Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 3260. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 04-May-2018 ****************************************** %chk=\\icnas2.cc.ic.ac.uk\yc10315\Desktop\Gaussian YH\project\yh_borazine_631g_d p_symm.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; -------------------------------------------- Borazine optimisation 631G(d,p) symmeterised -------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 B 0. 1.45062 0. H 0. 2.64576 0. B -1.25627 -0.72531 0. H -2.29129 -1.32288 0. B 1.25627 -0.72531 0. H 2.29129 -1.32288 0. N 1.22076 0.70481 0. H 2.09511 1.20961 0. N -1.22076 0.70481 0. H -2.09511 1.20961 0. N 0. -1.40962 0. H 0. -2.41922 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.1951 estimate D2E/DX2 ! ! R2 R(1,7) 1.4306 estimate D2E/DX2 ! ! R3 R(1,9) 1.4306 estimate D2E/DX2 ! ! R4 R(3,4) 1.1951 estimate D2E/DX2 ! ! R5 R(3,9) 1.4306 estimate D2E/DX2 ! ! R6 R(3,11) 1.4306 estimate D2E/DX2 ! ! R7 R(5,6) 1.1951 estimate D2E/DX2 ! ! R8 R(5,7) 1.4306 estimate D2E/DX2 ! ! R9 R(5,11) 1.4306 estimate D2E/DX2 ! ! R10 R(7,8) 1.0096 estimate D2E/DX2 ! ! R11 R(9,10) 1.0096 estimate D2E/DX2 ! ! R12 R(11,12) 1.0096 estimate D2E/DX2 ! ! A1 A(2,1,7) 121.4224 estimate D2E/DX2 ! ! A2 A(2,1,9) 121.4224 estimate D2E/DX2 ! ! A3 A(7,1,9) 117.1551 estimate D2E/DX2 ! ! A4 A(4,3,9) 121.4224 estimate D2E/DX2 ! ! A5 A(4,3,11) 121.4224 estimate D2E/DX2 ! ! A6 A(9,3,11) 117.1551 estimate D2E/DX2 ! ! A7 A(6,5,7) 121.4224 estimate D2E/DX2 ! ! A8 A(6,5,11) 121.4224 estimate D2E/DX2 ! ! A9 A(7,5,11) 117.1551 estimate D2E/DX2 ! ! A10 A(1,7,5) 122.8449 estimate D2E/DX2 ! ! A11 A(1,7,8) 118.5776 estimate D2E/DX2 ! ! A12 A(5,7,8) 118.5776 estimate D2E/DX2 ! ! A13 A(1,9,3) 122.8449 estimate D2E/DX2 ! ! A14 A(1,9,10) 118.5776 estimate D2E/DX2 ! ! A15 A(3,9,10) 118.5776 estimate D2E/DX2 ! ! A16 A(3,11,5) 122.8449 estimate D2E/DX2 ! ! A17 A(3,11,12) 118.5776 estimate D2E/DX2 ! ! A18 A(5,11,12) 118.5776 estimate D2E/DX2 ! ! D1 D(2,1,7,5) 180.0 estimate D2E/DX2 ! ! D2 D(2,1,7,8) 0.0 estimate D2E/DX2 ! ! D3 D(9,1,7,5) 0.0 estimate D2E/DX2 ! ! D4 D(9,1,7,8) 180.0 estimate D2E/DX2 ! ! D5 D(2,1,9,3) 180.0 estimate D2E/DX2 ! ! D6 D(2,1,9,10) 0.0 estimate D2E/DX2 ! ! D7 D(7,1,9,3) 0.0 estimate D2E/DX2 ! ! D8 D(7,1,9,10) 180.0 estimate D2E/DX2 ! ! D9 D(4,3,9,1) 180.0 estimate D2E/DX2 ! ! D10 D(4,3,9,10) 0.0 estimate D2E/DX2 ! ! D11 D(11,3,9,1) 0.0 estimate D2E/DX2 ! ! D12 D(11,3,9,10) 180.0 estimate D2E/DX2 ! ! D13 D(4,3,11,5) 180.0 estimate D2E/DX2 ! ! D14 D(4,3,11,12) 0.0 estimate D2E/DX2 ! ! D15 D(9,3,11,5) 0.0 estimate D2E/DX2 ! ! D16 D(9,3,11,12) 180.0 estimate D2E/DX2 ! ! D17 D(6,5,7,1) 180.0 estimate D2E/DX2 ! ! D18 D(6,5,7,8) 0.0 estimate D2E/DX2 ! ! D19 D(11,5,7,1) 0.0 estimate D2E/DX2 ! ! D20 D(11,5,7,8) 180.0 estimate D2E/DX2 ! ! D21 D(6,5,11,3) 180.0 estimate D2E/DX2 ! ! D22 D(6,5,11,12) 0.0 estimate D2E/DX2 ! ! D23 D(7,5,11,3) 0.0 estimate D2E/DX2 ! ! D24 D(7,5,11,12) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 64 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.000000 1.450621 0.000000 2 1 0 0.000000 2.645759 0.000000 3 5 0 -1.256274 -0.725310 0.000000 4 1 0 -2.291295 -1.322880 0.000000 5 5 0 1.256274 -0.725310 0.000000 6 1 0 2.291295 -1.322880 0.000000 7 7 0 1.220763 0.704808 0.000000 8 1 0 2.095106 1.209610 0.000000 9 7 0 -1.220763 0.704808 0.000000 10 1 0 -2.095106 1.209610 0.000000 11 7 0 0.000000 -1.409615 0.000000 12 1 0 0.000000 -2.419220 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 B 0.000000 2 H 1.195139 0.000000 3 B 2.512549 3.597546 0.000000 4 H 3.597546 4.582590 1.195139 0.000000 5 B 2.512549 3.597546 2.512549 3.597546 0.000000 6 H 3.597546 4.582590 3.597546 4.582590 1.195139 7 N 1.430559 2.292936 2.860236 4.055375 1.430559 8 H 2.108923 2.540077 3.869841 5.064979 2.108923 9 N 1.430559 2.292936 1.430559 2.292936 2.860236 10 H 2.108923 2.540077 2.108923 2.540077 3.869841 11 N 2.860236 4.055375 1.430559 2.292936 1.430559 12 H 3.869841 5.064979 2.108923 2.540077 2.108923 6 7 8 9 10 6 H 0.000000 7 N 2.292936 0.000000 8 H 2.540077 1.009604 0.000000 9 N 4.055375 2.441526 3.354074 0.000000 10 H 5.064979 3.354074 4.190212 1.009604 0.000000 11 N 2.292936 2.441526 3.354074 2.441526 3.354074 12 H 2.540077 3.354074 4.190212 3.354074 4.190212 11 12 11 N 0.000000 12 H 1.009604 0.000000 Stoichiometry B3H6N3 Framework group D3H[3C2(HB.NH)] Deg. of freedom 4 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -1.256274 0.725310 0.000000 2 1 0 -2.291295 1.322880 0.000000 3 5 0 0.000000 -1.450621 0.000000 4 1 0 0.000000 -2.645759 0.000000 5 5 0 1.256274 0.725310 0.000000 6 1 0 2.291295 1.322880 0.000000 7 7 0 0.000000 1.409615 0.000000 8 1 0 0.000000 2.419220 0.000000 9 7 0 -1.220763 -0.704808 0.000000 10 1 0 -2.095106 -1.209610 0.000000 11 7 0 1.220763 -0.704808 0.000000 12 1 0 2.095106 -1.209610 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 5.2689376 5.2689376 2.6344688 Standard basis: 6-31G(d,p) (6D, 7F) There are 52 symmetry adapted cartesian basis functions of A1 symmetry. There are 12 symmetry adapted cartesian basis functions of A2 symmetry. There are 38 symmetry adapted cartesian basis functions of B1 symmetry. There are 18 symmetry adapted cartesian basis functions of B2 symmetry. There are 52 symmetry adapted basis functions of A1 symmetry. There are 12 symmetry adapted basis functions of A2 symmetry. There are 38 symmetry adapted basis functions of B1 symmetry. There are 18 symmetry adapted basis functions of B2 symmetry. 120 basis functions, 210 primitive gaussians, 120 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 197.7527357049 Hartrees. NAtoms= 12 NActive= 12 NUniq= 4 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 120 RedAO= T EigKep= 5.87D-03 NBF= 52 12 38 18 NBsUse= 120 1.00D-06 EigRej= -1.00D+00 NBFU= 52 12 38 18 ExpMin= 1.27D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1') (E') (E') (A1') (E') (E') (A1') (E') (E') (A1') (E') (E') (A2') (E') (E') (A1') (A2") (E') (E') (E") (E") Virtual (E") (E") (A2") (A1') (E') (E') (A1') (E') (E') (A2') (E') (E') (A1') (E') (E') (A2") (E') (E') (E") (E") (A1') (E') (E') (A1') (A2') (E") (E") (E') (E') (E') (E') (A2") (A1') (E') (E') (A1') (A2') (E') (E') (A1") (A1') (A2") (E") (E") (E') (E') (E") (E") (A1') (E') (E') (A1') (A2') (E') (E') (E') (E') (E") (E") (A2") (E') (E') (A1') (E") (E") (A2') (A2") (E') (E') (E") (E") (A1') (E') (E') (A2') (A1") (E') (E') (E") (E") (E') (E') (A2") (A1') (E') (E') (A2') (E') (E') (A1') (E') (E') (A1') (E') (E') (A1') (E') (E') (A1') The electronic state of the initial guess is 1-A1'. Keep R1 ints in memory in symmetry-blocked form, NReq=33473238. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -242.684598660 A.U. after 11 cycles NFock= 11 Conv=0.36D-08 -V/T= 2.0096 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (E') (E') (A1') (A1') (E') (E') (A1') (E') (E') (A1') (E') (E') (E') (E') (A2') (A1') (A2") (E') (E') (E") (E") Virtual (E") (E") (A1') (E') (E') (A2") (A1') (E') (E') (A2') (E') (E') (A1') (E') (E') (A2") (E') (E') (E") (E") (A1') (E') (E') (A1') (A2') (E') (E') (E") (E") (E') (E') (A1') (A2") (A1') (E') (E') (A2') (E') (E') (A1") (A1') (A2") (E") (E") (E') (E') (E") (E") (A1') (E') (E') (A1') (A2') (E') (E') (E') (E') (E") (E") (A2") (E') (E') (A1') (E") (E") (A2') (A2") (E') (E') (E") (E") (A1') (E') (E') (A2') (A1") (E') (E') (E") (E") (E') (E') (A2") (E') (E') (A1') (A2') (E') (E') (A1') (E') (E') (A1') (E') (E') (A1') (E') (E') (A1') The electronic state is 1-A1'. Alpha occ. eigenvalues -- -14.31548 -14.31548 -14.31547 -6.74680 -6.74679 Alpha occ. eigenvalues -- -6.74679 -0.88858 -0.83521 -0.83521 -0.55144 Alpha occ. eigenvalues -- -0.52455 -0.52455 -0.43412 -0.43412 -0.43204 Alpha occ. eigenvalues -- -0.38641 -0.36136 -0.31987 -0.31987 -0.27596 Alpha occ. eigenvalues -- -0.27596 Alpha virt. eigenvalues -- 0.02424 0.02424 0.08950 0.11826 0.11826 Alpha virt. eigenvalues -- 0.12495 0.16899 0.19646 0.19646 0.24258 Alpha virt. eigenvalues -- 0.27189 0.27189 0.28689 0.34553 0.34553 Alpha virt. eigenvalues -- 0.42104 0.45508 0.45508 0.47910 0.47910 Alpha virt. eigenvalues -- 0.50090 0.55314 0.55314 0.63685 0.67018 Alpha virt. eigenvalues -- 0.76393 0.76393 0.79014 0.79014 0.83803 Alpha virt. eigenvalues -- 0.83803 0.87424 0.88036 0.88497 0.88913 Alpha virt. eigenvalues -- 0.88913 1.02088 1.07203 1.07203 1.09347 Alpha virt. eigenvalues -- 1.11117 1.12880 1.20974 1.20974 1.24714 Alpha virt. eigenvalues -- 1.24714 1.30840 1.30840 1.31019 1.42171 Alpha virt. eigenvalues -- 1.42171 1.49845 1.66273 1.74479 1.74479 Alpha virt. eigenvalues -- 1.80281 1.80281 1.84811 1.84811 1.91409 Alpha virt. eigenvalues -- 1.93285 1.93285 1.98921 2.14873 2.14873 Alpha virt. eigenvalues -- 2.29931 2.32502 2.33084 2.33084 2.34717 Alpha virt. eigenvalues -- 2.34717 2.35684 2.37700 2.37700 2.44118 Alpha virt. eigenvalues -- 2.47267 2.49595 2.49595 2.59844 2.59844 Alpha virt. eigenvalues -- 2.71139 2.71139 2.73542 2.90040 2.90040 Alpha virt. eigenvalues -- 2.90132 3.11372 3.14805 3.14805 3.15231 Alpha virt. eigenvalues -- 3.44207 3.44207 3.56604 3.62922 3.62922 Alpha virt. eigenvalues -- 4.02064 4.16645 4.16645 4.31289 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 B 3.477721 0.383117 -0.009015 0.002911 -0.009015 0.002911 2 H 0.383117 0.779722 0.002911 -0.000098 0.002911 -0.000098 3 B -0.009015 0.002911 3.477721 0.383117 -0.009015 0.002911 4 H 0.002911 -0.000098 0.383117 0.779722 0.002911 -0.000098 5 B -0.009015 0.002911 -0.009015 0.002911 3.477721 0.383117 6 H 0.002911 -0.000098 0.002911 -0.000098 0.383117 0.779722 7 N 0.460196 -0.037353 -0.017059 -0.000061 0.460196 -0.037353 8 H -0.030043 -0.003445 0.000833 0.000008 -0.030043 -0.003445 9 N 0.460196 -0.037353 0.460196 -0.037353 -0.017059 -0.000061 10 H -0.030043 -0.003445 -0.030043 -0.003445 0.000833 0.000008 11 N -0.017059 -0.000061 0.460196 -0.037353 0.460196 -0.037353 12 H 0.000833 0.000008 -0.030043 -0.003445 -0.030043 -0.003445 7 8 9 10 11 12 1 B 0.460196 -0.030043 0.460196 -0.030043 -0.017059 0.000833 2 H -0.037353 -0.003445 -0.037353 -0.003445 -0.000061 0.000008 3 B -0.017059 0.000833 0.460196 -0.030043 0.460196 -0.030043 4 H -0.000061 0.000008 -0.037353 -0.003445 -0.037353 -0.003445 5 B 0.460196 -0.030043 -0.017059 0.000833 0.460196 -0.030043 6 H -0.037353 -0.003445 -0.000061 0.000008 -0.037353 -0.003445 7 N 6.334743 0.356263 -0.026570 0.002239 -0.026570 0.002239 8 H 0.356263 0.455167 0.002239 -0.000107 0.002239 -0.000107 9 N -0.026570 0.002239 6.334743 0.356263 -0.026570 0.002239 10 H 0.002239 -0.000107 0.356263 0.455167 0.002239 -0.000107 11 N -0.026570 0.002239 -0.026570 0.002239 6.334743 0.356263 12 H 0.002239 -0.000107 0.002239 -0.000107 0.356263 0.455167 Mulliken charges: 1 1 B 0.307287 2 H -0.086817 3 B 0.307287 4 H -0.086817 5 B 0.307287 6 H -0.086817 7 N -0.470911 8 H 0.250441 9 N -0.470911 10 H 0.250441 11 N -0.470911 12 H 0.250441 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 B 0.220470 3 B 0.220470 5 B 0.220470 7 N -0.220470 9 N -0.220470 11 N -0.220470 Electronic spatial extent (au): = 476.2352 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -33.2472 YY= -33.2472 ZZ= -36.8206 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 1.1911 YY= 1.1911 ZZ= -2.3823 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 14.4063 ZZZ= 0.0000 XYY= 0.0000 XXY= -14.4063 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -303.8588 YYYY= -303.8588 ZZZZ= -36.6039 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -101.2863 XXZZ= -61.7519 YYZZ= -61.7519 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.977527357049D+02 E-N=-9.595076040549D+02 KE= 2.403809341155D+02 Symmetry A1 KE= 1.512555424997D+02 Symmetry A2 KE= 2.950961032697D+00 Symmetry B1 KE= 8.093723941590D+01 Symmetry B2 KE= 5.237191167190D+00 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 0.000000000 0.000132359 0.000000000 2 1 0.000000000 0.000005045 0.000000000 3 5 -0.000114627 -0.000066180 0.000000000 4 1 -0.000004369 -0.000002522 0.000000000 5 5 0.000114627 -0.000066180 0.000000000 6 1 0.000004369 -0.000002522 0.000000000 7 7 -0.000169695 -0.000097973 0.000000000 8 1 0.000066552 0.000038424 0.000000000 9 7 0.000169695 -0.000097973 0.000000000 10 1 -0.000066552 0.000038424 0.000000000 11 7 0.000000000 0.000195947 0.000000000 12 1 0.000000000 -0.000076847 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000195947 RMS 0.000071790 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000076847 RMS 0.000032862 Search for a local minimum. Step number 1 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01817 0.01817 0.01817 0.01817 0.01817 Eigenvalues --- 0.01817 0.01817 0.01817 0.01817 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.25024 0.25024 Eigenvalues --- 0.25024 0.37688 0.37688 0.40909 0.40909 Eigenvalues --- 0.40909 0.40909 0.46039 0.46039 0.46039 RFO step: Lambda=-2.21464636D-07 EMin= 1.81684502D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00010260 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 3.05D-11 for atom 2. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.25848 0.00001 0.00000 0.00002 0.00002 2.25850 R2 2.70336 0.00001 0.00000 0.00003 0.00003 2.70339 R3 2.70336 0.00001 0.00000 0.00003 0.00003 2.70339 R4 2.25848 0.00001 0.00000 0.00002 0.00002 2.25850 R5 2.70336 0.00001 0.00000 0.00003 0.00003 2.70339 R6 2.70336 0.00001 0.00000 0.00003 0.00003 2.70339 R7 2.25848 0.00001 0.00000 0.00002 0.00002 2.25850 R8 2.70336 0.00001 0.00000 0.00003 0.00003 2.70339 R9 2.70336 0.00001 0.00000 0.00003 0.00003 2.70339 R10 1.90788 0.00008 0.00000 0.00017 0.00017 1.90804 R11 1.90788 0.00008 0.00000 0.00017 0.00017 1.90804 R12 1.90788 0.00008 0.00000 0.00017 0.00017 1.90804 A1 2.11922 0.00003 0.00000 0.00015 0.00015 2.11937 A2 2.11922 0.00003 0.00000 0.00015 0.00015 2.11937 A3 2.04474 -0.00007 0.00000 -0.00030 -0.00030 2.04444 A4 2.11922 0.00003 0.00000 0.00015 0.00015 2.11937 A5 2.11922 0.00003 0.00000 0.00015 0.00015 2.11937 A6 2.04474 -0.00007 0.00000 -0.00030 -0.00030 2.04444 A7 2.11922 0.00003 0.00000 0.00015 0.00015 2.11937 A8 2.11922 0.00003 0.00000 0.00015 0.00015 2.11937 A9 2.04474 -0.00007 0.00000 -0.00030 -0.00030 2.04444 A10 2.14405 0.00007 0.00000 0.00030 0.00030 2.14435 A11 2.06957 -0.00003 0.00000 -0.00015 -0.00015 2.06942 A12 2.06957 -0.00003 0.00000 -0.00015 -0.00015 2.06942 A13 2.14405 0.00007 0.00000 0.00030 0.00030 2.14435 A14 2.06957 -0.00003 0.00000 -0.00015 -0.00015 2.06942 A15 2.06957 -0.00003 0.00000 -0.00015 -0.00015 2.06942 A16 2.14405 0.00007 0.00000 0.00030 0.00030 2.14435 A17 2.06957 -0.00003 0.00000 -0.00015 -0.00015 2.06942 A18 2.06957 -0.00003 0.00000 -0.00015 -0.00015 2.06942 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D8 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D9 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D12 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D16 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D17 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D18 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D19 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D20 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D21 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D22 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D23 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D24 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000077 0.000450 YES RMS Force 0.000033 0.000300 YES Maximum Displacement 0.000273 0.001800 YES RMS Displacement 0.000103 0.001200 YES Predicted change in Energy=-1.107323D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.1951 -DE/DX = 0.0 ! ! R2 R(1,7) 1.4306 -DE/DX = 0.0 ! ! R3 R(1,9) 1.4306 -DE/DX = 0.0 ! ! R4 R(3,4) 1.1951 -DE/DX = 0.0 ! ! R5 R(3,9) 1.4306 -DE/DX = 0.0 ! ! R6 R(3,11) 1.4306 -DE/DX = 0.0 ! ! R7 R(5,6) 1.1951 -DE/DX = 0.0 ! ! R8 R(5,7) 1.4306 -DE/DX = 0.0 ! ! R9 R(5,11) 1.4306 -DE/DX = 0.0 ! ! R10 R(7,8) 1.0096 -DE/DX = 0.0001 ! ! R11 R(9,10) 1.0096 -DE/DX = 0.0001 ! ! R12 R(11,12) 1.0096 -DE/DX = 0.0001 ! ! A1 A(2,1,7) 121.4224 -DE/DX = 0.0 ! ! A2 A(2,1,9) 121.4224 -DE/DX = 0.0 ! ! A3 A(7,1,9) 117.1551 -DE/DX = -0.0001 ! ! A4 A(4,3,9) 121.4224 -DE/DX = 0.0 ! ! A5 A(4,3,11) 121.4224 -DE/DX = 0.0 ! ! A6 A(9,3,11) 117.1551 -DE/DX = -0.0001 ! ! A7 A(6,5,7) 121.4224 -DE/DX = 0.0 ! ! A8 A(6,5,11) 121.4224 -DE/DX = 0.0 ! ! A9 A(7,5,11) 117.1551 -DE/DX = -0.0001 ! ! A10 A(1,7,5) 122.8449 -DE/DX = 0.0001 ! ! A11 A(1,7,8) 118.5776 -DE/DX = 0.0 ! ! A12 A(5,7,8) 118.5776 -DE/DX = 0.0 ! ! A13 A(1,9,3) 122.8449 -DE/DX = 0.0001 ! ! A14 A(1,9,10) 118.5776 -DE/DX = 0.0 ! ! A15 A(3,9,10) 118.5776 -DE/DX = 0.0 ! ! A16 A(3,11,5) 122.8449 -DE/DX = 0.0001 ! ! A17 A(3,11,12) 118.5776 -DE/DX = 0.0 ! ! A18 A(5,11,12) 118.5776 -DE/DX = 0.0 ! ! D1 D(2,1,7,5) 180.0 -DE/DX = 0.0 ! ! D2 D(2,1,7,8) 0.0 -DE/DX = 0.0 ! ! D3 D(9,1,7,5) 0.0 -DE/DX = 0.0 ! ! D4 D(9,1,7,8) 180.0 -DE/DX = 0.0 ! ! D5 D(2,1,9,3) 180.0 -DE/DX = 0.0 ! ! D6 D(2,1,9,10) 0.0 -DE/DX = 0.0 ! ! D7 D(7,1,9,3) 0.0 -DE/DX = 0.0 ! ! D8 D(7,1,9,10) 180.0 -DE/DX = 0.0 ! ! D9 D(4,3,9,1) 180.0 -DE/DX = 0.0 ! ! D10 D(4,3,9,10) 0.0 -DE/DX = 0.0 ! ! D11 D(11,3,9,1) 0.0 -DE/DX = 0.0 ! ! D12 D(11,3,9,10) 180.0 -DE/DX = 0.0 ! ! D13 D(4,3,11,5) 180.0 -DE/DX = 0.0 ! ! D14 D(4,3,11,12) 0.0 -DE/DX = 0.0 ! ! D15 D(9,3,11,5) 0.0 -DE/DX = 0.0 ! ! D16 D(9,3,11,12) 180.0 -DE/DX = 0.0 ! ! D17 D(6,5,7,1) 180.0 -DE/DX = 0.0 ! ! D18 D(6,5,7,8) 0.0 -DE/DX = 0.0 ! ! D19 D(11,5,7,1) 0.0 -DE/DX = 0.0 ! ! D20 D(11,5,7,8) 180.0 -DE/DX = 0.0 ! ! D21 D(6,5,11,3) 180.0 -DE/DX = 0.0 ! ! D22 D(6,5,11,12) 0.0 -DE/DX = 0.0 ! ! D23 D(7,5,11,3) 0.0 -DE/DX = 0.0 ! ! D24 D(7,5,11,12) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.000000 1.450621 0.000000 2 1 0 0.000000 2.645759 0.000000 3 5 0 -1.256274 -0.725310 0.000000 4 1 0 -2.291295 -1.322880 0.000000 5 5 0 1.256274 -0.725310 0.000000 6 1 0 2.291295 -1.322880 0.000000 7 7 0 1.220763 0.704808 0.000000 8 1 0 2.095106 1.209610 0.000000 9 7 0 -1.220763 0.704808 0.000000 10 1 0 -2.095106 1.209610 0.000000 11 7 0 0.000000 -1.409615 0.000000 12 1 0 0.000000 -2.419220 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 B 0.000000 2 H 1.195139 0.000000 3 B 2.512549 3.597546 0.000000 4 H 3.597546 4.582590 1.195139 0.000000 5 B 2.512549 3.597546 2.512549 3.597546 0.000000 6 H 3.597546 4.582590 3.597546 4.582590 1.195139 7 N 1.430559 2.292936 2.860236 4.055375 1.430559 8 H 2.108923 2.540077 3.869841 5.064979 2.108923 9 N 1.430559 2.292936 1.430559 2.292936 2.860236 10 H 2.108923 2.540077 2.108923 2.540077 3.869841 11 N 2.860236 4.055375 1.430559 2.292936 1.430559 12 H 3.869841 5.064979 2.108923 2.540077 2.108923 6 7 8 9 10 6 H 0.000000 7 N 2.292936 0.000000 8 H 2.540077 1.009604 0.000000 9 N 4.055375 2.441526 3.354074 0.000000 10 H 5.064979 3.354074 4.190212 1.009604 0.000000 11 N 2.292936 2.441526 3.354074 2.441526 3.354074 12 H 2.540077 3.354074 4.190212 3.354074 4.190212 11 12 11 N 0.000000 12 H 1.009604 0.000000 Stoichiometry B3H6N3 Framework group D3H[3C2(HB.NH)] Deg. of freedom 4 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -1.256274 0.725310 0.000000 2 1 0 -2.291295 1.322880 0.000000 3 5 0 0.000000 -1.450621 0.000000 4 1 0 0.000000 -2.645759 0.000000 5 5 0 1.256274 0.725310 0.000000 6 1 0 2.291295 1.322880 0.000000 7 7 0 0.000000 1.409615 0.000000 8 1 0 0.000000 2.419220 0.000000 9 7 0 -1.220763 -0.704808 0.000000 10 1 0 -2.095106 -1.209610 0.000000 11 7 0 1.220763 -0.704808 0.000000 12 1 0 2.095106 -1.209610 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 5.2689376 5.2689376 2.6344688 1|1| IMPERIAL COLLEGE-CHWS-101|FOpt|RB3LYP|6-31G(d,p)|B3H6N3|YC10315|0 4-May-2018|0||# opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=u ltrafine||Borazine optimisation 631G(d,p) symmeterised||0,1|B,0.000000 0022,1.45062075,0.|H,0.0000000041,2.64575935,0.|B,-1.2562744206,-0.725 3103709,0.|H,-2.2912948102,-1.3228796693,0.|B,1.2562744184,-0.72531037 48,0.|H,2.2912948061,-1.3228796764,0.|N,1.2207627613,0.7048077078,0.|H ,2.0951058098,1.2096099004,0.|N,-1.2207627591,0.7048077115,0.|H,-2.095 1058061,1.2096099068,0.|N,-0.0000000022,-1.409615415,0.|H,-0.000000003 7,-2.4192198029,0.||Version=EM64W-G09RevD.01|State=1-A1'|HF=-242.68459 87|RMSD=3.603e-009|RMSF=7.179e-005|Dipole=0.,0.,0.|Quadrupole=0.885584 4,0.8855844,-1.7711688,0.,0.,0.|PG=D03H [3C2(H1B1.N1H1)]||@ THE GREAT THING ABOUT BEING IMPERFECT IS THE JOY IT BRINGS OTHERS. -- SIGN OUTSIDE LAKE AGASSIZ JR. HIGH SCHOOL, FARGO, N.D. Job cpu time: 0 days 0 hours 3 minutes 36.0 seconds. File lengths (MBytes): RWF= 8 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Fri May 04 13:16:27 2018.