Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 1492. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 14-May-2019 ****************************************** %chk=\\icnas1.cc.ic.ac.uk\ag7017\year2complab\ALEXGOWSMITH_NI3_go2.chk Default route: MaxDisk=10GB --------------------------------- # opt b3lyp/gen geom=connectivity --------------------------------- 1/14=-1,18=20,19=15,26=3,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=7,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=7,6=1,11=2,16=1,25=1,30=1,71=1,74=-5,82=7/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ---------------- ALEXGOWSMITH_NI3 ---------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 N 0. 0. 0.11923 I 0. 1.86889 -0.67333 I -1.6185 -0.93444 -0.67333 I 1.6185 -0.93444 -0.67333 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 2.03 estimate D2E/DX2 ! ! R2 R(1,3) 2.03 estimate D2E/DX2 ! ! R3 R(1,4) 2.03 estimate D2E/DX2 ! ! A1 A(2,1,3) 105.7446 estimate D2E/DX2 ! ! A2 A(2,1,4) 105.7446 estimate D2E/DX2 ! ! A3 A(3,1,4) 105.7445 estimate D2E/DX2 ! ! D1 D(2,1,4,3) -111.8637 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.119234 2 53 0 0.000000 1.868886 -0.673334 3 53 0 -1.618502 -0.934444 -0.673334 4 53 0 1.618502 -0.934444 -0.673334 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 I 2.030000 0.000000 3 I 2.030000 3.237007 0.000000 4 I 2.030000 3.237007 3.237005 0.000000 This structure is nearly, but not quite of a higher symmetry. Consider Symm=Loose if the higher symmetry is desired. Stoichiometry I3N Framework group CS[SG(IN),X(I2)] Deg. of freedom 4 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.759147 0.000001 0.000000 2 53 0 -0.033422 1.868887 0.000000 3 53 0 -0.033422 -0.934443 1.618502 4 53 0 -0.033422 -0.934443 -1.618502 --------------------------------------------------------------------- Rotational constants (GHZ): 0.7505688 0.7505677 0.3800732 General basis read from cards: (5D, 7F) There are 25 symmetry adapted cartesian basis functions of A' symmetry. There are 14 symmetry adapted cartesian basis functions of A" symmetry. There are 24 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. There are 83 occupied orbitals but only 38 basis functions! Error termination via Lnk1e in C:\G09W\l301.exe at Tue May 14 18:49:24 2019. Job cpu time: 0 days 0 hours 0 minutes 3.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1