Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 4432. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 09-May-2018 ****************************************** %chk=\\icnas2.cc.ic.ac.uk\yw7216\Desktop\borazine\borazine-opt-yw7216-sym.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 B 0. 1.45083 0. H 0. 2.64596 0. N 1.22059 0.70471 0. H 2.09502 1.20956 0. B 1.25646 -0.72542 0. H 2.29147 -1.32298 0. N 0. -1.40942 0. H 0. -2.41912 0. B -1.25646 -0.72542 0. H -2.29147 -1.32298 0. N -1.22059 0.70471 0. H -2.09502 1.20956 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.1951 estimate D2E/DX2 ! ! R2 R(1,3) 1.4306 estimate D2E/DX2 ! ! R3 R(1,11) 1.4306 estimate D2E/DX2 ! ! R4 R(3,4) 1.0097 estimate D2E/DX2 ! ! R5 R(3,5) 1.4306 estimate D2E/DX2 ! ! R6 R(5,6) 1.1951 estimate D2E/DX2 ! ! R7 R(5,7) 1.4306 estimate D2E/DX2 ! ! R8 R(7,8) 1.0097 estimate D2E/DX2 ! ! R9 R(7,9) 1.4306 estimate D2E/DX2 ! ! R10 R(9,10) 1.1951 estimate D2E/DX2 ! ! R11 R(9,11) 1.4306 estimate D2E/DX2 ! ! R12 R(11,12) 1.0097 estimate D2E/DX2 ! ! A1 A(2,1,3) 121.4364 estimate D2E/DX2 ! ! A2 A(2,1,11) 121.4364 estimate D2E/DX2 ! ! A3 A(3,1,11) 117.1272 estimate D2E/DX2 ! ! A4 A(1,3,4) 118.5636 estimate D2E/DX2 ! ! A5 A(1,3,5) 122.8728 estimate D2E/DX2 ! ! A6 A(4,3,5) 118.5636 estimate D2E/DX2 ! ! A7 A(3,5,6) 121.4364 estimate D2E/DX2 ! ! A8 A(3,5,7) 117.1272 estimate D2E/DX2 ! ! A9 A(6,5,7) 121.4364 estimate D2E/DX2 ! ! A10 A(5,7,8) 118.5636 estimate D2E/DX2 ! ! A11 A(5,7,9) 122.8728 estimate D2E/DX2 ! ! A12 A(8,7,9) 118.5636 estimate D2E/DX2 ! ! A13 A(7,9,10) 121.4364 estimate D2E/DX2 ! ! A14 A(7,9,11) 117.1272 estimate D2E/DX2 ! ! A15 A(10,9,11) 121.4364 estimate D2E/DX2 ! ! A16 A(1,11,9) 122.8728 estimate D2E/DX2 ! ! A17 A(1,11,12) 118.5636 estimate D2E/DX2 ! ! A18 A(9,11,12) 118.5636 estimate D2E/DX2 ! ! D1 D(2,1,3,4) 0.0 estimate D2E/DX2 ! ! D2 D(2,1,3,5) 180.0 estimate D2E/DX2 ! ! D3 D(11,1,3,4) 180.0 estimate D2E/DX2 ! ! D4 D(11,1,3,5) 0.0 estimate D2E/DX2 ! ! D5 D(2,1,11,9) 180.0 estimate D2E/DX2 ! ! D6 D(2,1,11,12) 0.0 estimate D2E/DX2 ! ! D7 D(3,1,11,9) 0.0 estimate D2E/DX2 ! ! D8 D(3,1,11,12) 180.0 estimate D2E/DX2 ! ! D9 D(1,3,5,6) 180.0 estimate D2E/DX2 ! ! D10 D(1,3,5,7) 0.0 estimate D2E/DX2 ! ! D11 D(4,3,5,6) 0.0 estimate D2E/DX2 ! ! D12 D(4,3,5,7) 180.0 estimate D2E/DX2 ! ! D13 D(3,5,7,8) 180.0 estimate D2E/DX2 ! ! D14 D(3,5,7,9) 0.0 estimate D2E/DX2 ! ! D15 D(6,5,7,8) 0.0 estimate D2E/DX2 ! ! D16 D(6,5,7,9) 180.0 estimate D2E/DX2 ! ! D17 D(5,7,9,10) 180.0 estimate D2E/DX2 ! ! D18 D(5,7,9,11) 0.0 estimate D2E/DX2 ! ! D19 D(8,7,9,10) 0.0 estimate D2E/DX2 ! ! D20 D(8,7,9,11) 180.0 estimate D2E/DX2 ! ! D21 D(7,9,11,1) 0.0 estimate D2E/DX2 ! ! D22 D(7,9,11,12) 180.0 estimate D2E/DX2 ! ! D23 D(10,9,11,1) 180.0 estimate D2E/DX2 ! ! D24 D(10,9,11,12) 0.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 64 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.000000 1.450830 0.000000 2 1 0 0.000000 2.645956 0.000000 3 7 0 1.220595 0.704711 0.000000 4 1 0 2.095017 1.209559 0.000000 5 5 0 1.256456 -0.725415 0.000000 6 1 0 2.291465 -1.322978 0.000000 7 7 0 0.000000 -1.409421 0.000000 8 1 0 0.000000 -2.419118 0.000000 9 5 0 -1.256456 -0.725415 0.000000 10 1 0 -2.291465 -1.322978 0.000000 11 7 0 -1.220595 0.704711 0.000000 12 1 0 -2.095017 1.209559 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 B 0.000000 2 H 1.195126 0.000000 3 N 1.430575 2.293095 0.000000 4 H 2.108864 2.540145 1.009696 0.000000 5 B 2.512912 3.597892 1.430575 2.108864 0.000000 6 H 3.597892 4.582930 2.293095 2.540145 1.195126 7 N 2.860252 4.055378 2.441190 3.353827 1.430575 8 H 3.869948 5.065074 3.353827 4.190035 2.108864 9 B 2.512912 3.597892 2.860252 3.869948 2.512912 10 H 3.597892 4.582930 4.055378 5.065074 3.597892 11 N 1.430575 2.293095 2.441190 3.353827 2.860252 12 H 2.108864 2.540145 3.353827 4.190035 3.869948 6 7 8 9 10 6 H 0.000000 7 N 2.293095 0.000000 8 H 2.540145 1.009696 0.000000 9 B 3.597892 1.430575 2.108864 0.000000 10 H 4.582930 2.293095 2.540145 1.195126 0.000000 11 N 4.055378 2.441190 3.353827 1.430575 2.293095 12 H 5.065074 3.353827 4.190035 2.108864 2.540145 11 12 11 N 0.000000 12 H 1.009696 0.000000 Stoichiometry B3H6N3 Framework group D3H[3C2(HB.NH)] Deg. of freedom 4 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -1.256456 0.725415 0.000000 2 1 0 -2.291465 1.322978 0.000000 3 7 0 0.000000 1.409421 0.000000 4 1 0 0.000000 2.419118 0.000000 5 5 0 1.256456 0.725415 0.000000 6 1 0 2.291465 1.322978 0.000000 7 7 0 1.220595 -0.704711 0.000000 8 1 0 2.095017 -1.209559 0.000000 9 5 0 0.000000 -1.450830 0.000000 10 1 0 0.000000 -2.645956 0.000000 11 7 0 -1.220595 -0.704711 0.000000 12 1 0 -2.095017 -1.209559 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 5.2689716 5.2689716 2.6344858 Standard basis: 6-31G(d,p) (6D, 7F) There are 52 symmetry adapted cartesian basis functions of A1 symmetry. There are 12 symmetry adapted cartesian basis functions of A2 symmetry. There are 38 symmetry adapted cartesian basis functions of B1 symmetry. There are 18 symmetry adapted cartesian basis functions of B2 symmetry. There are 52 symmetry adapted basis functions of A1 symmetry. There are 12 symmetry adapted basis functions of A2 symmetry. There are 38 symmetry adapted basis functions of B1 symmetry. There are 18 symmetry adapted basis functions of B2 symmetry. 120 basis functions, 210 primitive gaussians, 120 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 197.7523979528 Hartrees. NAtoms= 12 NActive= 12 NUniq= 4 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 120 RedAO= T EigKep= 5.87D-03 NBF= 52 12 38 18 NBsUse= 120 1.00D-06 EigRej= -1.00D+00 NBFU= 52 12 38 18 ExpMin= 1.27D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1') (E') (E') (A1') (E') (E') (A1') (E') (E') (A1') (E') (E') (A2') (E') (E') (A1') (A2") (E') (E') (E") (E") Virtual (E") (E") (A2") (A1') (E') (E') (A1') (E') (E') (A2') (E') (E') (A1') (E') (E') (A2") (E') (E') (E") (E") (A1') (E') (E') (A1') (A2') (E") (E") (E') (E') (E') (E') (A2") (A1') (E') (E') (A1') (A2') (E') (E') (A1") (A1') (A2") (E") (E") (E') (E') (E") (E") (A1') (E') (E') (A1') (A2') (E') (E') (E') (E') (E") (E") (A2") (E') (E') (A1') (E") (E") (A2') (A2") (E') (E') (E") (E") (A1') (E') (E') (A2') (A1") (E') (E') (E") (E") (E') (E') (A2") (A1') (E') (E') (A2') (E') (E') (A1') (E') (E') (A1') (E') (E') (A1') (E') (E') (A1') The electronic state of the initial guess is 1-A1'. Keep R1 ints in memory in symmetry-blocked form, NReq=33473238. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -242.684599202 A.U. after 11 cycles NFock= 11 Conv=0.36D-08 -V/T= 2.0096 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (E') (E') (A1') (A1') (E') (E') (A1') (E') (E') (A1') (E') (E') (E') (E') (A2') (A1') (A2") (E') (E') (E") (E") Virtual (E") (E") (A1') (E') (E') (A2") (A1') (E') (E') (A2') (E') (E') (A1') (E') (E') (A2") (E') (E') (E") (E") (A1') (E') (E') (A1') (A2') (E') (E') (E") (E") (E') (E') (A1') (A2") (A1') (E') (E') (A2') (E') (E') (A1") (A1') (A2") (E") (E") (E') (E') (E") (E") (A1') (E') (E') (A1') (A2') (E') (E') (E') (E') (E") (E") (A2") (E') (E') (A1') (E") (E") (A2') (A2") (E') (E') (E") (E") (A1') (E') (E') (A2') (A1") (E') (E') (E") (E") (E') (E') (A2") (E') (E') (A1') (A2') (E') (E') (A1') (E') (E') (A1') (E') (E') (A1') (E') (E') (A1') The electronic state is 1-A1'. Alpha occ. eigenvalues -- -14.31546 -14.31546 -14.31546 -6.74680 -6.74679 Alpha occ. eigenvalues -- -6.74679 -0.88857 -0.83516 -0.83516 -0.55137 Alpha occ. eigenvalues -- -0.52456 -0.52456 -0.43403 -0.43403 -0.43202 Alpha occ. eigenvalues -- -0.38644 -0.36134 -0.31992 -0.31992 -0.27593 Alpha occ. eigenvalues -- -0.27593 Alpha virt. eigenvalues -- 0.02423 0.02423 0.08952 0.11825 0.11825 Alpha virt. eigenvalues -- 0.12497 0.16897 0.19642 0.19642 0.24253 Alpha virt. eigenvalues -- 0.27183 0.27183 0.28692 0.34563 0.34563 Alpha virt. eigenvalues -- 0.42103 0.45505 0.45505 0.47910 0.47910 Alpha virt. eigenvalues -- 0.50091 0.55309 0.55309 0.63684 0.67020 Alpha virt. eigenvalues -- 0.76390 0.76390 0.79018 0.79018 0.83800 Alpha virt. eigenvalues -- 0.83800 0.87419 0.88029 0.88497 0.88907 Alpha virt. eigenvalues -- 0.88907 1.02088 1.07218 1.07218 1.09347 Alpha virt. eigenvalues -- 1.11083 1.12897 1.20963 1.20963 1.24714 Alpha virt. eigenvalues -- 1.24714 1.30854 1.30854 1.31025 1.42172 Alpha virt. eigenvalues -- 1.42172 1.49849 1.66279 1.74481 1.74481 Alpha virt. eigenvalues -- 1.80268 1.80268 1.84801 1.84801 1.91405 Alpha virt. eigenvalues -- 1.93280 1.93280 1.98904 2.14877 2.14877 Alpha virt. eigenvalues -- 2.29927 2.32505 2.33076 2.33076 2.34719 Alpha virt. eigenvalues -- 2.34719 2.35661 2.37699 2.37699 2.44110 Alpha virt. eigenvalues -- 2.47259 2.49613 2.49613 2.59838 2.59838 Alpha virt. eigenvalues -- 2.71125 2.71125 2.73530 2.90046 2.90046 Alpha virt. eigenvalues -- 2.90132 3.11330 3.14804 3.14804 3.15226 Alpha virt. eigenvalues -- 3.44218 3.44218 3.56574 3.62925 3.62925 Alpha virt. eigenvalues -- 4.02043 4.16628 4.16628 4.31316 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 B 3.477731 0.383122 0.460200 -0.030047 -0.009025 0.002908 2 H 0.383122 0.779615 -0.037325 -0.003446 0.002908 -0.000098 3 N 0.460200 -0.037325 6.334854 0.356213 0.460200 -0.037325 4 H -0.030047 -0.003446 0.356213 0.455265 -0.030047 -0.003446 5 B -0.009025 0.002908 0.460200 -0.030047 3.477731 0.383122 6 H 0.002908 -0.000098 -0.037325 -0.003446 0.383122 0.779615 7 N -0.017050 -0.000062 -0.026631 0.002242 0.460200 -0.037325 8 H 0.000833 0.000008 0.002242 -0.000108 -0.030047 -0.003446 9 B -0.009025 0.002908 -0.017050 0.000833 -0.009025 0.002908 10 H 0.002908 -0.000098 -0.000062 0.000008 0.002908 -0.000098 11 N 0.460200 -0.037325 -0.026631 0.002242 -0.017050 -0.000062 12 H -0.030047 -0.003446 0.002242 -0.000108 0.000833 0.000008 7 8 9 10 11 12 1 B -0.017050 0.000833 -0.009025 0.002908 0.460200 -0.030047 2 H -0.000062 0.000008 0.002908 -0.000098 -0.037325 -0.003446 3 N -0.026631 0.002242 -0.017050 -0.000062 -0.026631 0.002242 4 H 0.002242 -0.000108 0.000833 0.000008 0.002242 -0.000108 5 B 0.460200 -0.030047 -0.009025 0.002908 -0.017050 0.000833 6 H -0.037325 -0.003446 0.002908 -0.000098 -0.000062 0.000008 7 N 6.334854 0.356213 0.460200 -0.037325 -0.026631 0.002242 8 H 0.356213 0.455265 -0.030047 -0.003446 0.002242 -0.000108 9 B 0.460200 -0.030047 3.477731 0.383122 0.460200 -0.030047 10 H -0.037325 -0.003446 0.383122 0.779615 -0.037325 -0.003446 11 N -0.026631 0.002242 0.460200 -0.037325 6.334854 0.356213 12 H 0.002242 -0.000108 -0.030047 -0.003446 0.356213 0.455265 Mulliken charges: 1 1 B 0.307291 2 H -0.086762 3 N -0.470926 4 H 0.250397 5 B 0.307291 6 H -0.086762 7 N -0.470926 8 H 0.250397 9 B 0.307291 10 H -0.086762 11 N -0.470926 12 H 0.250397 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 B 0.220529 3 N -0.220529 5 B 0.220529 7 N -0.220529 9 B 0.220529 11 N -0.220529 Electronic spatial extent (au): = 476.2308 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -33.2456 YY= -33.2456 ZZ= -36.8212 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 1.1919 YY= 1.1919 ZZ= -2.3837 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 14.3963 ZZZ= 0.0000 XYY= 0.0000 XXY= -14.3963 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -303.8705 YYYY= -303.8705 ZZZZ= -36.6050 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -101.2902 XXZZ= -61.7529 YYZZ= -61.7529 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.977523979528D+02 E-N=-9.595071684224D+02 KE= 2.403804373368D+02 Symmetry A1 KE= 1.512552272173D+02 Symmetry A2 KE= 2.950930610502D+00 Symmetry B1 KE= 8.093711819893D+01 Symmetry B2 KE= 5.237161310066D+00 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 0.000000000 -0.000020012 0.000000000 2 1 0.000000000 -0.000000137 0.000000000 3 7 0.000018276 0.000010552 0.000000000 4 1 0.000009842 0.000005682 0.000000000 5 5 -0.000017331 0.000010006 0.000000000 6 1 -0.000000118 0.000000068 0.000000000 7 7 0.000000000 -0.000021104 0.000000000 8 1 0.000000000 -0.000011364 0.000000000 9 5 0.000017331 0.000010006 0.000000000 10 1 0.000000118 0.000000068 0.000000000 11 7 -0.000018276 0.000010552 0.000000000 12 1 -0.000009842 0.000005682 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000021104 RMS 0.000009014 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000013822 RMS 0.000006536 Search for a local minimum. Step number 1 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01817 0.01817 0.01817 0.01817 0.01817 Eigenvalues --- 0.01817 0.01817 0.01817 0.01817 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.25025 0.25025 Eigenvalues --- 0.25025 0.37686 0.37686 0.40907 0.40907 Eigenvalues --- 0.40907 0.40907 0.46023 0.46023 0.46023 RFO step: Lambda= 0.00000000D+00 EMin= 1.81662680D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00002833 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 4.34D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.25846 0.00000 0.00000 0.00000 0.00000 2.25846 R2 2.70340 0.00001 0.00000 0.00001 0.00001 2.70341 R3 2.70340 0.00001 0.00000 0.00001 0.00001 2.70341 R4 1.90805 0.00001 0.00000 0.00002 0.00002 1.90807 R5 2.70340 0.00001 0.00000 0.00001 0.00001 2.70341 R6 2.25846 0.00000 0.00000 0.00000 0.00000 2.25846 R7 2.70340 0.00001 0.00000 0.00001 0.00001 2.70341 R8 1.90805 0.00001 0.00000 0.00002 0.00002 1.90807 R9 2.70340 0.00001 0.00000 0.00001 0.00001 2.70341 R10 2.25846 0.00000 0.00000 0.00000 0.00000 2.25846 R11 2.70340 0.00001 0.00000 0.00001 0.00001 2.70341 R12 1.90805 0.00001 0.00000 0.00002 0.00002 1.90807 A1 2.11947 -0.00001 0.00000 -0.00003 -0.00003 2.11943 A2 2.11947 -0.00001 0.00000 -0.00003 -0.00003 2.11943 A3 2.04425 0.00001 0.00000 0.00006 0.00006 2.04432 A4 2.06932 0.00001 0.00000 0.00003 0.00003 2.06936 A5 2.14454 -0.00001 0.00000 -0.00006 -0.00006 2.14447 A6 2.06932 0.00001 0.00000 0.00003 0.00003 2.06936 A7 2.11947 -0.00001 0.00000 -0.00003 -0.00003 2.11943 A8 2.04425 0.00001 0.00000 0.00006 0.00006 2.04432 A9 2.11947 -0.00001 0.00000 -0.00003 -0.00003 2.11943 A10 2.06932 0.00001 0.00000 0.00003 0.00003 2.06936 A11 2.14454 -0.00001 0.00000 -0.00006 -0.00006 2.14447 A12 2.06932 0.00001 0.00000 0.00003 0.00003 2.06936 A13 2.11947 -0.00001 0.00000 -0.00003 -0.00003 2.11943 A14 2.04425 0.00001 0.00000 0.00006 0.00006 2.04432 A15 2.11947 -0.00001 0.00000 -0.00003 -0.00003 2.11943 A16 2.14454 -0.00001 0.00000 -0.00006 -0.00006 2.14447 A17 2.06932 0.00001 0.00000 0.00003 0.00003 2.06936 A18 2.06932 0.00001 0.00000 0.00003 0.00003 2.06936 D1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D8 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D9 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D12 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D16 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D17 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D18 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D19 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D20 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D21 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D22 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D23 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D24 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Item Value Threshold Converged? Maximum Force 0.000014 0.000450 YES RMS Force 0.000007 0.000300 YES Maximum Displacement 0.000090 0.001800 YES RMS Displacement 0.000028 0.001200 YES Predicted change in Energy=-4.573621D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.1951 -DE/DX = 0.0 ! ! R2 R(1,3) 1.4306 -DE/DX = 0.0 ! ! R3 R(1,11) 1.4306 -DE/DX = 0.0 ! ! R4 R(3,4) 1.0097 -DE/DX = 0.0 ! ! R5 R(3,5) 1.4306 -DE/DX = 0.0 ! ! R6 R(5,6) 1.1951 -DE/DX = 0.0 ! ! R7 R(5,7) 1.4306 -DE/DX = 0.0 ! ! R8 R(7,8) 1.0097 -DE/DX = 0.0 ! ! R9 R(7,9) 1.4306 -DE/DX = 0.0 ! ! R10 R(9,10) 1.1951 -DE/DX = 0.0 ! ! R11 R(9,11) 1.4306 -DE/DX = 0.0 ! ! R12 R(11,12) 1.0097 -DE/DX = 0.0 ! ! A1 A(2,1,3) 121.4364 -DE/DX = 0.0 ! ! A2 A(2,1,11) 121.4364 -DE/DX = 0.0 ! ! A3 A(3,1,11) 117.1272 -DE/DX = 0.0 ! ! A4 A(1,3,4) 118.5636 -DE/DX = 0.0 ! ! A5 A(1,3,5) 122.8728 -DE/DX = 0.0 ! ! A6 A(4,3,5) 118.5636 -DE/DX = 0.0 ! ! A7 A(3,5,6) 121.4364 -DE/DX = 0.0 ! ! A8 A(3,5,7) 117.1272 -DE/DX = 0.0 ! ! A9 A(6,5,7) 121.4364 -DE/DX = 0.0 ! ! A10 A(5,7,8) 118.5636 -DE/DX = 0.0 ! ! A11 A(5,7,9) 122.8728 -DE/DX = 0.0 ! ! A12 A(8,7,9) 118.5636 -DE/DX = 0.0 ! ! A13 A(7,9,10) 121.4364 -DE/DX = 0.0 ! ! A14 A(7,9,11) 117.1272 -DE/DX = 0.0 ! ! A15 A(10,9,11) 121.4364 -DE/DX = 0.0 ! ! A16 A(1,11,9) 122.8728 -DE/DX = 0.0 ! ! A17 A(1,11,12) 118.5636 -DE/DX = 0.0 ! ! A18 A(9,11,12) 118.5636 -DE/DX = 0.0 ! ! D1 D(2,1,3,4) 0.0 -DE/DX = 0.0 ! ! D2 D(2,1,3,5) 180.0 -DE/DX = 0.0 ! ! D3 D(11,1,3,4) 180.0 -DE/DX = 0.0 ! ! D4 D(11,1,3,5) 0.0 -DE/DX = 0.0 ! ! D5 D(2,1,11,9) 180.0 -DE/DX = 0.0 ! ! D6 D(2,1,11,12) 0.0 -DE/DX = 0.0 ! ! D7 D(3,1,11,9) 0.0 -DE/DX = 0.0 ! ! D8 D(3,1,11,12) 180.0 -DE/DX = 0.0 ! ! D9 D(1,3,5,6) 180.0 -DE/DX = 0.0 ! ! D10 D(1,3,5,7) 0.0 -DE/DX = 0.0 ! ! D11 D(4,3,5,6) 0.0 -DE/DX = 0.0 ! ! D12 D(4,3,5,7) 180.0 -DE/DX = 0.0 ! ! D13 D(3,5,7,8) 180.0 -DE/DX = 0.0 ! ! D14 D(3,5,7,9) 0.0 -DE/DX = 0.0 ! ! D15 D(6,5,7,8) 0.0 -DE/DX = 0.0 ! ! D16 D(6,5,7,9) 180.0 -DE/DX = 0.0 ! ! D17 D(5,7,9,10) 180.0 -DE/DX = 0.0 ! ! D18 D(5,7,9,11) 0.0 -DE/DX = 0.0 ! ! D19 D(8,7,9,10) 0.0 -DE/DX = 0.0 ! ! D20 D(8,7,9,11) 180.0 -DE/DX = 0.0 ! ! D21 D(7,9,11,1) 0.0 -DE/DX = 0.0 ! ! D22 D(7,9,11,12) 180.0 -DE/DX = 0.0 ! ! D23 D(10,9,11,1) 180.0 -DE/DX = 0.0 ! ! D24 D(10,9,11,12) 0.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.000000 1.450830 0.000000 2 1 0 0.000000 2.645956 0.000000 3 7 0 1.220595 0.704711 0.000000 4 1 0 2.095017 1.209559 0.000000 5 5 0 1.256456 -0.725415 0.000000 6 1 0 2.291465 -1.322978 0.000000 7 7 0 0.000000 -1.409421 0.000000 8 1 0 0.000000 -2.419118 0.000000 9 5 0 -1.256456 -0.725415 0.000000 10 1 0 -2.291465 -1.322978 0.000000 11 7 0 -1.220595 0.704711 0.000000 12 1 0 -2.095017 1.209559 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 B 0.000000 2 H 1.195126 0.000000 3 N 1.430575 2.293095 0.000000 4 H 2.108864 2.540145 1.009696 0.000000 5 B 2.512912 3.597892 1.430575 2.108864 0.000000 6 H 3.597892 4.582930 2.293095 2.540145 1.195126 7 N 2.860252 4.055378 2.441190 3.353827 1.430575 8 H 3.869948 5.065074 3.353827 4.190035 2.108864 9 B 2.512912 3.597892 2.860252 3.869948 2.512912 10 H 3.597892 4.582930 4.055378 5.065074 3.597892 11 N 1.430575 2.293095 2.441190 3.353827 2.860252 12 H 2.108864 2.540145 3.353827 4.190035 3.869948 6 7 8 9 10 6 H 0.000000 7 N 2.293095 0.000000 8 H 2.540145 1.009696 0.000000 9 B 3.597892 1.430575 2.108864 0.000000 10 H 4.582930 2.293095 2.540145 1.195126 0.000000 11 N 4.055378 2.441190 3.353827 1.430575 2.293095 12 H 5.065074 3.353827 4.190035 2.108864 2.540145 11 12 11 N 0.000000 12 H 1.009696 0.000000 Stoichiometry B3H6N3 Framework group D3H[3C2(HB.NH)] Deg. of freedom 4 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -1.256456 0.725415 0.000000 2 1 0 -2.291465 1.322978 0.000000 3 7 0 0.000000 1.409421 0.000000 4 1 0 0.000000 2.419118 0.000000 5 5 0 1.256456 0.725415 0.000000 6 1 0 2.291465 1.322978 0.000000 7 7 0 1.220595 -0.704711 0.000000 8 1 0 2.095017 -1.209559 0.000000 9 5 0 0.000000 -1.450830 0.000000 10 1 0 0.000000 -2.645956 0.000000 11 7 0 -1.220595 -0.704711 0.000000 12 1 0 -2.095017 -1.209559 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 5.2689716 5.2689716 2.6344858 1|1| IMPERIAL COLLEGE-CHWS-139|FOpt|RB3LYP|6-31G(d,p)|B3H6N3|YW7216|09 -May-2018|0||# opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ul trafine||Title Card Required||0,1|B,-0.0000000042,1.45083025,0.|H,-0.0 000000077,2.64595612,0.|N,1.2205948066,0.7047107459,0.|H,2.0950172952, 1.2095588084,0.|B,1.2564558544,-0.7254151199,0.|H,2.2914652202,-1.3229 780519,0.|N,0.0000000041,-1.4094214818,0.|H,0.000000007,-2.4191176017, 0.|B,-1.2564558501,-0.7254151272,0.|H,-2.2914652125,-1.3229780652,0.|N ,-1.2205948107,0.7047107388,0.|H,-2.0950173022,1.2095587962,0.||Versio n=EM64W-G09RevD.01|State=1-A1'|HF=-242.6845992|RMSD=3.590e-009|RMSF=9. 014e-006|Dipole=0.,0.,0.|Quadrupole=0.8861241,0.8861241,-1.7722481,0., 0.,0.|PG=D03H [3C2(H1B1.N1H1)]||@ IF YOU BELIEVE CERTAIN WORDS, YOU BELIEVE THEIR HIDDEN ARGUMENTS. WHEN YOU BELIEVE SOMETHING IS RIGHT OR WRONG, TRUE OR FALSE, YOU BELIEVE THE ASSUMPTIONS IN THE WORDS WHICH EXPRESS THE ARGUMENTS. SUCH ASSUMPTIONS ARE OFTEN FULL OF HOLES, BUT REMAIN MOST PRECIOUS TO THE CONVINCED. -- THE OPEN-ENDED PROOF FROM THE PANOPLIA PROPHETICA CHILDREN OF DUNE BY FRANK HERBERT Job cpu time: 0 days 0 hours 6 minutes 38.0 seconds. File lengths (MBytes): RWF= 8 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Wed May 09 22:42:58 2018.