Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 10316. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 16-May-2019 ****************************************** %chk=H:\3rdyearlab - comp\TW_N(CH3)4+_OPT_SYM.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------ N(CH3)4+ Opt ------------ Symbolic Z-matrix: Charge = 1 Multiplicity = 1 C 0. 0. 1.50957 H 0. 1.0315 1.86241 H -0.89331 -0.51575 1.86241 H 0.89331 -0.51575 1.86241 C 0. -1.42324 -0.50319 H -0.89331 -1.92782 -0.13455 H 0. -1.41207 -1.59331 H 0.89331 -1.92782 -0.13455 C 1.23256 0.71162 -0.50319 H 1.22289 0.70603 -1.59331 H 1.22289 1.73753 -0.13455 H 2.11619 0.19028 -0.13455 C -1.23256 0.71162 -0.50319 H -1.22289 1.73753 -0.13455 H -1.22289 0.70603 -1.59331 H -2.11619 0.19028 -0.13455 N 0. 0. 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0902 estimate D2E/DX2 ! ! R2 R(1,3) 1.0902 estimate D2E/DX2 ! ! R3 R(1,4) 1.0902 estimate D2E/DX2 ! ! R4 R(1,17) 1.5096 estimate D2E/DX2 ! ! R5 R(5,6) 1.0902 estimate D2E/DX2 ! ! R6 R(5,7) 1.0902 estimate D2E/DX2 ! ! R7 R(5,8) 1.0902 estimate D2E/DX2 ! ! R8 R(5,17) 1.5096 estimate D2E/DX2 ! ! R9 R(9,10) 1.0902 estimate D2E/DX2 ! ! R10 R(9,11) 1.0902 estimate D2E/DX2 ! ! R11 R(9,12) 1.0902 estimate D2E/DX2 ! ! R12 R(9,17) 1.5096 estimate D2E/DX2 ! ! R13 R(13,14) 1.0902 estimate D2E/DX2 ! ! R14 R(13,15) 1.0902 estimate D2E/DX2 ! ! R15 R(13,16) 1.0902 estimate D2E/DX2 ! ! R16 R(13,17) 1.5096 estimate D2E/DX2 ! ! A1 A(2,1,3) 110.0518 estimate D2E/DX2 ! ! A2 A(2,1,4) 110.0518 estimate D2E/DX2 ! ! A3 A(2,1,17) 108.8842 estimate D2E/DX2 ! ! A4 A(3,1,4) 110.0518 estimate D2E/DX2 ! ! A5 A(3,1,17) 108.8842 estimate D2E/DX2 ! ! A6 A(4,1,17) 108.8842 estimate D2E/DX2 ! ! A7 A(6,5,7) 110.0518 estimate D2E/DX2 ! ! A8 A(6,5,8) 110.0518 estimate D2E/DX2 ! ! A9 A(6,5,17) 108.8842 estimate D2E/DX2 ! ! A10 A(7,5,8) 110.0518 estimate D2E/DX2 ! ! A11 A(7,5,17) 108.8842 estimate D2E/DX2 ! ! A12 A(8,5,17) 108.8842 estimate D2E/DX2 ! ! A13 A(10,9,11) 110.0518 estimate D2E/DX2 ! ! A14 A(10,9,12) 110.0518 estimate D2E/DX2 ! ! A15 A(10,9,17) 108.8842 estimate D2E/DX2 ! ! A16 A(11,9,12) 110.0518 estimate D2E/DX2 ! ! A17 A(11,9,17) 108.8842 estimate D2E/DX2 ! ! A18 A(12,9,17) 108.8842 estimate D2E/DX2 ! ! A19 A(14,13,15) 110.0518 estimate D2E/DX2 ! ! A20 A(14,13,16) 110.0518 estimate D2E/DX2 ! ! A21 A(14,13,17) 108.8842 estimate D2E/DX2 ! ! A22 A(15,13,16) 110.0518 estimate D2E/DX2 ! ! A23 A(15,13,17) 108.8842 estimate D2E/DX2 ! ! A24 A(16,13,17) 108.8842 estimate D2E/DX2 ! ! A25 A(1,17,5) 109.4712 estimate D2E/DX2 ! ! A26 A(1,17,9) 109.4712 estimate D2E/DX2 ! ! A27 A(1,17,13) 109.4712 estimate D2E/DX2 ! ! A28 A(5,17,9) 109.4712 estimate D2E/DX2 ! ! A29 A(5,17,13) 109.4712 estimate D2E/DX2 ! ! A30 A(9,17,13) 109.4712 estimate D2E/DX2 ! ! D1 D(2,1,17,5) 180.0 estimate D2E/DX2 ! ! D2 D(2,1,17,9) 60.0 estimate D2E/DX2 ! ! D3 D(2,1,17,13) -60.0 estimate D2E/DX2 ! ! D4 D(3,1,17,5) -60.0 estimate D2E/DX2 ! ! D5 D(3,1,17,9) 180.0 estimate D2E/DX2 ! ! D6 D(3,1,17,13) 60.0 estimate D2E/DX2 ! ! D7 D(4,1,17,5) 60.0 estimate D2E/DX2 ! ! D8 D(4,1,17,9) -60.0 estimate D2E/DX2 ! ! D9 D(4,1,17,13) 180.0 estimate D2E/DX2 ! ! D10 D(6,5,17,1) 60.0 estimate D2E/DX2 ! ! D11 D(6,5,17,9) 180.0 estimate D2E/DX2 ! ! D12 D(6,5,17,13) -60.0 estimate D2E/DX2 ! ! D13 D(7,5,17,1) 180.0 estimate D2E/DX2 ! ! D14 D(7,5,17,9) -60.0 estimate D2E/DX2 ! ! D15 D(7,5,17,13) 60.0 estimate D2E/DX2 ! ! D16 D(8,5,17,1) -60.0 estimate D2E/DX2 ! ! D17 D(8,5,17,9) 60.0 estimate D2E/DX2 ! ! D18 D(8,5,17,13) 180.0 estimate D2E/DX2 ! ! D19 D(10,9,17,1) 180.0 estimate D2E/DX2 ! ! D20 D(10,9,17,5) 60.0 estimate D2E/DX2 ! ! D21 D(10,9,17,13) -60.0 estimate D2E/DX2 ! ! D22 D(11,9,17,1) -60.0 estimate D2E/DX2 ! ! D23 D(11,9,17,5) 180.0 estimate D2E/DX2 ! ! D24 D(11,9,17,13) 60.0 estimate D2E/DX2 ! ! D25 D(12,9,17,1) 60.0 estimate D2E/DX2 ! ! D26 D(12,9,17,5) -60.0 estimate D2E/DX2 ! ! D27 D(12,9,17,13) 180.0 estimate D2E/DX2 ! ! D28 D(14,13,17,1) 60.0 estimate D2E/DX2 ! ! D29 D(14,13,17,5) 180.0 estimate D2E/DX2 ! ! D30 D(14,13,17,9) -60.0 estimate D2E/DX2 ! ! D31 D(15,13,17,1) -180.0 estimate D2E/DX2 ! ! D32 D(15,13,17,5) -60.0 estimate D2E/DX2 ! ! D33 D(15,13,17,9) 60.0 estimate D2E/DX2 ! ! D34 D(16,13,17,1) -60.0 estimate D2E/DX2 ! ! D35 D(16,13,17,5) 60.0 estimate D2E/DX2 ! ! D36 D(16,13,17,9) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 92 maximum allowed number of steps= 102. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 1.509569 2 1 0 0.000000 1.031500 1.862413 3 1 0 -0.893305 -0.515750 1.862413 4 1 0 0.893305 -0.515750 1.862413 5 6 0 0.000000 -1.423235 -0.503190 6 1 0 -0.893305 -1.927816 -0.134550 7 1 0 0.000000 -1.412066 -1.593312 8 1 0 0.893305 -1.927816 -0.134550 9 6 0 1.232558 0.711618 -0.503190 10 1 0 1.222885 0.706033 -1.593312 11 1 0 1.222885 1.737533 -0.134550 12 1 0 2.116190 0.190283 -0.134550 13 6 0 -1.232558 0.711618 -0.503190 14 1 0 -1.222885 1.737533 -0.134550 15 1 0 -1.222885 0.706033 -1.593312 16 1 0 -2.116190 0.190283 -0.134550 17 7 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.090179 0.000000 3 H 1.090179 1.786611 0.000000 4 H 1.090179 1.786611 1.786611 0.000000 5 C 2.465116 3.409076 2.686559 2.686559 0.000000 6 H 2.686559 3.680137 2.445770 3.028823 1.090179 7 H 3.409076 4.232381 3.680137 3.680137 1.090179 8 H 2.686559 3.680137 3.028823 2.445770 1.090179 9 C 2.465116 2.686559 3.409076 2.686559 2.465116 10 H 3.409076 3.680137 4.232381 3.680137 2.686559 11 H 2.686559 2.445770 3.680137 3.028823 3.409076 12 H 2.686559 3.028823 3.680137 2.445770 2.686559 13 C 2.465116 2.686559 2.686559 3.409076 2.465116 14 H 2.686559 2.445770 3.028823 3.680137 3.409076 15 H 3.409076 3.680137 3.680137 4.232381 2.686559 16 H 2.686559 3.028823 2.445770 3.680137 2.686559 17 N 1.509569 2.128984 2.128984 2.128984 1.509569 6 7 8 9 10 6 H 0.000000 7 H 1.786611 0.000000 8 H 1.786611 1.786611 0.000000 9 C 3.409076 2.686559 2.686559 0.000000 10 H 3.680137 2.445770 3.028823 1.090179 0.000000 11 H 4.232381 3.680137 3.680137 1.090179 1.786611 12 H 3.680137 3.028823 2.445770 1.090179 1.786611 13 C 2.686559 2.686559 3.409076 2.465116 2.686559 14 H 3.680137 3.680137 4.232381 2.686559 3.028823 15 H 3.028823 2.445770 3.680137 2.686559 2.445770 16 H 2.445770 3.028823 3.680137 3.409076 3.680137 17 N 2.128984 2.128984 2.128984 1.509569 2.128984 11 12 13 14 15 11 H 0.000000 12 H 1.786611 0.000000 13 C 2.686559 3.409076 0.000000 14 H 2.445770 3.680137 1.090179 0.000000 15 H 3.028823 3.680137 1.090179 1.786611 0.000000 16 H 3.680137 4.232381 1.090179 1.786611 1.786611 17 N 2.128984 2.128984 1.509569 2.128984 2.128984 16 17 16 H 0.000000 17 N 2.128984 0.000000 Stoichiometry C4H12N(1+) Framework group TD[O(N),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.871550 0.871550 0.871550 2 1 0 1.496373 1.496373 0.233048 3 1 0 0.233048 1.496373 1.496373 4 1 0 1.496373 0.233048 1.496373 5 6 0 -0.871550 -0.871550 0.871550 6 1 0 -1.496373 -0.233048 1.496373 7 1 0 -1.496373 -1.496373 0.233048 8 1 0 -0.233048 -1.496373 1.496373 9 6 0 0.871550 -0.871550 -0.871550 10 1 0 0.233048 -1.496373 -1.496373 11 1 0 1.496373 -0.233048 -1.496373 12 1 0 1.496373 -1.496373 -0.233048 13 6 0 -0.871550 0.871550 -0.871550 14 1 0 -0.233048 1.496373 -1.496373 15 1 0 -1.496373 0.233048 -1.496373 16 1 0 -1.496373 1.496373 -0.233048 17 7 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 4.6167725 4.6167725 4.6167725 Standard basis: 6-31G(d,p) (6D, 7F) There are 36 symmetry adapted cartesian basis functions of A symmetry. There are 33 symmetry adapted cartesian basis functions of B1 symmetry. There are 33 symmetry adapted cartesian basis functions of B2 symmetry. There are 33 symmetry adapted cartesian basis functions of B3 symmetry. There are 36 symmetry adapted basis functions of A symmetry. There are 33 symmetry adapted basis functions of B1 symmetry. There are 33 symmetry adapted basis functions of B2 symmetry. There are 33 symmetry adapted basis functions of B3 symmetry. 135 basis functions, 224 primitive gaussians, 135 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 213.0767613560 Hartrees. NAtoms= 17 NActive= 17 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 135 RedAO= T EigKep= 5.45D-03 NBF= 36 33 33 33 NBsUse= 135 1.00D-06 EigRej= -1.00D+00 NBFU= 36 33 33 33 ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (A1) (T2) (T2) (T2) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=52778759. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -214.181284168 A.U. after 12 cycles NFock= 12 Conv=0.78D-09 -V/T= 2.0102 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (A1) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A2) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (A1) (T2) (T2) (T2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -14.64878 -10.41435 -10.41435 -10.41435 -10.41433 Alpha occ. eigenvalues -- -1.19636 -0.92552 -0.92552 -0.92552 -0.80744 Alpha occ. eigenvalues -- -0.69892 -0.69892 -0.69892 -0.62246 -0.62246 Alpha occ. eigenvalues -- -0.58035 -0.58035 -0.58035 -0.57932 -0.57932 Alpha occ. eigenvalues -- -0.57932 Alpha virt. eigenvalues -- -0.13305 -0.06867 -0.06664 -0.06664 -0.06664 Alpha virt. eigenvalues -- -0.02633 -0.02633 -0.02633 -0.01160 -0.01160 Alpha virt. eigenvalues -- -0.00429 -0.00429 -0.00429 0.03886 0.03886 Alpha virt. eigenvalues -- 0.03886 0.29164 0.29164 0.29164 0.29679 Alpha virt. eigenvalues -- 0.29679 0.37124 0.44841 0.44841 0.44841 Alpha virt. eigenvalues -- 0.54823 0.54823 0.54823 0.62478 0.62478 Alpha virt. eigenvalues -- 0.62478 0.67851 0.67851 0.67851 0.67960 Alpha virt. eigenvalues -- 0.73000 0.73117 0.73117 0.73117 0.73828 Alpha virt. eigenvalues -- 0.73828 0.77916 0.77916 0.77916 1.03591 Alpha virt. eigenvalues -- 1.03591 1.27489 1.27489 1.27489 1.30283 Alpha virt. eigenvalues -- 1.30283 1.30283 1.58809 1.61870 1.61870 Alpha virt. eigenvalues -- 1.61870 1.63907 1.63907 1.69270 1.69270 Alpha virt. eigenvalues -- 1.69270 1.82223 1.82223 1.82223 1.83657 Alpha virt. eigenvalues -- 1.86848 1.86848 1.86848 1.90597 1.91313 Alpha virt. eigenvalues -- 1.91313 1.91313 1.92352 1.92352 2.10501 Alpha virt. eigenvalues -- 2.10501 2.10501 2.21823 2.21823 2.21823 Alpha virt. eigenvalues -- 2.40720 2.40720 2.44137 2.44137 2.44137 Alpha virt. eigenvalues -- 2.47220 2.47830 2.47830 2.47830 2.66404 Alpha virt. eigenvalues -- 2.66404 2.66404 2.71256 2.71256 2.75261 Alpha virt. eigenvalues -- 2.75261 2.75261 2.95980 3.03761 3.03761 Alpha virt. eigenvalues -- 3.03761 3.20520 3.20520 3.20520 3.23324 Alpha virt. eigenvalues -- 3.23324 3.23324 3.32437 3.32437 3.96302 Alpha virt. eigenvalues -- 4.31121 4.33170 4.33170 4.33170 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.928627 0.390118 0.390118 0.390118 -0.045901 -0.002988 2 H 0.390118 0.499900 -0.023035 -0.023035 0.003861 0.000010 3 H 0.390118 -0.023035 0.499900 -0.023035 -0.002988 0.003156 4 H 0.390118 -0.023035 -0.023035 0.499900 -0.002988 -0.000389 5 C -0.045901 0.003861 -0.002988 -0.002988 4.928627 0.390118 6 H -0.002988 0.000010 0.003156 -0.000389 0.390118 0.499900 7 H 0.003861 -0.000192 0.000010 0.000010 0.390118 -0.023035 8 H -0.002988 0.000010 -0.000389 0.003156 0.390118 -0.023035 9 C -0.045901 -0.002988 0.003861 -0.002988 -0.045901 0.003861 10 H 0.003861 0.000010 -0.000192 0.000010 -0.002988 0.000010 11 H -0.002988 0.003156 0.000010 -0.000389 0.003861 -0.000192 12 H -0.002988 -0.000389 0.000010 0.003156 -0.002988 0.000010 13 C -0.045901 -0.002988 -0.002988 0.003861 -0.045901 -0.002988 14 H -0.002988 0.003156 -0.000389 0.000010 0.003861 0.000010 15 H 0.003861 0.000010 0.000010 -0.000192 -0.002988 -0.000389 16 H -0.002988 -0.000389 0.003156 0.000010 -0.002988 0.003156 17 N 0.240636 -0.028839 -0.028839 -0.028839 0.240636 -0.028839 7 8 9 10 11 12 1 C 0.003861 -0.002988 -0.045901 0.003861 -0.002988 -0.002988 2 H -0.000192 0.000010 -0.002988 0.000010 0.003156 -0.000389 3 H 0.000010 -0.000389 0.003861 -0.000192 0.000010 0.000010 4 H 0.000010 0.003156 -0.002988 0.000010 -0.000389 0.003156 5 C 0.390118 0.390118 -0.045901 -0.002988 0.003861 -0.002988 6 H -0.023035 -0.023035 0.003861 0.000010 -0.000192 0.000010 7 H 0.499900 -0.023035 -0.002988 0.003156 0.000010 -0.000389 8 H -0.023035 0.499900 -0.002988 -0.000389 0.000010 0.003156 9 C -0.002988 -0.002988 4.928627 0.390118 0.390118 0.390118 10 H 0.003156 -0.000389 0.390118 0.499900 -0.023035 -0.023035 11 H 0.000010 0.000010 0.390118 -0.023035 0.499900 -0.023035 12 H -0.000389 0.003156 0.390118 -0.023035 -0.023035 0.499900 13 C -0.002988 0.003861 -0.045901 -0.002988 -0.002988 0.003861 14 H 0.000010 -0.000192 -0.002988 -0.000389 0.003156 0.000010 15 H 0.003156 0.000010 -0.002988 0.003156 -0.000389 0.000010 16 H -0.000389 0.000010 0.003861 0.000010 0.000010 -0.000192 17 N -0.028839 -0.028839 0.240636 -0.028839 -0.028839 -0.028839 13 14 15 16 17 1 C -0.045901 -0.002988 0.003861 -0.002988 0.240636 2 H -0.002988 0.003156 0.000010 -0.000389 -0.028839 3 H -0.002988 -0.000389 0.000010 0.003156 -0.028839 4 H 0.003861 0.000010 -0.000192 0.000010 -0.028839 5 C -0.045901 0.003861 -0.002988 -0.002988 0.240636 6 H -0.002988 0.000010 -0.000389 0.003156 -0.028839 7 H -0.002988 0.000010 0.003156 -0.000389 -0.028839 8 H 0.003861 -0.000192 0.000010 0.000010 -0.028839 9 C -0.045901 -0.002988 -0.002988 0.003861 0.240636 10 H -0.002988 -0.000389 0.003156 0.000010 -0.028839 11 H -0.002988 0.003156 -0.000389 0.000010 -0.028839 12 H 0.003861 0.000010 0.000010 -0.000192 -0.028839 13 C 4.928627 0.390118 0.390118 0.390118 0.240636 14 H 0.390118 0.499900 -0.023035 -0.023035 -0.028839 15 H 0.390118 -0.023035 0.499900 -0.023035 -0.028839 16 H 0.390118 -0.023035 -0.023035 0.499900 -0.028839 17 N 0.240636 -0.028839 -0.028839 -0.028839 6.780740 Mulliken charges: 1 1 C -0.195566 2 H 0.181623 3 H 0.181623 4 H 0.181623 5 C -0.195566 6 H 0.181623 7 H 0.181623 8 H 0.181623 9 C -0.195566 10 H 0.181623 11 H 0.181623 12 H 0.181623 13 C -0.195566 14 H 0.181623 15 H 0.181623 16 H 0.181623 17 N -0.397217 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.349304 5 C 0.349304 9 C 0.349304 13 C 0.349304 17 N -0.397217 Electronic spatial extent (au): = 447.1675 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -25.8374 YY= -25.8374 ZZ= -25.8374 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.9847 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -181.1135 YYYY= -181.1135 ZZZZ= -181.1135 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -53.9900 XXZZ= -53.9900 YYZZ= -53.9900 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.130767613560D+02 E-N=-9.116140144703D+02 KE= 2.120109685801D+02 Symmetry A KE= 8.621759538463D+01 Symmetry B1 KE= 4.193112439850D+01 Symmetry B2 KE= 4.193112439850D+01 Symmetry B3 KE= 4.193112439850D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 0.000000000 -0.000065682 2 1 0.000000000 -0.000010905 -0.000003355 3 1 0.000009444 0.000005453 -0.000003355 4 1 -0.000009444 0.000005453 -0.000003355 5 6 0.000000000 0.000061926 0.000021894 6 1 0.000009444 0.000004981 -0.000004022 7 1 0.000000000 -0.000000472 0.000011400 8 1 -0.000009444 0.000004981 -0.000004022 9 6 -0.000053630 -0.000030963 0.000021894 10 1 0.000000409 0.000000236 0.000011400 11 1 0.000000409 -0.000010669 -0.000004022 12 1 -0.000009036 0.000005689 -0.000004022 13 6 0.000053630 -0.000030963 0.000021894 14 1 -0.000000409 -0.000010669 -0.000004022 15 1 -0.000000409 0.000000236 0.000011400 16 1 0.000009036 0.000005689 -0.000004022 17 7 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000065682 RMS 0.000019209 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000075748 RMS 0.000017291 Search for a local minimum. Step number 1 out of a maximum of 92 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00242 0.00242 0.00242 0.00242 0.04744 Eigenvalues --- 0.04744 0.04744 0.05832 0.05832 0.05832 Eigenvalues --- 0.05832 0.05832 0.05832 0.05832 0.05832 Eigenvalues --- 0.14390 0.14390 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.31394 Eigenvalues --- 0.31394 0.31394 0.31394 0.34792 0.34792 Eigenvalues --- 0.34792 0.34792 0.34792 0.34792 0.34792 Eigenvalues --- 0.34792 0.34792 0.34792 0.34792 0.34792 RFO step: Lambda=-7.76129081D-08 EMin= 2.42394235D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00010931 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.74D-08 for atom 16. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.06014 -0.00001 0.00000 -0.00003 -0.00003 2.06011 R2 2.06014 -0.00001 0.00000 -0.00003 -0.00003 2.06011 R3 2.06014 -0.00001 0.00000 -0.00003 -0.00003 2.06011 R4 2.85267 -0.00008 0.00000 -0.00024 -0.00024 2.85243 R5 2.06014 -0.00001 0.00000 -0.00003 -0.00003 2.06011 R6 2.06014 -0.00001 0.00000 -0.00003 -0.00003 2.06011 R7 2.06014 -0.00001 0.00000 -0.00003 -0.00003 2.06011 R8 2.85267 -0.00008 0.00000 -0.00024 -0.00024 2.85243 R9 2.06014 -0.00001 0.00000 -0.00003 -0.00003 2.06011 R10 2.06014 -0.00001 0.00000 -0.00003 -0.00003 2.06011 R11 2.06014 -0.00001 0.00000 -0.00003 -0.00003 2.06011 R12 2.85267 -0.00008 0.00000 -0.00024 -0.00024 2.85243 R13 2.06014 -0.00001 0.00000 -0.00003 -0.00003 2.06011 R14 2.06014 -0.00001 0.00000 -0.00003 -0.00003 2.06011 R15 2.06014 -0.00001 0.00000 -0.00003 -0.00003 2.06011 R16 2.85267 -0.00008 0.00000 -0.00024 -0.00024 2.85243 A1 1.92077 0.00000 0.00000 0.00000 0.00000 1.92076 A2 1.92077 0.00000 0.00000 0.00000 0.00000 1.92076 A3 1.90039 0.00000 0.00000 0.00000 0.00000 1.90039 A4 1.92077 0.00000 0.00000 0.00000 0.00000 1.92076 A5 1.90039 0.00000 0.00000 0.00000 0.00000 1.90039 A6 1.90039 0.00000 0.00000 0.00000 0.00000 1.90039 A7 1.92077 0.00000 0.00000 0.00000 0.00000 1.92076 A8 1.92077 0.00000 0.00000 0.00000 0.00000 1.92076 A9 1.90039 0.00000 0.00000 0.00000 0.00000 1.90039 A10 1.92077 0.00000 0.00000 0.00000 0.00000 1.92076 A11 1.90039 0.00000 0.00000 0.00000 0.00000 1.90039 A12 1.90039 0.00000 0.00000 0.00000 0.00000 1.90039 A13 1.92077 0.00000 0.00000 0.00000 0.00000 1.92076 A14 1.92077 0.00000 0.00000 0.00000 0.00000 1.92076 A15 1.90039 0.00000 0.00000 0.00000 0.00000 1.90039 A16 1.92077 0.00000 0.00000 0.00000 0.00000 1.92076 A17 1.90039 0.00000 0.00000 0.00000 0.00000 1.90039 A18 1.90039 0.00000 0.00000 0.00000 0.00000 1.90039 A19 1.92077 0.00000 0.00000 0.00000 0.00000 1.92076 A20 1.92077 0.00000 0.00000 0.00000 0.00000 1.92076 A21 1.90039 0.00000 0.00000 0.00000 0.00000 1.90039 A22 1.92077 0.00000 0.00000 0.00000 0.00000 1.92076 A23 1.90039 0.00000 0.00000 0.00000 0.00000 1.90039 A24 1.90039 0.00000 0.00000 0.00000 0.00000 1.90039 A25 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A26 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A27 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A28 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A29 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A30 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D2 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D3 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D4 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D6 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D7 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D8 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D9 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D10 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D14 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D15 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D16 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D17 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D18 -3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D19 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D20 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D21 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D22 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D23 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D24 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D25 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D26 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D27 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D28 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D29 -3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D30 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D31 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D32 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D33 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D34 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D35 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D36 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000076 0.000450 YES RMS Force 0.000017 0.000300 YES Maximum Displacement 0.000247 0.001800 YES RMS Displacement 0.000109 0.001200 YES Predicted change in Energy=-3.880645D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0902 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0902 -DE/DX = 0.0 ! ! R3 R(1,4) 1.0902 -DE/DX = 0.0 ! ! R4 R(1,17) 1.5096 -DE/DX = -0.0001 ! ! R5 R(5,6) 1.0902 -DE/DX = 0.0 ! ! R6 R(5,7) 1.0902 -DE/DX = 0.0 ! ! R7 R(5,8) 1.0902 -DE/DX = 0.0 ! ! R8 R(5,17) 1.5096 -DE/DX = -0.0001 ! ! R9 R(9,10) 1.0902 -DE/DX = 0.0 ! ! R10 R(9,11) 1.0902 -DE/DX = 0.0 ! ! R11 R(9,12) 1.0902 -DE/DX = 0.0 ! ! R12 R(9,17) 1.5096 -DE/DX = -0.0001 ! ! R13 R(13,14) 1.0902 -DE/DX = 0.0 ! ! R14 R(13,15) 1.0902 -DE/DX = 0.0 ! ! R15 R(13,16) 1.0902 -DE/DX = 0.0 ! ! R16 R(13,17) 1.5096 -DE/DX = -0.0001 ! ! A1 A(2,1,3) 110.0518 -DE/DX = 0.0 ! ! A2 A(2,1,4) 110.0518 -DE/DX = 0.0 ! ! A3 A(2,1,17) 108.8842 -DE/DX = 0.0 ! ! A4 A(3,1,4) 110.0518 -DE/DX = 0.0 ! ! A5 A(3,1,17) 108.8842 -DE/DX = 0.0 ! ! A6 A(4,1,17) 108.8842 -DE/DX = 0.0 ! ! A7 A(6,5,7) 110.0518 -DE/DX = 0.0 ! ! A8 A(6,5,8) 110.0518 -DE/DX = 0.0 ! ! A9 A(6,5,17) 108.8842 -DE/DX = 0.0 ! ! A10 A(7,5,8) 110.0518 -DE/DX = 0.0 ! ! A11 A(7,5,17) 108.8842 -DE/DX = 0.0 ! ! A12 A(8,5,17) 108.8842 -DE/DX = 0.0 ! ! A13 A(10,9,11) 110.0518 -DE/DX = 0.0 ! ! A14 A(10,9,12) 110.0518 -DE/DX = 0.0 ! ! A15 A(10,9,17) 108.8842 -DE/DX = 0.0 ! ! A16 A(11,9,12) 110.0518 -DE/DX = 0.0 ! ! A17 A(11,9,17) 108.8842 -DE/DX = 0.0 ! ! A18 A(12,9,17) 108.8842 -DE/DX = 0.0 ! ! A19 A(14,13,15) 110.0518 -DE/DX = 0.0 ! ! A20 A(14,13,16) 110.0518 -DE/DX = 0.0 ! ! A21 A(14,13,17) 108.8842 -DE/DX = 0.0 ! ! A22 A(15,13,16) 110.0518 -DE/DX = 0.0 ! ! A23 A(15,13,17) 108.8842 -DE/DX = 0.0 ! ! A24 A(16,13,17) 108.8842 -DE/DX = 0.0 ! ! A25 A(1,17,5) 109.4712 -DE/DX = 0.0 ! ! A26 A(1,17,9) 109.4712 -DE/DX = 0.0 ! ! A27 A(1,17,13) 109.4712 -DE/DX = 0.0 ! ! A28 A(5,17,9) 109.4712 -DE/DX = 0.0 ! ! A29 A(5,17,13) 109.4712 -DE/DX = 0.0 ! ! A30 A(9,17,13) 109.4712 -DE/DX = 0.0 ! ! D1 D(2,1,17,5) 180.0 -DE/DX = 0.0 ! ! D2 D(2,1,17,9) 60.0 -DE/DX = 0.0 ! ! D3 D(2,1,17,13) -60.0 -DE/DX = 0.0 ! ! D4 D(3,1,17,5) -60.0 -DE/DX = 0.0 ! ! D5 D(3,1,17,9) 180.0 -DE/DX = 0.0 ! ! D6 D(3,1,17,13) 60.0 -DE/DX = 0.0 ! ! D7 D(4,1,17,5) 60.0 -DE/DX = 0.0 ! ! D8 D(4,1,17,9) -60.0 -DE/DX = 0.0 ! ! D9 D(4,1,17,13) 180.0 -DE/DX = 0.0 ! ! D10 D(6,5,17,1) 60.0 -DE/DX = 0.0 ! ! D11 D(6,5,17,9) 180.0 -DE/DX = 0.0 ! ! D12 D(6,5,17,13) -60.0 -DE/DX = 0.0 ! ! D13 D(7,5,17,1) 180.0 -DE/DX = 0.0 ! ! D14 D(7,5,17,9) -60.0 -DE/DX = 0.0 ! ! D15 D(7,5,17,13) 60.0 -DE/DX = 0.0 ! ! D16 D(8,5,17,1) -60.0 -DE/DX = 0.0 ! ! D17 D(8,5,17,9) 60.0 -DE/DX = 0.0 ! ! D18 D(8,5,17,13) 180.0 -DE/DX = 0.0 ! ! D19 D(10,9,17,1) 180.0 -DE/DX = 0.0 ! ! D20 D(10,9,17,5) 60.0 -DE/DX = 0.0 ! ! D21 D(10,9,17,13) -60.0 -DE/DX = 0.0 ! ! D22 D(11,9,17,1) -60.0 -DE/DX = 0.0 ! ! D23 D(11,9,17,5) 180.0 -DE/DX = 0.0 ! ! D24 D(11,9,17,13) 60.0 -DE/DX = 0.0 ! ! D25 D(12,9,17,1) 60.0 -DE/DX = 0.0 ! ! D26 D(12,9,17,5) -60.0 -DE/DX = 0.0 ! ! D27 D(12,9,17,13) 180.0 -DE/DX = 0.0 ! ! D28 D(14,13,17,1) 60.0 -DE/DX = 0.0 ! ! D29 D(14,13,17,5) 180.0 -DE/DX = 0.0 ! ! D30 D(14,13,17,9) -60.0 -DE/DX = 0.0 ! ! D31 D(15,13,17,1) 180.0 -DE/DX = 0.0 ! ! D32 D(15,13,17,5) -60.0 -DE/DX = 0.0 ! ! D33 D(15,13,17,9) 60.0 -DE/DX = 0.0 ! ! D34 D(16,13,17,1) -60.0 -DE/DX = 0.0 ! ! D35 D(16,13,17,5) 60.0 -DE/DX = 0.0 ! ! D36 D(16,13,17,9) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 1.509569 2 1 0 0.000000 1.031500 1.862413 3 1 0 -0.893305 -0.515750 1.862413 4 1 0 0.893305 -0.515750 1.862413 5 6 0 0.000000 -1.423235 -0.503190 6 1 0 -0.893305 -1.927816 -0.134550 7 1 0 0.000000 -1.412066 -1.593312 8 1 0 0.893305 -1.927816 -0.134550 9 6 0 1.232558 0.711618 -0.503190 10 1 0 1.222885 0.706033 -1.593312 11 1 0 1.222885 1.737533 -0.134550 12 1 0 2.116190 0.190283 -0.134550 13 6 0 -1.232558 0.711618 -0.503190 14 1 0 -1.222885 1.737533 -0.134550 15 1 0 -1.222885 0.706033 -1.593312 16 1 0 -2.116190 0.190283 -0.134550 17 7 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.090179 0.000000 3 H 1.090179 1.786611 0.000000 4 H 1.090179 1.786611 1.786611 0.000000 5 C 2.465116 3.409076 2.686559 2.686559 0.000000 6 H 2.686559 3.680137 2.445770 3.028823 1.090179 7 H 3.409076 4.232381 3.680137 3.680137 1.090179 8 H 2.686559 3.680137 3.028823 2.445770 1.090179 9 C 2.465116 2.686559 3.409076 2.686559 2.465116 10 H 3.409076 3.680137 4.232381 3.680137 2.686559 11 H 2.686559 2.445770 3.680137 3.028823 3.409076 12 H 2.686559 3.028823 3.680137 2.445770 2.686559 13 C 2.465116 2.686559 2.686559 3.409076 2.465116 14 H 2.686559 2.445770 3.028823 3.680137 3.409076 15 H 3.409076 3.680137 3.680137 4.232381 2.686559 16 H 2.686559 3.028823 2.445770 3.680137 2.686559 17 N 1.509569 2.128984 2.128984 2.128984 1.509569 6 7 8 9 10 6 H 0.000000 7 H 1.786611 0.000000 8 H 1.786611 1.786611 0.000000 9 C 3.409076 2.686559 2.686559 0.000000 10 H 3.680137 2.445770 3.028823 1.090179 0.000000 11 H 4.232381 3.680137 3.680137 1.090179 1.786611 12 H 3.680137 3.028823 2.445770 1.090179 1.786611 13 C 2.686559 2.686559 3.409076 2.465116 2.686559 14 H 3.680137 3.680137 4.232381 2.686559 3.028823 15 H 3.028823 2.445770 3.680137 2.686559 2.445770 16 H 2.445770 3.028823 3.680137 3.409076 3.680137 17 N 2.128984 2.128984 2.128984 1.509569 2.128984 11 12 13 14 15 11 H 0.000000 12 H 1.786611 0.000000 13 C 2.686559 3.409076 0.000000 14 H 2.445770 3.680137 1.090179 0.000000 15 H 3.028823 3.680137 1.090179 1.786611 0.000000 16 H 3.680137 4.232381 1.090179 1.786611 1.786611 17 N 2.128984 2.128984 1.509569 2.128984 2.128984 16 17 16 H 0.000000 17 N 2.128984 0.000000 Stoichiometry C4H12N(1+) Framework group TD[O(N),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.871550 0.871550 0.871550 2 1 0 1.496373 1.496373 0.233048 3 1 0 0.233048 1.496373 1.496373 4 1 0 1.496373 0.233048 1.496373 5 6 0 -0.871550 -0.871550 0.871550 6 1 0 -1.496373 -0.233048 1.496373 7 1 0 -1.496373 -1.496373 0.233048 8 1 0 -0.233048 -1.496373 1.496373 9 6 0 0.871550 -0.871550 -0.871550 10 1 0 0.233048 -1.496373 -1.496373 11 1 0 1.496373 -0.233048 -1.496373 12 1 0 1.496373 -1.496373 -0.233048 13 6 0 -0.871550 0.871550 -0.871550 14 1 0 -0.233048 1.496373 -1.496373 15 1 0 -1.496373 0.233048 -1.496373 16 1 0 -1.496373 1.496373 -0.233048 17 7 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 4.6167725 4.6167725 4.6167725 1|1| IMPERIAL COLLEGE-SKCH-135-023|FOpt|RB3LYP|6-31G(d,p)|C4H12N1(1+)| TAW17|16-May-2019|0||# opt b3lyp/6-31g(d,p) geom=connectivity integral =grid=ultrafine||N(CH3)4+ Opt||1,1|C,0.0000000006,-0.0000000007,1.5095 6887|H,0.0000000008,1.03150016,1.86241254|H,-0.8933053425,-0.515750081 4,1.8624125396|H,0.8933053442,-0.5157500813,1.8624125389|C,-0.00000000 02,-1.4232351773,-0.5031896212|H,-0.8933053433,-1.9278160729,-0.134550 3385|H,-0.0000000006,-1.4120659917,-1.5933118558|H,0.8933053434,-1.927 8160728,-0.1345503393|C,1.2325578191,0.7116175891,-0.5031896207|H,1.22 28850206,0.706032997,-1.5933118553|H,1.2228850212,1.7375331572,-0.1345 503377|H,2.1161903646,0.1902829159,-0.1345503388|C,-1.2325578196,0.711 617589,-0.5031896197|H,-1.2228850214,1.7375331571,-0.1345503367|H,-1.2 22885022,0.7060329969,-1.5933118543|H,-2.1161903647,0.1902829158,-0.13 4550337|N,0.,0.,0.0000000021||Version=EM64W-G09RevD.01|State=1-A1|HF=- 214.1812842|RMSD=7.760e-010|RMSF=1.921e-005|Dipole=0.,0.,0.|Quadrupole =0.,0.,0.,0.,0.,0.|PG=TD [O(N1),4C3(C1),6SGD(H2)]||@ THE MORE ACCURATE THE CALCULATIONS BECOME, THE MORE THE CONCEPTS TEND TO VANISH INTO THIN AIR. -- R.S. MULLIKEN, J.C.P. 43,S2(1965) Job cpu time: 0 days 0 hours 0 minutes 19.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Thu May 16 15:28:19 2019.