene_S0_mmvb.chk %mem=1500MB ---------------------------------------------------------------------- #p amber=(softonly,lastequiv) test geom=connectivity SP iop(1/19=11,1/ 117=10001,1/119=-3,2/15=1,4/31=1,4/33=2) ---------------------------------------------------------------------- 1/19=11,38=1,56=2,57=2,64=20303,117=10001,119=-3/1; 2/12=2,15=1,17=6,18=5,40=1/2; 3/5=30,11=9,16=1,25=1,30=1,41=10300000,43=2/1; 4/20=11,24=3,31=1,33=2/2; 99/5=1,9=1/99; Leave Link 1 at Tue Feb 14 18:17:50 2012, MaxMem= 196608000 cpu: 0.0 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l101.exe) --------------------- MMVB analysis BENZENE --------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C-MM101 0. 1.20928 0.69818 C-MM101 0.00001 1.20928 -0.69817 C-MM101 0. 0. -1.39635 C-MM101 0. -1.20928 -0.69818 C-MM101 0.00001 -1.20929 0.69817 C-MM101 0.00001 0.00001 1.39635 H-MM5 0. 2.14069 1.23593 H-MM5 0. 2.14069 -1.23593 H-MM5 0. 0.00001 -2.47187 H-MM5 0.00001 -2.14069 -1.23594 H-MM5 0. -2.14069 1.23593 H-MM5 0. 0. 2.47186 NAtoms= 12 NQM= 12 NQMF= 0 NMic= 0 NMicF= 0 NTot= 12. Isotopes and Nuclear Properties: (Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic moments (NMagM) in nuclear magnetons) Atom 1 2 3 4 5 6 7 8 9 10 IAtWgt= 12 12 12 12 12 12 1 1 1 1 AtmWgt= 12.0000000 12.0000000 12.0000000 12.0000000 12.0000000 12.0000000 1.0078250 1.0078250 1.0078250 1.0078250 NucSpn= 0 0 0 0 0 0 1 1 1 1 AtZEff= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 NQMom= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 NMagM= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2.7928460 2.7928460 2.7928460 2.7928460 Atom 11 12 IAtWgt= 1 1 AtmWgt= 1.0078250 1.0078250 NucSpn= 1 1 AtZEff= 0.0000000 0.0000000 NQMom= 0.0000000 0.0000000 NMagM= 2.7928460 2.7928460 Generating MM parameters. Pairs of Qij integrals deleted in MMVB: 3 1 4 1 5 1 4 2 5 2 6 2 3 1 5 3 6 3 4 1 4 2 6 4 5 1 5 2 5 3 6 2 6 3 6 4 Read MM parameter file: Define MM101 1 Define MM5 2 Include all MM classes MM sanity checks: All charges sum to: 0.00000000 Charges of atoms sum to: 0.00000000 MMInit generated parameter data with length LenPar= 7561. Leave Link 101 at Tue Feb 14 18:17:51 2012, MaxMem= 196608000 cpu: 0.1 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l202.exe) Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 90000001 0.000001 1.209280 0.698178 2 6 90000001 0.000009 1.209282 -0.698171 3 6 90000001 0.000002 0.000002 -1.396351 4 6 90000001 0.000004 -1.209280 -0.698178 5 6 90000001 0.000006 -1.209289 0.698172 6 6 90000001 0.000007 0.000008 1.396353 7 1 90000002 0.000001 2.140694 1.235930 8 1 90000002 0.000003 2.140693 -1.235933 9 1 90000002 0.000004 0.000009 -2.471868 10 1 90000002 0.000005 -2.140694 -1.235937 11 1 90000002 0.000001 -2.140691 1.235933 12 1 90000002 0.000001 0.000001 2.471861 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.396349 0.000000 3 C 2.418554 1.396357 0.000000 4 C 2.792712 2.418562 1.396355 0.000000 5 C 2.418569 2.792715 2.418556 1.396350 0.000000 6 C 1.396348 2.418548 2.792704 2.418561 1.396372 7 H 1.075504 2.146689 3.392855 3.868217 3.392870 8 H 2.146699 1.075507 2.146693 3.392860 3.868222 9 H 3.392864 2.146705 1.075517 2.146708 3.392868 10 H 3.868220 3.392865 2.146698 1.075508 2.146693 11 H 3.392858 3.868214 3.392858 2.146698 1.075498 12 H 2.146697 3.392855 3.868212 3.392861 2.146708 6 7 8 9 10 6 C 0.000000 7 H 2.146689 0.000000 8 H 3.392855 2.471863 0.000000 9 H 3.868221 4.281390 2.471854 0.000000 10 H 3.392868 4.943724 4.281387 2.471869 0.000000 11 H 2.146701 4.281385 4.943720 4.281400 2.471870 12 H 1.075508 2.471860 4.281390 4.943729 4.281395 11 12 11 H 0.000000 12 H 2.471858 0.000000 Symmetry turned off by external request. Stoichiometry C6H6 Framework group C1[X(C6H6)] Deg. of freedom 30 Full point group C1 NOp 1 Rotational constants (GHZ): 5.6997790 5.6997255 2.8498761 Leave Link 202 at Tue Feb 14 18:17:51 2012, MaxMem= 196608000 cpu: 0.0 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l301.exe) Standard basis: Dummy (5D, 7F) Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned off. 12 basis functions, 12 primitive gaussians, 12 cartesian basis functions 9 alpha electrons 9 beta electrons nuclear repulsion energy 36.1728084784 Hartrees. IExCor= 0 DFT=F Ex=HF Corr=None ExCW=0 ScaHFX= 1.000000 ScaDFX= 1.000000 1.000000 1.000000 1.000000 ScalE2= 1.000000 1.000000 IRadAn= 0 IRanWt= -1 IRanGd= 0 ICorTp=0 NAtoms= 12 NActive= 12 NUniq= 12 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F Leave Link 301 at Tue Feb 14 18:17:51 2012, MaxMem= 196608000 cpu: 0.1 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l402.exe) AMBER calculation of energy. No initial guess density matrices. Enter MMCalc NNonBon 5 10 0 0 0 0 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 Non-bonded terms on-the-fly without fast algorithms, OKV=T OKC=F. Energy per function type: Direct Coulomb + vdW (small) 0.118451832 Direct Coulomb (large) 0.000000000 Direct vdW (large) 2.595031964 Non-direct Coulomb + vdW (small) -0.116261098 Non-direct Coulomb (large) 0.000000000 Non-direct vdW (large) -2.595031964 MM2 Torsion Angle angle 0.005058091 MM2 IP-Bend 0.000000000 MM2 Stretch Cubic 0.065644135 Energy per function class: Coulomb 0.000000000 Vanderwaals 0.002190734 Stretching 0.065644135 Bending 0.000000000 Torsion 0.005058091 Enter VBMMVB module. Call number 1 to VBMMVB. ITYIV( 1) = 1 ITYIV( 2) = 2 ITYIV( 3) = 3 ITYIV( 4) = 4 ITYIV( 5) = 5 ITYIV( 6) = 6 JJ( 1) = 6 JJ( 2) = 6 JJ( 3) = 6 JJ( 4) = 6 JJ( 5) = 6 JJ( 6) = 6 JJ( 7) = 1 JJ( 8) = 1 JJ( 9) = 1 JJ( 10) = 1 JJ( 11) = 1 JJ( 12) = 1 IVAT( 1) = 1 3 IVAT( 2) = 1 4 IVAT( 3) = 2 4 IVAT( 4) = 1 5 IVAT( 5) = 2 5 IVAT( 6) = 3 5 IVAT( 7) = 2 6 IVAT( 8) = 3 6 IVAT( 9) = 4 6 ISUB( 1,1,2,3) = 2 6 7 ISUB( 2,1,2,3) = 1 3 8 ISUB( 3,1,2,3) = 2 4 9 ISUB( 4,1,2,3) = 3 5 10 ISUB( 5,1,2,3) = 4 6 11 ISUB( 6,1,2,3) = 1 5 12 IAt( 1) = 2 3 4 5 6 7 IAt( 2) = 1 3 4 5 6 8 IAt( 3) = 1 2 4 5 6 9 IAt( 4) = 1 2 3 5 6 10 IAt( 5) = 1 2 3 4 6 11 IAt( 6) = 1 2 3 4 5 12 IAt( 7) = 1 IAt( 8) = 2 IAt( 9) = 3 IAt( 10) = 4 IAt( 11) = 5 IAt( 12) = 6 IQdel( 1,1-2) = 3 1 IQdel( 2,1-2) = 4 1 IQdel( 3,1-2) = 5 1 IQdel( 4,1-2) = 4 2 IQdel( 5,1-2) = 5 2 IQdel( 6,1-2) = 6 2 IQdel( 7,1-2) = 3 1 IQdel( 8,1-2) = 5 3 IQdel( 9,1-2) = 6 3 IQdel( 10,1-2) = 4 1 IQdel( 11,1-2) = 4 2 IQdel( 12,1-2) = 6 4 IQdel( 13,1-2) = 5 1 IQdel( 14,1-2) = 5 2 IQdel( 15,1-2) = 5 3 IQdel( 16,1-2) = 6 2 IQdel( 17,1-2) = 6 3 IQdel( 18,1-2) = 6 4 Pi Kij and Qij for I,J= 2 1 K0ij= -0.70186309E-01 Kij= -0.68279683E-01 Q0ij= -0.41630215E-01 Qij= -0.43536841E-01 Sigma Kij and Qij for I,J= 3 1 K0ij= -0.44282938E-02 Kij= -0.36029468E-02 Q0ij= -0.17915000 Qij= -0.18072868 Pi Kij and Qij for I,J= 3 2 K0ij= -0.70184695E-01 Kij= -0.68278040E-01 Q0ij= -0.41629463E-01 Qij= -0.43536117E-01 Sigma Kij and Qij for I,J= 4 1 K0ij= -0.67669979E-03 Kij= -0.24762146E-02 Q0ij= -0.17915000 Qij= -0.17938977 Sigma Kij and Qij for I,J= 4 2 K0ij= -0.44281486E-02 Kij= -0.36028286E-02 Q0ij= -0.17915000 Qij= -0.18072863 Pi Kij and Qij for I,J= 4 3 K0ij= -0.70185043E-01 Kij= -0.68278412E-01 Q0ij= -0.41629625E-01 Qij= -0.43536256E-01 Sigma Kij and Qij for I,J= 5 1 K0ij= -0.44280163E-02 Kij= -0.36027253E-02 Q0ij= -0.17915000 Qij= -0.18072858 Sigma Kij and Qij for I,J= 5 2 K0ij= -0.67668793E-03 Kij= -0.24762298E-02 Q0ij= -0.17915000 Qij= -0.17938976 Sigma Kij and Qij for I,J= 5 3 K0ij= -0.44282692E-02 Kij= -0.36029262E-02 Q0ij= -0.17915000 Qij= -0.18072867 Pi Kij and Qij for I,J= 5 4 K0ij= -0.70186112E-01 Kij= -0.68279513E-01 Q0ij= -0.41630124E-01 Qij= -0.43536723E-01 Pi Kij and Qij for I,J= 6 1 K0ij= -0.70186551E-01 Kij= -0.68279918E-01 Q0ij= -0.41630328E-01 Qij= -0.43536960E-01 Sigma Kij and Qij for I,J= 6 2 K0ij= -0.44284136E-02 Kij= -0.36030388E-02 Q0ij= -0.17915000 Qij= -0.18072872 Sigma Kij and Qij for I,J= 6 3 K0ij= -0.67673272E-03 Kij= -0.24762973E-02 Q0ij= -0.17915000 Qij= -0.17938978 Sigma Kij and Qij for I,J= 6 4 K0ij= -0.44281665E-02 Kij= -0.36028475E-02 Q0ij= -0.17915000 Qij= -0.18072863 Pi Kij and Qij for I,J= 6 5 K0ij= -0.70181698E-01 Kij= -0.68275069E-01 Q0ij= -0.41628065E-01 Qij= -0.43534694E-01 MMVB: Lanczosdiagonalisation of the VB CI hamiltonian Number of configurations of the CI problem : 10 Create bucket for guess vector Create from scratch a guess vector ---> Possibly unnormalised guess vector <--- 1 0.00000000 2 1.00000000 3 0.00000000 4 0.00000000 5 1.00000000 6 1.00000000 7 0.00000000 8 1.00000000 9 1.00000000 10 0.00000000 First guessed right (normalised) vector Index Coefficient 6 0.447214 5 0.447214 2 0.447214 8 0.447214 9 0.447214 Begin Lanczos iteration in Ldriv1 with MaxCyc, Nelec, NSec = 100 6 10 NITR,IFLAG,GAMMA,CUT = 1 1 0.1839045025 0.0000000005 Iteration number 1 Energy computed with trial vector = -0.039672 NITR,IFLAG,GAMMA,CUT = 2 1 0.1152211534 0.0000000005 Iteration number 2 EIGENVALUES OF TRIDIAGONAL FORM -0.147811 0.273081 NITR,IFLAG,GAMMA,CUT = 3 1 0.0284416274 0.0000000005 Iteration number 3 EIGENVALUES OF TRIDIAGONAL FORM -0.157788 0.142939 0.347127 NITR,IFLAG,GAMMA,CUT = 4 1 0.0335554289 0.0000000005 Iteration number 4 EIGENVALUES OF TRIDIAGONAL FORM -0.157837 0.139953 0.304572 0.353786 NITR,IFLAG,GAMMA,CUT = 5 1 0.0001892259 0.0000000005 Iteration number 5 EIGENVALUES OF TRIDIAGONAL FORM -0.157838 0.139037 0.160650 0.311059 0.354678 NITR,IFLAG,GAMMA,CUT = 6 1 0.0081996186 0.0000000005 Iteration number 6 EIGENVALUES OF TRIDIAGONAL FORM -0.157838 0.007670 0.139037 0.160650 0.311059 0.354678 Eigen values and vectors of tridiagonal form 1 -0.157838 -0.829144 0.532756 -0.169059 0.010395 -0.001073 0.000001 Eigen values and right eigenvectors of matrix ( 1) Eigenvalue -0.15783757E+00 ( 6) 0.67594 ( 5) 0.29453 ( 2) 0.29453 ( 3) 0.29452 ( 9) 0.29451 ( 8) 0.29451 ( 7) 0.29451 ( 10) 0.08691 ( 1) 0.08691 ( 4) 0.08690 ( QT= -0.25994979 D1QT I= 1 X= -9.079889057190D-06 Y= 9.220213736182D-02 Z= 5.323332484348D-02 I= 2 X= 1.088606731832D-05 Y= 9.220394924513D-02 Z= -5.323193896462D-02 I= 3 X= -6.606227647665D-06 Y= -1.329398437766D-07 Z= -1.064677691496D-01 I= 4 X= -1.990786168605D-08 Y= -9.220309473077D-02 Z= -5.323269078452D-02 I= 5 X= 1.166916895934D-06 Y= -9.220794929842D-02 Z= 5.323094700433D-02 I= 6 X= 6.080669935176D-06 Y= 5.090378421984D-06 Z= 1.064681270523D-01 I= 7 X= 1.717000751389D-06 Y= 0.000000000000D+00 Z= 0.000000000000D+00 I= 8 X= -2.900807161603D-06 Y= 0.000000000000D+00 Z= 0.000000000000D+00 I= 9 X= 1.454098671191D-06 Y= 0.000000000000D+00 Z= 0.000000000000D+00 I= 10 X= 3.391158239351D-07 Y= 0.000000000000D+00 Z= 0.000000000000D+00 I= 11 X= -1.150536203035D-06 Y= 0.000000000000D+00 Z= 0.000000000000D+00 I= 12 X= -1.886501464769D-06 Y= 0.000000000000D+00 Z= 0.000000000000D+00 KEig= 1 T= 0.15783757 X Y Z 0.00000 -0.04658 -0.02688 0.00000 -0.04658 0.02688 0.00000 0.00001 0.05378 0.00000 0.04657 0.02690 0.00000 0.04656 -0.02690 0.00000 0.00002 -0.05378 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ENERGY --- -0.41779 for root no. 1 Spin Density Matrix Root 1 1 1 0.000 2 1 0.434 2 2 0.000 3 1-0.914 3 2 0.434 3 3 0.000 4 1-0.041 4 2-0.914 4 3 0.434 4 4 0.000 5 1-0.914 5 2-0.041 5 3-0.914 5 4 0.434 5 5 0.000 6 1 0.434 6 2-0.914 6 3-0.041 6 4-0.914 6 5 0.434 6 6 0.000 0.0000 Transition Density Matrix 1 1 0.000 2 1 0.000 2 2 0.000 3 1 0.000 3 2 0.000 3 3 0.000 4 1 0.000 4 2 0.000 4 3 0.000 4 4 0.000 5 1 0.000 5 2 0.000 5 3 0.000 5 4 0.000 5 5 0.000 6 1 0.000 6 2 0.000 6 3 0.000 6 4 0.000 6 5 0.000 6 6 0.000 -3.0000 The highest root (chosen eigenvalue) is No. 1 T and derivatives for eigenvalue No. 1 0.15784 X Y Z 0.00000 -0.04658 -0.02688 0.00000 -0.04658 0.02688 0.00000 0.00001 0.05378 0.00000 0.04657 0.02690 0.00000 0.04656 -0.02690 0.00000 0.00002 -0.05378 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Q and derivatives for eigenvalue No. 1 -0.25995 X Y Z -0.00001 0.09220 0.05323 0.00001 0.09220 -0.05323 -0.00001 0.00000 -0.10647 0.00000 -0.09220 -0.05323 0.00000 -0.09221 0.05323 0.00001 0.00001 0.10647 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Total Energy and cartesian deriv. (a.u.) for Root 1 -0.41779 X Y Z -0.00001 0.13878 0.08012 0.00001 0.13878 -0.08012 -0.00001 -0.00001 -0.16024 0.00000 -0.13877 -0.08013 0.00000 -0.13877 0.08013 0.00001 -0.00001 0.16024 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 MMVB: VB Energy= -0.1578376 for root 1 MMVB: MM Energy= 0.0728930 MMVB: MM+VB Energy= -0.3448944 for root 1 Exit VBMMVB module. Energy= -0.344894398 NIter= 0. Dipole moment= 0.000000 0.000000 0.000000 Leave Link 402 at Tue Feb 14 18:17:51 2012, MaxMem= 196608000 cpu: 0.0 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l9999.exe) Test job not archived. 1\1\GINC-CX1-50-4-1\SP\RAMBER\ZDO\C6H6\JJSERRAN\14-Feb-2012\0\\#p ambe r=(softonly,lastequiv) test geom=connectivity SP iop(1/19=11,1/117=100 01,1/119=-3,2/15=1,4/31=1,4/33=2)\\MMVB analysis BENZENE\\0,1\C,0,0.00 0001,1.20928,0.698178\C,0,0.000009,1.209282,-0.698171\C,0,0.000002,0.0 00002,-1.396351\C,0,0.000004,-1.20928,-0.698178\C,0,0.000006,-1.209289 ,0.698172\C,0,0.000007,0.000008,1.396353\H,0,0.000001,2.140694,1.23593 \H,0,0.000003,2.140693,-1.235933\H,0,0.000004,0.000009,-2.471868\H,0,0 .000005,-2.140694,-1.235937\H,0,0.000001,-2.140691,1.235933\H,0,0.0000 01,0.000001,2.471861\\Version=EM64L-GDVRevH.08\HF=-0.3448944\RMSD=0.00 0e+00\Dipole=0.,0.,0.\PG=C01 [X(C6H6)]\\@ AND THIS OUR LIFE, EXEMPT FROM PUBLIC HAUNT, FINDS TONGUES IN TREES, BOOKS IN THE RUNNING BROOKS, SERMONS IN STONES, AND GOOD IN EVERYTHING. I WOULD NOT CHANGE IT. -- W. SHAKESPEARE AS YOU LIKE IT, ACT II, SCENE 1. Job cpu time: 0 days 0 hours 0 minutes 0.4 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian DV at Tue Feb 14 18:17:51 2012.