Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_d01/g09/l1.exe "/home/scan-user-1/run/84771/Gau-12974.inp" -scrdir="/home/scan-user-1/run/84771/" Entering Link 1 = /apps/gaussian/g09_d01/g09/l1.exe PID= 12975. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: ES64L-G09RevD.01 24-Apr-2013 2-Dec-2013 ****************************************** %nprocshared=8 Will use up to 8 processors via shared memory. %mem=13000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.5912108.cx1b/rwf ---------------------------------------------------------------------- # CAM-B3LYP/6-311++g(2df,p) polar(optrot) scrf(cpcm,solvent=chloroform ) CPHF=RdFreq ---------------------------------------------------------------------- 1/38=1,83=21/1; 2/12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=1114,11=2,16=1,25=1,30=1,36=2,70=2101,72=7,74=-40/1,2,3; 4//1; 5/5=2,38=5,53=7,96=-2,98=1/2; 8/6=4,10=90,11=11/1; 10/6=1,13=10,46=8,60=-2,72=3/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------ NMR_SS_methylstyrene_com ------------------------ Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C -1.15142 0.37996 0.46057 C -2.17838 -0.22254 -0.41593 O -1.91047 -0.7707 0.88816 C 0.30836 0.18865 0.22583 C 1.15812 1.30079 0.17699 C 2.52077 1.13792 -0.0782 C 3.04819 -0.13998 -0.27801 C 2.20586 -1.25407 -0.21921 C 0.84364 -1.0916 0.03141 C -3.53376 0.40096 -0.62014 H -1.42209 1.30646 0.97076 H -1.81101 -0.847 -1.23337 H 0.75125 2.29584 0.33887 H 3.17027 2.0076 -0.11519 H 4.10902 -0.26778 -0.47187 H 2.61221 -2.25085 -0.36445 H 0.18422 -1.95131 0.09634 H -3.53615 1.01849 -1.52429 H -4.2988 -0.37375 -0.7366 H -3.80348 1.02739 0.23467 Using perturbation frequencies: 0.077357 0.124831 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.151417 0.379957 0.460567 2 6 0 -2.178378 -0.222542 -0.415925 3 8 0 -1.910468 -0.770700 0.888157 4 6 0 0.308359 0.188647 0.225828 5 6 0 1.158117 1.300794 0.176990 6 6 0 2.520768 1.137921 -0.078199 7 6 0 3.048190 -0.139982 -0.278011 8 6 0 2.205861 -1.254066 -0.219211 9 6 0 0.843640 -1.091601 0.031411 10 6 0 -3.533757 0.400960 -0.620137 11 1 0 -1.422093 1.306455 0.970755 12 1 0 -1.811014 -0.847004 -1.233371 13 1 0 0.751250 2.295837 0.338872 14 1 0 3.170266 2.007601 -0.115185 15 1 0 4.109021 -0.267784 -0.471867 16 1 0 2.612213 -2.250852 -0.364452 17 1 0 0.184224 -1.951311 0.096338 18 1 0 -3.536147 1.018486 -1.524291 19 1 0 -4.298795 -0.373753 -0.736600 20 1 0 -3.803482 1.027386 0.234671 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.478476 0.000000 3 O 1.443261 1.439751 0.000000 4 C 1.490855 2.600920 2.506436 0.000000 5 C 2.502460 3.715414 3.770021 1.400480 0.000000 6 C 3.788103 4.903763 4.920623 2.426583 1.395875 7 C 4.295641 5.229039 5.132840 2.805089 2.419760 8 C 3.795187 4.508247 4.289997 2.424870 2.789633 9 C 2.515931 3.176156 2.902086 1.401199 2.417363 10 C 2.616086 1.505825 2.506552 3.939872 4.843428 11 H 1.091767 2.198336 2.135394 2.190633 2.699552 12 H 2.193155 1.092304 2.125228 2.773730 3.926563 13 H 2.702878 3.936327 4.097573 2.156196 1.087133 14 H 4.653779 5.802756 5.877032 3.408137 2.152600 15 H 5.381562 6.287811 6.191675 3.891033 3.404304 16 H 4.665482 5.202543 4.920825 3.406953 3.875789 17 H 2.711348 2.972027 2.531512 2.147463 3.395756 18 H 3.167699 2.147595 3.415249 4.304855 5.001017 19 H 3.450692 2.149852 2.915735 4.740087 5.780713 20 H 2.739278 2.150944 2.691405 4.196522 4.969461 6 7 8 9 10 6 C 0.000000 7 C 1.396830 0.000000 8 C 2.416744 1.397912 0.000000 9 C 2.792050 2.421025 1.394580 0.000000 10 C 6.123241 6.612994 5.986908 4.670531 0.000000 11 H 4.083486 4.861587 4.597210 3.430246 2.794635 12 H 4.902926 5.002445 4.162872 2.950710 2.213891 13 H 2.155438 3.404364 3.876746 3.402617 4.782420 14 H 1.086075 2.157204 3.402847 3.878109 6.912322 15 H 2.157204 1.085945 2.158380 3.405096 7.673412 16 H 3.402071 2.157156 1.086186 2.151377 6.698539 17 H 3.877274 3.409304 2.161652 1.085424 4.457566 18 H 6.228296 6.800644 6.311765 5.104430 1.094915 19 H 7.016059 7.364994 6.584314 5.248789 1.095001 20 H 6.332949 6.969290 6.443853 5.111474 1.093553 11 12 13 14 15 11 H 0.000000 12 H 3.105932 0.000000 13 H 2.470136 4.349091 0.000000 14 H 4.770810 5.849125 2.478081 0.000000 15 H 5.928964 5.996849 4.301636 2.487139 0.000000 16 H 5.541916 4.721308 4.962885 4.302090 2.486872 17 H 3.736027 2.639810 4.291691 4.963282 4.308265 18 H 3.282896 2.557493 4.846109 6.923865 7.823725 19 H 3.743471 2.580659 5.812599 7.864088 8.412650 20 H 2.508129 3.104580 4.729208 7.050984 8.048874 16 17 18 19 20 16 H 0.000000 17 H 2.489414 0.000000 18 H 7.059471 5.028647 0.000000 19 H 7.171055 4.824928 1.772123 0.000000 20 H 7.229587 4.979314 1.779184 1.775357 0.000000 Stoichiometry C9H10O Framework group C1[X(C9H10O)] Deg. of freedom 54 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.151417 0.379957 -0.460567 2 6 0 2.178378 -0.222542 0.415925 3 8 0 1.910468 -0.770700 -0.888157 4 6 0 -0.308359 0.188647 -0.225828 5 6 0 -1.158117 1.300794 -0.176990 6 6 0 -2.520768 1.137921 0.078199 7 6 0 -3.048190 -0.139982 0.278011 8 6 0 -2.205861 -1.254066 0.219211 9 6 0 -0.843640 -1.091601 -0.031411 10 6 0 3.533757 0.400960 0.620137 11 1 0 1.422093 1.306455 -0.970755 12 1 0 1.811014 -0.847004 1.233371 13 1 0 -0.751250 2.295837 -0.338872 14 1 0 -3.170266 2.007601 0.115185 15 1 0 -4.109021 -0.267784 0.471867 16 1 0 -2.612213 -2.250852 0.364452 17 1 0 -0.184224 -1.951311 -0.096338 18 1 0 3.536147 1.018486 1.524291 19 1 0 4.298795 -0.373753 0.736600 20 1 0 3.803482 1.027386 -0.234671 --------------------------------------------------------------------- Rotational constants (GHZ): 3.6976260 0.7555087 0.6781149 Standard basis: 6-311++G(2df,p) (5D, 7F) There are 460 symmetry adapted cartesian basis functions of A symmetry. There are 410 symmetry adapted basis functions of A symmetry. 410 basis functions, 610 primitive gaussians, 460 cartesian basis functions 36 alpha electrons 36 beta electrons nuclear repulsion energy 485.1035521080 Hartrees. NAtoms= 20 NActive= 20 NUniq= 20 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. ------------------------------------------------------------------------------ Polarizable Continuum Model (PCM) ================================= Model : C-PCM. Atomic radii : UFF (Universal Force Field). Polarization charges : Total charges. Charge compensation : None. Solution method : On-the-fly selection. Cavity type : Scaled VdW (van der Waals Surface) (Alpha=1.100). Cavity algorithm : GePol (No added spheres) Default sphere list used, NSphG= 20. Lebedev-Laikov grids with approx. 5.0 points / Ang**2. Smoothing algorithm: Karplus/York (Gamma=1.0000). Polarization charges: spherical gaussians, with point-specific exponents (IZeta= 3). Self-potential: point-specific (ISelfS= 7). Self-field : sphere-specific E.n sum rule (ISelfD= 2). Solvent : Chloroform, Eps= 4.711300 Eps(inf)= 2.090627 ------------------------------------------------------------------------------ Spheres list: ISph on Nord Re0 Alpha Xe Ye Ze 1 C 1 1.9255 1.100 1.151417 0.379957 -0.460567 2 C 2 1.9255 1.100 2.178378 -0.222542 0.415925 3 O 3 1.7500 1.100 1.910468 -0.770700 -0.888157 4 C 4 1.9255 1.100 -0.308359 0.188647 -0.225828 5 C 5 1.9255 1.100 -1.158117 1.300794 -0.176990 6 C 6 1.9255 1.100 -2.520768 1.137921 0.078199 7 C 7 1.9255 1.100 -3.048190 -0.139982 0.278011 8 C 8 1.9255 1.100 -2.205861 -1.254066 0.219211 9 C 9 1.9255 1.100 -0.843640 -1.091601 -0.031411 10 C 10 1.9255 1.100 3.533757 0.400960 0.620137 11 H 11 1.4430 1.100 1.422093 1.306455 -0.970755 12 H 12 1.4430 1.100 1.811014 -0.847004 1.233371 13 H 13 1.4430 1.100 -0.751250 2.295837 -0.338872 14 H 14 1.4430 1.100 -3.170266 2.007601 0.115185 15 H 15 1.4430 1.100 -4.109021 -0.267784 0.471867 16 H 16 1.4430 1.100 -2.612213 -2.250852 0.364452 17 H 17 1.4430 1.100 -0.184224 -1.951311 -0.096338 18 H 18 1.4430 1.100 3.536147 1.018486 1.524291 19 H 19 1.4430 1.100 4.298795 -0.373753 0.736600 20 H 20 1.4430 1.100 3.803482 1.027386 -0.234671 ------------------------------------------------------------------------------ One-electron integrals computed using PRISM. NBasis= 410 RedAO= T EigKep= 2.81D-06 NBF= 410 NBsUse= 409 1.00D-06 EigRej= 8.07D-07 NBFU= 409 ExpMin= 3.60D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor=20419 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor=20419 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Inv3: Mode=1 IEnd= 8009868. Iteration 1 A*A^-1 deviation from unit magnitude is 5.77D-15 for 1634. Iteration 1 A*A^-1 deviation from orthogonality is 3.45D-15 for 1624 542. Iteration 1 A^-1*A deviation from unit magnitude is 5.77D-15 for 1634. Iteration 1 A^-1*A deviation from orthogonality is 1.79D-15 for 1590 1506. Error on total polarization charges = 0.01275 SCF Done: E(RCAM-B3LYP) = -424.077149641 A.U. after 13 cycles NFock= 13 Conv=0.80D-08 -V/T= 2.0043 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 409 NBasis= 410 NAE= 36 NBE= 36 NFC= 0 NFV= 0 NROrb= 409 NOA= 36 NOB= 36 NVA= 373 NVB= 373 **** Warning!!: The largest alpha MO coefficient is 0.14986038D+03 NEqPCM: Using non-equilibrium solvation (IEInf=1, Eps= 4.7113, EpsInf= 2.0906) Inv3: Mode=1 IEnd= 8009868. Iteration 1 A*A^-1 deviation from unit magnitude is 5.77D-15 for 1634. Iteration 1 A*A^-1 deviation from orthogonality is 3.45D-15 for 1624 542. Iteration 1 A^-1*A deviation from unit magnitude is 5.77D-15 for 1634. Iteration 1 A^-1*A deviation from orthogonality is 1.79D-15 for 1590 1506. Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=T KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. CalDSu exits because no D1Ps are significant. There are 6 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 6. LinEq1: Iter= 0 NonCon= 6 RMS=6.99D-02 Max=1.74D+00 NDo= 6 AX will form 6 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 6 RMS=9.41D-03 Max=4.56D-01 NDo= 6 LinEq1: Iter= 2 NonCon= 6 RMS=9.61D-03 Max=8.09D-01 NDo= 6 LinEq1: Iter= 3 NonCon= 6 RMS=2.88D-03 Max=1.16D-01 NDo= 6 LinEq1: Iter= 4 NonCon= 6 RMS=1.47D-03 Max=6.57D-02 NDo= 6 LinEq1: Iter= 5 NonCon= 6 RMS=1.08D-03 Max=4.76D-02 NDo= 6 LinEq1: Iter= 6 NonCon= 6 RMS=4.52D-04 Max=2.59D-02 NDo= 6 LinEq1: Iter= 7 NonCon= 6 RMS=2.89D-04 Max=1.38D-02 NDo= 6 LinEq1: Iter= 8 NonCon= 6 RMS=1.21D-04 Max=8.86D-03 NDo= 6 LinEq1: Iter= 9 NonCon= 6 RMS=4.84D-05 Max=2.51D-03 NDo= 6 LinEq1: Iter= 10 NonCon= 6 RMS=2.39D-05 Max=1.23D-03 NDo= 6 LinEq1: Iter= 11 NonCon= 6 RMS=1.08D-05 Max=6.31D-04 NDo= 6 LinEq1: Iter= 12 NonCon= 6 RMS=5.13D-06 Max=2.85D-04 NDo= 6 LinEq1: Iter= 13 NonCon= 6 RMS=3.18D-06 Max=2.60D-04 NDo= 6 LinEq1: Iter= 14 NonCon= 6 RMS=1.64D-06 Max=9.92D-05 NDo= 6 LinEq1: Iter= 15 NonCon= 6 RMS=9.03D-07 Max=4.47D-05 NDo= 6 LinEq1: Iter= 16 NonCon= 6 RMS=3.65D-07 Max=2.40D-05 NDo= 6 LinEq1: Iter= 17 NonCon= 6 RMS=1.36D-07 Max=4.30D-06 NDo= 6 LinEq1: Iter= 18 NonCon= 5 RMS=6.66D-08 Max=2.61D-06 NDo= 6 LinEq1: Iter= 19 NonCon= 4 RMS=2.25D-08 Max=9.49D-07 NDo= 5 LinEq1: Iter= 20 NonCon= 2 RMS=1.05D-08 Max=4.27D-07 NDo= 4 LinEq1: Iter= 21 NonCon= 2 RMS=4.67D-09 Max=1.76D-07 NDo= 2 LinEq1: Iter= 22 NonCon= 0 RMS=1.59D-09 Max=5.35D-08 NDo= 2 Linear equations converged to 1.000D-08 1.000D-07 after 22 iterations. Dipole-magnetic dipole polarizability for W= 0.077357: 1 2 3 1 0.323600D+01 0.779917D+01 -0.401554D+01 2 0.231396D+02 0.410580D+01 0.747018D+01 3 0.146644D+02 0.678072D+02 -0.685526D+01 w= 0.077357 a.u., Optical Rotation Beta= -0.1622 au. Molar Mass = 134.1774 grams/mole, [Alpha] ( 5890.0 A) = -46.77 deg. Dipole-magnetic dipole polarizability for W= 0.124831: 1 2 3 1 0.335365D+01 0.830255D+01 -0.421511D+01 2 0.281715D+02 0.531209D+01 0.567967D+01 3 0.183584D+02 0.830265D+02 -0.811569D+01 w= 0.124831 a.u., Optical Rotation Beta= -0.1833 au. Molar Mass = 134.1774 grams/mole, [Alpha] ( 3650.0 A) = -137.68 deg. End of Minotr F.D. properties on file 721 Mask= 2 NFrqRd= 2 NDeriv= 1 ND12= 1 LenFil= 22: Frequencies= 0.077357 0.124831 Property number 2 -- FD Optical Rotation Tensor frequency 1 0.077357: 1 2 3 1 0.323600D+01 0.779917D+01 -0.401554D+01 2 0.231396D+02 0.410580D+01 0.747018D+01 3 0.146644D+02 0.678072D+02 -0.685526D+01 Property number 2 -- FD Optical Rotation Tensor frequency 2 0.124831: 1 2 3 1 0.335365D+01 0.830255D+01 -0.421511D+01 2 0.281715D+02 0.531209D+01 0.567967D+01 3 0.183584D+02 0.830265D+02 -0.811569D+01 End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -19.21519 -10.30745 -10.30647 -10.26400 -10.25438 Alpha occ. eigenvalues -- -10.25363 -10.25334 -10.25192 -10.25139 -10.24170 Alpha occ. eigenvalues -- -1.16019 -0.94805 -0.85208 -0.83408 -0.83125 Alpha occ. eigenvalues -- -0.74896 -0.69262 -0.68413 -0.65899 -0.60680 Alpha occ. eigenvalues -- -0.56090 -0.55210 -0.52434 -0.51476 -0.49638 Alpha occ. eigenvalues -- -0.49295 -0.47944 -0.45572 -0.44768 -0.44001 Alpha occ. eigenvalues -- -0.41662 -0.41069 -0.38469 -0.35284 -0.31764 Alpha occ. eigenvalues -- -0.30311 Alpha virt. eigenvalues -- 0.01635 0.01715 0.02204 0.02542 0.02974 Alpha virt. eigenvalues -- 0.04145 0.04351 0.04746 0.06122 0.06806 Alpha virt. eigenvalues -- 0.07203 0.07898 0.08911 0.09379 0.10126 Alpha virt. eigenvalues -- 0.10358 0.11758 0.12055 0.13309 0.13539 Alpha virt. eigenvalues -- 0.14064 0.14152 0.14414 0.14580 0.15096 Alpha virt. eigenvalues -- 0.15551 0.15726 0.15842 0.16605 0.16979 Alpha virt. eigenvalues -- 0.17179 0.17393 0.18441 0.19089 0.19441 Alpha virt. eigenvalues -- 0.20180 0.20551 0.21069 0.21454 0.21825 Alpha virt. eigenvalues -- 0.22238 0.22718 0.23830 0.24228 0.24930 Alpha virt. eigenvalues -- 0.25382 0.26153 0.26877 0.27272 0.28462 Alpha virt. eigenvalues -- 0.28804 0.29776 0.30151 0.31230 0.31657 Alpha virt. eigenvalues -- 0.32446 0.32803 0.33191 0.33650 0.33896 Alpha virt. eigenvalues -- 0.35626 0.37054 0.37444 0.38719 0.39653 Alpha virt. eigenvalues -- 0.39869 0.41187 0.41670 0.43184 0.44877 Alpha virt. eigenvalues -- 0.47969 0.50118 0.51507 0.53102 0.53497 Alpha virt. eigenvalues -- 0.55017 0.55258 0.56784 0.57154 0.58408 Alpha virt. eigenvalues -- 0.58548 0.58998 0.59369 0.60684 0.61761 Alpha virt. eigenvalues -- 0.61860 0.63225 0.64424 0.66210 0.67273 Alpha virt. eigenvalues -- 0.67627 0.67848 0.68497 0.69127 0.69782 Alpha virt. eigenvalues -- 0.70290 0.70915 0.71081 0.72819 0.73298 Alpha virt. eigenvalues -- 0.75462 0.76039 0.76913 0.77659 0.78929 Alpha virt. eigenvalues -- 0.79432 0.80296 0.81929 0.83498 0.85466 Alpha virt. eigenvalues -- 0.85988 0.86784 0.87736 0.88236 0.88373 Alpha virt. eigenvalues -- 0.89263 0.89972 0.91647 0.92271 0.93241 Alpha virt. eigenvalues -- 0.94188 0.95423 0.98979 1.00267 1.03686 Alpha virt. eigenvalues -- 1.05480 1.06953 1.07555 1.11658 1.13264 Alpha virt. eigenvalues -- 1.14385 1.15725 1.18466 1.21232 1.21639 Alpha virt. eigenvalues -- 1.21947 1.23152 1.25049 1.26355 1.27978 Alpha virt. eigenvalues -- 1.29901 1.31896 1.34694 1.35455 1.37041 Alpha virt. eigenvalues -- 1.37486 1.38660 1.38931 1.41520 1.41880 Alpha virt. eigenvalues -- 1.42789 1.45020 1.48034 1.50269 1.53207 Alpha virt. eigenvalues -- 1.53532 1.54200 1.56094 1.59277 1.60163 Alpha virt. eigenvalues -- 1.61955 1.63172 1.66203 1.68064 1.70194 Alpha virt. eigenvalues -- 1.71810 1.72880 1.78970 1.79977 1.80576 Alpha virt. eigenvalues -- 1.83528 1.86402 1.88209 1.89790 1.95058 Alpha virt. eigenvalues -- 1.97440 1.99853 2.03638 2.05411 2.10731 Alpha virt. eigenvalues -- 2.15426 2.20218 2.21536 2.24897 2.28473 Alpha virt. eigenvalues -- 2.30136 2.31580 2.32614 2.35754 2.38122 Alpha virt. eigenvalues -- 2.38567 2.39680 2.41266 2.41468 2.45621 Alpha virt. eigenvalues -- 2.49372 2.51788 2.53015 2.54300 2.56685 Alpha virt. eigenvalues -- 2.57747 2.58844 2.59230 2.63334 2.63939 Alpha virt. eigenvalues -- 2.64289 2.64840 2.66479 2.68656 2.69360 Alpha virt. eigenvalues -- 2.69946 2.71082 2.76296 2.78019 2.80050 Alpha virt. eigenvalues -- 2.81324 2.82956 2.83556 2.84505 2.85174 Alpha virt. eigenvalues -- 2.87020 2.88000 2.88381 2.90566 2.91836 Alpha virt. eigenvalues -- 2.92231 2.92606 2.92952 2.94994 2.96399 Alpha virt. eigenvalues -- 2.96671 2.98108 2.99147 3.00148 3.01041 Alpha virt. eigenvalues -- 3.03135 3.03597 3.06064 3.07521 3.08779 Alpha virt. eigenvalues -- 3.12483 3.16335 3.18025 3.19708 3.20294 Alpha virt. eigenvalues -- 3.21329 3.23905 3.25332 3.27802 3.28963 Alpha virt. eigenvalues -- 3.30984 3.31662 3.33057 3.34710 3.35902 Alpha virt. eigenvalues -- 3.36902 3.37897 3.38168 3.39672 3.42173 Alpha virt. eigenvalues -- 3.43535 3.43627 3.44499 3.45548 3.46826 Alpha virt. eigenvalues -- 3.48360 3.50000 3.51472 3.53221 3.54297 Alpha virt. eigenvalues -- 3.55858 3.56784 3.57822 3.58886 3.60375 Alpha virt. eigenvalues -- 3.60887 3.61639 3.63197 3.65153 3.68039 Alpha virt. eigenvalues -- 3.69211 3.69495 3.70944 3.73085 3.74000 Alpha virt. eigenvalues -- 3.75199 3.76845 3.78696 3.80055 3.81716 Alpha virt. eigenvalues -- 3.84496 3.85719 3.86970 3.90404 3.91993 Alpha virt. eigenvalues -- 3.93145 3.95657 3.97229 3.98175 3.99614 Alpha virt. eigenvalues -- 4.00834 4.02008 4.07468 4.11639 4.12914 Alpha virt. eigenvalues -- 4.15857 4.19039 4.23009 4.25367 4.29258 Alpha virt. eigenvalues -- 4.32364 4.34567 4.36283 4.37446 4.40751 Alpha virt. eigenvalues -- 4.43703 4.47020 4.49794 4.51222 4.52783 Alpha virt. eigenvalues -- 4.54486 4.56075 4.57756 4.58806 4.60534 Alpha virt. eigenvalues -- 4.62804 4.68070 4.74251 4.76923 4.78281 Alpha virt. eigenvalues -- 4.79333 4.83488 4.87902 4.97319 5.00128 Alpha virt. eigenvalues -- 5.05253 5.08506 5.19216 5.19503 5.27076 Alpha virt. eigenvalues -- 5.28688 5.29745 5.34802 5.37619 5.38136 Alpha virt. eigenvalues -- 5.40951 5.45256 5.52333 5.53372 5.60484 Alpha virt. eigenvalues -- 5.68069 5.76208 5.85429 5.90522 6.00937 Alpha virt. eigenvalues -- 6.44922 6.48005 6.58761 7.14250 7.23912 Alpha virt. eigenvalues -- 7.39391 7.69264 7.79584 23.96761 24.39528 Alpha virt. eigenvalues -- 24.44008 24.44822 24.48937 24.56393 24.70231 Alpha virt. eigenvalues -- 24.72971 25.06351 50.13824 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 11.312094 -2.240168 0.192553 -3.466188 0.376000 -0.015086 2 C -2.240168 7.238153 0.194518 0.612004 0.207899 0.002341 3 O 0.192553 0.194518 8.117722 -0.096866 0.089422 0.000505 4 C -3.466188 0.612004 -0.096866 9.294651 -0.806779 -0.254080 5 C 0.376000 0.207899 0.089422 -0.806779 8.123667 0.387326 6 C -0.015086 0.002341 0.000505 -0.254080 0.387326 5.344369 7 C -0.205516 0.053047 -0.006551 0.099102 -0.461501 0.500368 8 C 0.699953 -0.114033 0.078716 -0.930284 0.949019 -0.132680 9 C -0.949933 -0.129066 -0.165429 0.908379 -2.419587 0.146376 10 C -0.130319 -0.075163 -0.083746 0.152611 -0.058578 0.000527 11 H 0.372287 0.023052 -0.048141 -0.105777 -0.033288 -0.003242 12 H 0.010947 0.418570 -0.035833 -0.023987 0.020405 0.001912 13 H -0.005886 -0.011741 0.000577 -0.071751 0.436006 -0.045853 14 H 0.019998 -0.000750 0.000181 -0.003028 -0.044817 0.419271 15 H -0.008695 -0.000060 -0.000198 0.042463 -0.009372 -0.072045 16 H 0.017934 -0.004583 0.001504 0.002107 0.031393 0.004538 17 H -0.003040 -0.001429 -0.002186 -0.081222 -0.030596 0.024513 18 H -0.026277 -0.038048 0.005635 0.015310 -0.001371 0.000583 19 H 0.028307 -0.022389 -0.005648 -0.014391 0.000268 0.000187 20 H -0.010668 -0.054609 -0.000674 -0.003641 0.002542 -0.001451 7 8 9 10 11 12 1 C -0.205516 0.699953 -0.949933 -0.130319 0.372287 0.010947 2 C 0.053047 -0.114033 -0.129066 -0.075163 0.023052 0.418570 3 O -0.006551 0.078716 -0.165429 -0.083746 -0.048141 -0.035833 4 C 0.099102 -0.930284 0.908379 0.152611 -0.105777 -0.023987 5 C -0.461501 0.949019 -2.419587 -0.058578 -0.033288 0.020405 6 C 0.500368 -0.132680 0.146376 0.000527 -0.003242 0.001912 7 C 5.536279 0.287430 0.087690 -0.003202 -0.000875 0.002199 8 C 0.287430 6.495453 -1.215981 -0.007730 -0.009075 -0.004809 9 C 0.087690 -1.215981 9.205778 0.041740 0.024116 -0.012332 10 C -0.003202 -0.007730 0.041740 5.768764 0.002228 -0.105853 11 H -0.000875 -0.009075 0.024116 0.002228 0.544824 0.006372 12 H 0.002199 -0.004809 -0.012332 -0.105853 0.006372 0.556326 13 H 0.008801 0.023405 -0.007504 0.001289 0.008643 -0.000627 14 H -0.076882 0.012640 0.001228 0.000344 -0.000031 -0.000135 15 H 0.445374 -0.076712 0.008482 -0.000088 -0.000154 0.000038 16 H -0.069458 0.449385 -0.103949 0.000350 0.000082 -0.000300 17 H 0.008301 -0.080077 0.479338 0.004595 0.001493 -0.002203 18 H 0.000468 -0.001894 0.001027 0.418068 -0.000927 -0.000689 19 H -0.000083 0.001041 0.000248 0.376048 -0.001311 -0.003461 20 H -0.000388 0.003810 0.002048 0.401057 0.004203 0.004744 13 14 15 16 17 18 1 C -0.005886 0.019998 -0.008695 0.017934 -0.003040 -0.026277 2 C -0.011741 -0.000750 -0.000060 -0.004583 -0.001429 -0.038048 3 O 0.000577 0.000181 -0.000198 0.001504 -0.002186 0.005635 4 C -0.071751 -0.003028 0.042463 0.002107 -0.081222 0.015310 5 C 0.436006 -0.044817 -0.009372 0.031393 -0.030596 -0.001371 6 C -0.045853 0.419271 -0.072045 0.004538 0.024513 0.000583 7 C 0.008801 -0.076882 0.445374 -0.069458 0.008301 0.000468 8 C 0.023405 0.012640 -0.076712 0.449385 -0.080077 -0.001894 9 C -0.007504 0.001228 0.008482 -0.103949 0.479338 0.001027 10 C 0.001289 0.000344 -0.000088 0.000350 0.004595 0.418068 11 H 0.008643 -0.000031 -0.000154 0.000082 0.001493 -0.000927 12 H -0.000627 -0.000135 0.000038 -0.000300 -0.002203 -0.000689 13 H 0.504270 -0.012557 -0.000743 0.001614 -0.001718 -0.000225 14 H -0.012557 0.504023 -0.011194 -0.000918 0.001519 -0.000025 15 H -0.000743 -0.011194 0.504787 -0.010215 -0.001189 0.000021 16 H 0.001614 -0.000918 -0.010215 0.502633 -0.011574 -0.000026 17 H -0.001718 0.001519 -0.001189 -0.011574 0.484779 -0.000254 18 H -0.000225 -0.000025 0.000021 -0.000026 -0.000254 0.526340 19 H 0.000047 -0.000002 -0.000003 0.000009 0.000085 -0.030077 20 H 0.000148 0.000049 -0.000015 0.000011 0.000284 -0.028605 19 20 1 C 0.028307 -0.010668 2 C -0.022389 -0.054609 3 O -0.005648 -0.000674 4 C -0.014391 -0.003641 5 C 0.000268 0.002542 6 C 0.000187 -0.001451 7 C -0.000083 -0.000388 8 C 0.001041 0.003810 9 C 0.000248 0.002048 10 C 0.376048 0.401057 11 H -0.001311 0.004203 12 H -0.003461 0.004744 13 H 0.000047 0.000148 14 H -0.000002 0.000049 15 H -0.000003 -0.000015 16 H 0.000009 0.000011 17 H 0.000085 0.000284 18 H -0.030077 -0.028605 19 H 0.535432 -0.027009 20 H -0.027009 0.535773 Mulliken charges: 1 1 C 0.031704 2 C -0.057544 3 O -0.236060 4 C 0.731368 5 C -0.758057 6 C -0.308380 7 C -0.204602 8 C -0.427576 9 C 0.097332 10 C -0.702941 11 H 0.215523 12 H 0.168718 13 H 0.173804 14 H 0.191086 15 H 0.189519 16 H 0.189464 17 H 0.210582 18 H 0.160965 19 H 0.162703 20 H 0.172392 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.247228 2 C 0.111174 3 O -0.236060 4 C 0.731368 5 C -0.584253 6 C -0.117294 7 C -0.015083 8 C -0.238113 9 C 0.307914 10 C -0.206881 Electronic spatial extent (au): = 1715.7940 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.1229 Y= 1.6500 Z= 1.9022 Tot= 2.5211 Quadrupole moment (field-independent basis, Debye-Ang): XX= -53.6665 YY= -55.6116 ZZ= -64.2973 XY= 3.0686 XZ= 3.3442 YZ= -3.4281 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 4.1919 YY= 2.2469 ZZ= -6.4388 XY= 3.0686 XZ= 3.3442 YZ= -3.4281 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.5199 YYY= 0.1881 ZZZ= -0.0681 XYY= -4.2062 XXY= 5.5173 XXZ= 15.5513 XZZ= 9.4550 YZZ= 1.6968 YYZ= 0.3929 XYZ= -3.9843 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1708.4292 YYYY= -346.9524 ZZZZ= -158.6832 XXXY= 1.0481 XXXZ= 0.7129 YYYX= -2.0239 YYYZ= -6.5107 ZZZX= 5.8045 ZZZY= 0.4394 XXYY= -347.6304 XXZZ= -355.2561 YYZZ= -93.6879 XXYZ= -13.3105 YYXZ= -1.4846 ZZXY= 5.8880 N-N= 4.851035521080D+02 E-N=-1.957124739288D+03 KE= 4.222482811505D+02 AllDun F.D. properties on file 20721 Mask= 2 NFrqRd= 2 NDeriv= 1 ND12= 1 LenFil= 22: Frequencies= 0.077357 0.124831 Property number 2 -- FD Optical Rotation Tensor frequency 1 0.077357: 1 2 3 1 0.323600D+01 -0.779917D+01 -0.401554D+01 2 -0.231396D+02 0.410580D+01 -0.747018D+01 3 0.146644D+02 -0.678072D+02 -0.685526D+01 Property number 2 -- FD Optical Rotation Tensor frequency 2 0.124831: 1 2 3 1 0.335365D+01 -0.830255D+01 -0.421511D+01 2 -0.281715D+02 0.531209D+01 -0.567967D+01 3 0.183584D+02 -0.830265D+02 -0.811569D+01 1\1\GINC-CX1-15-34-2\SP\RCAM-B3LYP\6-311++G(2df,p)\C9H10O1\SCAN-USER-1 \02-Dec-2013\0\\# CAM-B3LYP/6-311++g(2df,p) polar(optrot) scrf(cpcm,so lvent=chloroform) CPHF=RdFreq\\NMR_SS_methylstyrene_com\\0,1\C,0,-1.15 1417,0.379957,0.460567\C,0,-2.178378,-0.222542,-0.415925\O,0,-1.910468 ,-0.7707,0.888157\C,0,0.308359,0.188647,0.225828\C,0,1.158117,1.300794 ,0.17699\C,0,2.520768,1.137921,-0.078199\C,0,3.04819,-0.139982,-0.2780 11\C,0,2.205861,-1.254066,-0.219211\C,0,0.84364,-1.091601,0.031411\C,0 ,-3.533757,0.40096,-0.620137\H,0,-1.422093,1.306455,0.970755\H,0,-1.81 1014,-0.847004,-1.233371\H,0,0.75125,2.295837,0.338872\H,0,3.170266,2. 007601,-0.115185\H,0,4.109021,-0.267784,-0.471867\H,0,2.612213,-2.2508 52,-0.364452\H,0,0.184224,-1.951311,0.096338\H,0,-3.536147,1.018486,-1 .524291\H,0,-4.298795,-0.373753,-0.7366\H,0,-3.803482,1.027386,0.23467 1\\Version=ES64L-G09RevD.01\State=1-A\HF=-424.0771496\RMSD=7.957e-09\D ipole=0.048365,0.6491741,-0.7483833\Quadrupole=3.11661,1.6704796,-4.78 70896,-2.2813977,2.48636,2.5487277\PG=C01 [X(C9H10O1)]\\@ THE WORLD IS MADE UP OF THE WILLS, THE WON'TS, AND THE CANT'S: THE WILLS DO EVERYTHING, THE WON'TS DO NOTHING, THE CAN'TS CAN'T DO ANYTHING. -- FROM WALT DISNEY'S "BLACK HOLE" Job cpu time: 0 days 5 hours 6 minutes 52.9 seconds. File lengths (MBytes): RWF= 303 Int= 0 D2E= 0 Chk= 9 Scr= 1 Normal termination of Gaussian 09 at Mon Dec 2 15:03:43 2013.