Entering Link 1 = C:\G09W\l1.exe PID= 1940. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 26-Jan-2018 ****************************************** %chk=\\icnas1.cc.ic.ac.uk\hrc115\3rd Year\Transition States\Tutorial\3\endo\hrc1 15_nsob3.chk Default route: MaxDisk=10GB ---------------------------------------------------------------------- # opt=(calcfc,ts) freq b3lyp/6-31g(d,p) geom=connectivity integral=gri d=ultrafine ---------------------------------------------------------------------- 1/5=1,10=4,14=-1,18=20,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=2,74=-5,75=-5,140=1/1,2,3; 4//1; 5/5=2,38=5/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1,13=1/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7/10=1,18=20,25=1/1,2,3,16; 1/5=1,10=4,14=-1,18=20,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/5=1,14=-1,18=20,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C -1.58358 0.33724 0. C -2.4756 -0.68609 -0.17231 C -2.20254 -2.01985 0.35602 C -1.03452 -2.30524 1.02154 H -3.82273 0.48713 -1.42595 H -0.82623 0.35734 0.77604 C -3.64868 -0.51103 -1.0231 C -3.14076 -3.08659 0.01672 H -0.80293 -3.31173 1.34646 C -4.22848 -2.85562 -0.75587 C -4.49142 -1.53564 -1.29165 H -2.92788 -4.07848 0.41429 H -4.93254 -3.65089 -1.00124 H -5.37441 -1.4055 -1.91353 S 0.3527 -1.96428 -0.81404 O 0.05451 -0.55241 -0.97367 O 0.10428 -3.06673 -1.68352 H -0.46783 -1.55519 1.56074 H -1.65497 1.26495 -0.55476 Add virtual bond connecting atoms O16 and C1 Dist= 3.97D+00. Add virtual bond connecting atoms O16 and H6 Dist= 4.08D+00. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3684 calculate D2E/DX2 analytically ! ! R2 R(1,6) 1.0845 calculate D2E/DX2 analytically ! ! R3 R(1,16) 2.1031 calculate D2E/DX2 analytically ! ! R4 R(1,19) 1.0833 calculate D2E/DX2 analytically ! ! R5 R(2,3) 1.4603 calculate D2E/DX2 analytically ! ! R6 R(2,7) 1.4597 calculate D2E/DX2 analytically ! ! R7 R(3,4) 1.3743 calculate D2E/DX2 analytically ! ! R8 R(3,8) 1.4606 calculate D2E/DX2 analytically ! ! R9 R(4,9) 1.0827 calculate D2E/DX2 analytically ! ! R10 R(4,18) 1.0837 calculate D2E/DX2 analytically ! ! R11 R(5,7) 1.0904 calculate D2E/DX2 analytically ! ! R12 R(6,16) 2.1598 calculate D2E/DX2 analytically ! ! R13 R(7,11) 1.3536 calculate D2E/DX2 analytically ! ! R14 R(8,10) 1.354 calculate D2E/DX2 analytically ! ! R15 R(8,12) 1.0896 calculate D2E/DX2 analytically ! ! R16 R(10,11) 1.4486 calculate D2E/DX2 analytically ! ! R17 R(10,13) 1.0901 calculate D2E/DX2 analytically ! ! R18 R(11,14) 1.0878 calculate D2E/DX2 analytically ! ! R19 R(15,16) 1.4518 calculate D2E/DX2 analytically ! ! R20 R(15,17) 1.4259 calculate D2E/DX2 analytically ! ! A1 A(2,1,6) 123.9975 calculate D2E/DX2 analytically ! ! A2 A(2,1,16) 97.6483 calculate D2E/DX2 analytically ! ! A3 A(2,1,19) 122.2072 calculate D2E/DX2 analytically ! ! A4 A(6,1,19) 113.3651 calculate D2E/DX2 analytically ! ! A5 A(16,1,19) 100.1667 calculate D2E/DX2 analytically ! ! A6 A(1,2,3) 121.0346 calculate D2E/DX2 analytically ! ! A7 A(1,2,7) 120.5026 calculate D2E/DX2 analytically ! ! A8 A(3,2,7) 118.0785 calculate D2E/DX2 analytically ! ! A9 A(2,3,4) 121.5864 calculate D2E/DX2 analytically ! ! A10 A(2,3,8) 117.5738 calculate D2E/DX2 analytically ! ! A11 A(4,3,8) 120.4495 calculate D2E/DX2 analytically ! ! A12 A(3,4,9) 121.3445 calculate D2E/DX2 analytically ! ! A13 A(3,4,18) 122.7962 calculate D2E/DX2 analytically ! ! A14 A(9,4,18) 112.4713 calculate D2E/DX2 analytically ! ! A15 A(2,7,5) 116.9639 calculate D2E/DX2 analytically ! ! A16 A(2,7,11) 121.6832 calculate D2E/DX2 analytically ! ! A17 A(5,7,11) 121.35 calculate D2E/DX2 analytically ! ! A18 A(3,8,10) 121.6004 calculate D2E/DX2 analytically ! ! A19 A(3,8,12) 117.0387 calculate D2E/DX2 analytically ! ! A20 A(10,8,12) 121.3609 calculate D2E/DX2 analytically ! ! A21 A(8,10,11) 120.8151 calculate D2E/DX2 analytically ! ! A22 A(8,10,13) 121.5222 calculate D2E/DX2 analytically ! ! A23 A(11,10,13) 117.662 calculate D2E/DX2 analytically ! ! A24 A(7,11,10) 120.2221 calculate D2E/DX2 analytically ! ! A25 A(7,11,14) 121.8866 calculate D2E/DX2 analytically ! ! A26 A(10,11,14) 117.8898 calculate D2E/DX2 analytically ! ! A27 A(16,15,17) 130.4714 calculate D2E/DX2 analytically ! ! A28 A(1,16,15) 121.3632 calculate D2E/DX2 analytically ! ! A29 A(6,16,15) 113.8475 calculate D2E/DX2 analytically ! ! D1 D(6,1,2,3) -21.5345 calculate D2E/DX2 analytically ! ! D2 D(6,1,2,7) 165.7175 calculate D2E/DX2 analytically ! ! D3 D(16,1,2,3) 59.3355 calculate D2E/DX2 analytically ! ! D4 D(16,1,2,7) -113.4124 calculate D2E/DX2 analytically ! ! D5 D(19,1,2,3) 166.4974 calculate D2E/DX2 analytically ! ! D6 D(19,1,2,7) -6.2506 calculate D2E/DX2 analytically ! ! D7 D(2,1,16,15) -39.9489 calculate D2E/DX2 analytically ! ! D8 D(19,1,16,15) -164.7288 calculate D2E/DX2 analytically ! ! D9 D(1,2,3,4) -1.2362 calculate D2E/DX2 analytically ! ! D10 D(1,2,3,8) -174.093 calculate D2E/DX2 analytically ! ! D11 D(7,2,3,4) 171.6828 calculate D2E/DX2 analytically ! ! D12 D(7,2,3,8) -1.174 calculate D2E/DX2 analytically ! ! D13 D(1,2,7,5) -5.6971 calculate D2E/DX2 analytically ! ! D14 D(1,2,7,11) 174.9163 calculate D2E/DX2 analytically ! ! D15 D(3,2,7,5) -178.6553 calculate D2E/DX2 analytically ! ! D16 D(3,2,7,11) 1.9581 calculate D2E/DX2 analytically ! ! D17 D(2,3,4,9) -175.3558 calculate D2E/DX2 analytically ! ! D18 D(2,3,4,18) 26.9964 calculate D2E/DX2 analytically ! ! D19 D(8,3,4,9) -2.7017 calculate D2E/DX2 analytically ! ! D20 D(8,3,4,18) -160.3495 calculate D2E/DX2 analytically ! ! D21 D(2,3,8,10) -0.1719 calculate D2E/DX2 analytically ! ! D22 D(2,3,8,12) 179.9128 calculate D2E/DX2 analytically ! ! D23 D(4,3,8,10) -173.1139 calculate D2E/DX2 analytically ! ! D24 D(4,3,8,12) 6.9709 calculate D2E/DX2 analytically ! ! D25 D(2,7,11,10) -1.3378 calculate D2E/DX2 analytically ! ! D26 D(2,7,11,14) 179.1027 calculate D2E/DX2 analytically ! ! D27 D(5,7,11,10) 179.3024 calculate D2E/DX2 analytically ! ! D28 D(5,7,11,14) -0.2572 calculate D2E/DX2 analytically ! ! D29 D(3,8,10,11) 0.843 calculate D2E/DX2 analytically ! ! D30 D(3,8,10,13) -179.4657 calculate D2E/DX2 analytically ! ! D31 D(12,8,10,11) -179.2454 calculate D2E/DX2 analytically ! ! D32 D(12,8,10,13) 0.4459 calculate D2E/DX2 analytically ! ! D33 D(8,10,11,7) -0.0902 calculate D2E/DX2 analytically ! ! D34 D(8,10,11,14) 179.4866 calculate D2E/DX2 analytically ! ! D35 D(13,10,11,7) -179.7931 calculate D2E/DX2 analytically ! ! D36 D(13,10,11,14) -0.2163 calculate D2E/DX2 analytically ! ! D37 D(17,15,16,1) 102.0738 calculate D2E/DX2 analytically ! ! D38 D(17,15,16,6) 134.33 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 97 maximum allowed number of steps= 114. Search for a saddle point of order 1. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.583578 0.337243 0.000000 2 6 0 -2.475596 -0.686092 -0.172309 3 6 0 -2.202542 -2.019847 0.356020 4 6 0 -1.034525 -2.305237 1.021539 5 1 0 -3.822732 0.487134 -1.425952 6 1 0 -0.826232 0.357340 0.776042 7 6 0 -3.648679 -0.511027 -1.023098 8 6 0 -3.140763 -3.086590 0.016720 9 1 0 -0.802928 -3.311735 1.346462 10 6 0 -4.228485 -2.855625 -0.755866 11 6 0 -4.491424 -1.535639 -1.291647 12 1 0 -2.927877 -4.078481 0.414288 13 1 0 -4.932544 -3.650886 -1.001238 14 1 0 -5.374413 -1.405504 -1.913534 15 16 0 0.352703 -1.964278 -0.814038 16 8 0 0.054514 -0.552409 -0.973670 17 8 0 0.104279 -3.066727 -1.683520 18 1 0 -0.467832 -1.555188 1.560742 19 1 0 -1.654966 1.264953 -0.554756 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.368430 0.000000 3 C 2.462872 1.460340 0.000000 4 C 2.885776 2.474589 1.374273 0.000000 5 H 2.658875 2.182397 3.476405 4.643452 0.000000 6 H 1.084536 2.169913 2.778789 2.681971 3.720838 7 C 2.455796 1.459662 2.503960 3.772735 1.090372 8 C 3.761348 2.498113 1.460590 2.460978 3.913807 9 H 3.967041 3.463883 2.146828 1.082705 5.588998 10 C 4.214412 2.849567 2.457491 3.696414 3.433320 11 C 3.692101 2.457277 2.861511 4.230043 2.134666 12 H 4.634371 3.472313 2.183456 2.664194 5.003208 13 H 5.303133 3.938746 3.457651 4.593142 4.305261 14 H 4.590121 3.457247 3.948298 5.315901 2.495502 15 S 3.115901 3.169361 2.810943 2.325940 4.880381 16 O 2.103060 2.657350 3.002624 2.870413 4.039585 17 O 4.155732 3.821902 3.252246 3.032175 5.302611 18 H 2.694828 2.791041 2.162517 1.083722 4.934245 19 H 1.083280 2.150878 3.452429 3.951697 2.462355 6 7 8 9 10 6 H 0.000000 7 C 3.457915 0.000000 8 C 4.218326 2.823601 0.000000 9 H 3.713224 4.642960 2.698958 0.000000 10 C 4.923943 2.429965 1.354021 4.045029 0.000000 11 C 4.614362 1.353576 2.437531 4.870230 1.448641 12 H 4.921817 3.913101 1.089600 2.443820 2.134530 13 H 6.007196 3.392271 2.136621 4.762399 1.090113 14 H 5.570223 2.138019 3.397223 5.929567 2.180871 15 S 3.050926 4.262241 3.762187 2.796227 4.667458 16 O 2.159826 3.703754 4.196754 3.705685 4.867887 17 O 4.317352 4.588295 3.663538 3.172356 4.435984 18 H 2.098087 4.228982 3.445832 1.801017 4.604381 19 H 1.811514 2.710782 4.633584 5.028585 4.862367 11 12 13 14 15 11 C 0.000000 12 H 3.438159 0.000000 13 H 2.180182 2.491032 0.000000 14 H 1.087818 4.306867 2.463589 0.000000 15 S 4.886451 4.091558 5.550993 5.858411 0.000000 16 O 4.661910 4.822268 5.871292 5.575335 1.451817 17 O 4.859864 3.823404 5.116282 5.729628 1.425871 18 H 4.932119 3.705831 5.557818 6.013945 2.545626 19 H 4.053618 5.577781 5.925144 4.776181 3.811285 16 17 18 19 16 O 0.000000 17 O 2.613075 0.000000 18 H 2.775186 3.624541 0.000000 19 H 2.529944 4.809626 3.719921 0.000000 Stoichiometry C8H8O2S Framework group C1[X(C8H8O2S)] Deg. of freedom 51 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.129257 2.021911 0.524681 2 6 0 -0.762761 0.998576 0.352372 3 6 0 -0.489707 -0.335179 0.880701 4 6 0 0.678310 -0.620569 1.546220 5 1 0 -2.109897 2.171802 -0.901271 6 1 0 0.886603 2.042008 1.300723 7 6 0 -1.935844 1.173641 -0.498417 8 6 0 -1.427928 -1.401922 0.541401 9 1 0 0.909907 -1.627067 1.871143 10 6 0 -2.515650 -1.170957 -0.231185 11 6 0 -2.778589 0.149029 -0.766966 12 1 0 -1.215042 -2.393813 0.938969 13 1 0 -3.219709 -1.966219 -0.476557 14 1 0 -3.661578 0.279163 -1.388853 15 16 0 2.065538 -0.279610 -0.289357 16 8 0 1.767349 1.132259 -0.448989 17 8 0 1.817114 -1.382059 -1.158839 18 1 0 1.245003 0.129480 2.085423 19 1 0 0.057869 2.949621 -0.030075 --------------------------------------------------------------------- Rotational constants (GHZ): 1.6575055 0.8107313 0.6888609 Standard basis: 6-31G(d,p) (6D, 7F) There are 209 symmetry adapted cartesian basis functions of A symmetry. There are 209 symmetry adapted basis functions of A symmetry. 209 basis functions, 388 primitive gaussians, 209 cartesian basis functions 44 alpha electrons 44 beta electrons nuclear repulsion energy 701.0805641271 Hartrees. NAtoms= 19 NActive= 19 NUniq= 19 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 209 RedAO= T EigKep= 4.70D-04 NBF= 209 NBsUse= 209 1.00D-06 EigRej= -1.00D+00 NBFU= 209 ExpMin= 1.17D-01 ExpMax= 2.19D+04 ExpMxC= 3.30D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=245585297. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -858.185413216 A.U. after 17 cycles NFock= 17 Conv=0.57D-08 -V/T= 2.0062 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 209 NBasis= 209 NAE= 44 NBE= 44 NFC= 0 NFV= 0 NROrb= 209 NOA= 44 NOB= 44 NVA= 165 NVB= 165 Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 20 centers at a time, making 1 passes. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. End of G2Drv F.D. properties file 721 does not exist. End of G2Drv F.D. properties file 722 does not exist. End of G2Drv F.D. properties file 788 does not exist. IDoAtm=1111111111111111111 Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=245440668. There are 60 degrees of freedom in the 1st order CPHF. IDoFFX=6 NUNeed= 0. 54 vectors produced by pass 0 Test12= 1.21D-14 1.67D-09 XBig12= 3.51D-01 1.65D-01. AX will form 54 AO Fock derivatives at one time. 54 vectors produced by pass 1 Test12= 1.21D-14 1.67D-09 XBig12= 3.77D-02 4.79D-02. 54 vectors produced by pass 2 Test12= 1.21D-14 1.67D-09 XBig12= 3.42D-04 2.65D-03. 54 vectors produced by pass 3 Test12= 1.21D-14 1.67D-09 XBig12= 1.37D-06 1.99D-04. 54 vectors produced by pass 4 Test12= 1.21D-14 1.67D-09 XBig12= 2.88D-09 5.62D-06. 47 vectors produced by pass 5 Test12= 1.21D-14 1.67D-09 XBig12= 2.89D-12 1.77D-07. 12 vectors produced by pass 6 Test12= 1.21D-14 1.67D-09 XBig12= 2.35D-15 6.74D-09. InvSVY: IOpt=1 It= 1 EMax= 7.22D-16 Solved reduced A of dimension 329 with 60 vectors. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist.