Entering Link 1 = C:\G09W\l1.exe PID= 3076. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: IA32W-G09RevB.01 12-Aug-2010 11-Mar-2011 ****************************************** %chk=\\icfs16.cc.ic.ac.uk\mc608\Chemistry\Year 3\Term 2\Labs\Computational\Modul e 2\Project\CYCLOPENTADIENE_OPT_3.chk --------------------------------------- # opt mp2/6-311g(d,p) geom=connectivity --------------------------------------- 1/18=20,19=15,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=101,11=9,16=1,25=1,30=1,71=1/1,2,3; 4//1; 5/5=2,38=5/2; 8/6=4,10=2/1; 9/15=2,16=-3/6; 10/5=1/2; 6/7=2,8=2,9=2,10=2/1; 7/12=2/1,2,3,16; 1/18=20,19=15/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=4,6=6,7=101,11=9,16=1,25=1,30=1,71=1/1,2,3; 4/5=5,16=3/1; 5/5=2,38=5/2; 8/6=4,10=2/1; 9/15=2,16=-3/6; 10/5=1/2; 7/12=2/1,2,3,16; 1/18=20,19=15/3(-8); 2/9=110/2; 6/7=2,8=2,9=2,10=2/1; 99//99; --------------------- Cyclopentadiene Opt 3 --------------------- Symbolic Z-matrix: Charge = -1 Multiplicity = 1 C -0.34565 -1.15237 0.00022 H -0.65898 -2.19708 0.00038 C -1.20286 -0.02738 -0.00017 H -2.29327 -0.05229 -0.0003 C -0.39776 1.13545 0.00005 H -0.75822 2.16486 0.0001 C 0.98923 -0.68485 -0.00022 H 1.88595 -1.30578 -0.0004 C 0.95703 0.72916 0.00012 H 1.82454 1.39025 0.00023 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0907 estimate D2E/DX2 ! ! R2 R(1,3) 1.4144 estimate D2E/DX2 ! ! R3 R(1,7) 1.4144 estimate D2E/DX2 ! ! R4 R(3,4) 1.0907 estimate D2E/DX2 ! ! R5 R(3,5) 1.4143 estimate D2E/DX2 ! ! R6 R(5,6) 1.0907 estimate D2E/DX2 ! ! R7 R(5,9) 1.4144 estimate D2E/DX2 ! ! R8 R(7,8) 1.0907 estimate D2E/DX2 ! ! R9 R(7,9) 1.4144 estimate D2E/DX2 ! ! R10 R(9,10) 1.0907 estimate D2E/DX2 ! ! A1 A(2,1,3) 125.9983 estimate D2E/DX2 ! ! A2 A(2,1,7) 125.9972 estimate D2E/DX2 ! ! A3 A(3,1,7) 108.0045 estimate D2E/DX2 ! ! A4 A(1,3,4) 125.9981 estimate D2E/DX2 ! ! A5 A(1,3,5) 107.9966 estimate D2E/DX2 ! ! A6 A(4,3,5) 126.0053 estimate D2E/DX2 ! ! A7 A(3,5,6) 126.005 estimate D2E/DX2 ! ! A8 A(3,5,9) 108.0034 estimate D2E/DX2 ! ! A9 A(6,5,9) 125.9916 estimate D2E/DX2 ! ! A10 A(1,7,8) 125.9977 estimate D2E/DX2 ! ! A11 A(1,7,9) 107.9974 estimate D2E/DX2 ! ! A12 A(8,7,9) 126.0049 estimate D2E/DX2 ! ! A13 A(5,9,7) 107.9981 estimate D2E/DX2 ! ! A14 A(5,9,10) 125.9973 estimate D2E/DX2 ! ! A15 A(7,9,10) 126.0046 estimate D2E/DX2 ! ! D1 D(2,1,3,4) 0.0036 estimate D2E/DX2 ! ! D2 D(2,1,3,5) 179.9865 estimate D2E/DX2 ! ! D3 D(7,1,3,4) 179.9789 estimate D2E/DX2 ! ! D4 D(7,1,3,5) -0.0383 estimate D2E/DX2 ! ! D5 D(2,1,7,8) -0.0038 estimate D2E/DX2 ! ! D6 D(2,1,7,9) -179.982 estimate D2E/DX2 ! ! D7 D(3,1,7,8) -179.9791 estimate D2E/DX2 ! ! D8 D(3,1,7,9) 0.0427 estimate D2E/DX2 ! ! D9 D(1,3,5,6) -179.9835 estimate D2E/DX2 ! ! D10 D(1,3,5,9) 0.0192 estimate D2E/DX2 ! ! D11 D(4,3,5,6) -0.0006 estimate D2E/DX2 ! ! D12 D(4,3,5,9) -179.9979 estimate D2E/DX2 ! ! D13 D(3,5,9,7) 0.0072 estimate D2E/DX2 ! ! D14 D(3,5,9,10) 179.9968 estimate D2E/DX2 ! ! D15 D(6,5,9,7) -179.9901 estimate D2E/DX2 ! ! D16 D(6,5,9,10) -0.0005 estimate D2E/DX2 ! ! D17 D(1,7,9,5) -0.0308 estimate D2E/DX2 ! ! D18 D(1,7,9,10) 179.9796 estimate D2E/DX2 ! ! D19 D(8,7,9,5) 179.9909 estimate D2E/DX2 ! ! D20 D(8,7,9,10) 0.0013 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 55 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.345645 -1.152371 0.000220 2 1 0 -0.658979 -2.197084 0.000384 3 6 0 -1.202856 -0.027383 -0.000170 4 1 0 -2.293269 -0.052287 -0.000304 5 6 0 -0.397763 1.135452 0.000047 6 1 0 -0.758219 2.164864 0.000100 7 6 0 0.989231 -0.684853 -0.000220 8 1 0 1.885945 -1.305776 -0.000397 9 6 0 0.957030 0.729161 0.000120 10 1 0 1.824542 1.390247 0.000231 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.090689 0.000000 3 C 1.414358 2.236829 0.000000 4 H 2.236834 2.696490 1.090697 0.000000 5 C 2.288417 3.342758 1.414341 2.236888 0.000000 6 H 3.342793 4.363077 2.236884 2.696690 1.090696 7 C 1.414379 2.236837 2.288561 3.342895 2.288507 8 H 2.236857 2.696492 3.342900 4.363148 3.342890 9 C 2.288477 3.342812 2.288551 3.342919 1.414403 10 H 3.342846 4.363120 3.342875 4.363172 2.236864 6 7 8 9 10 6 H 0.000000 7 C 3.342823 0.000000 8 H 4.363135 1.090707 0.000000 9 C 2.236811 1.414381 2.236929 0.000000 10 H 2.696421 2.236914 2.696722 1.090693 0.000000 Stoichiometry C5H5(1-) Framework group C1[X(C5H5)] Deg. of freedom 24 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.344511 -1.152710 0.000220 2 1 0 -0.656818 -2.197731 0.000384 3 6 0 -1.202829 -0.028566 -0.000170 4 1 0 -2.293217 -0.054543 -0.000304 5 6 0 -0.398880 1.135060 0.000047 6 1 0 -0.760348 2.164117 0.000100 7 6 0 0.989904 -0.683880 -0.000220 8 1 0 1.887228 -1.303920 -0.000397 9 6 0 0.956312 0.730102 0.000120 10 1 0 1.823174 1.392041 0.000231 --------------------------------------------------------------------- Rotational constants (GHZ): 8.9161632 8.9155190 4.4579207 Standard basis: 6-311G(d,p) (5D, 7F) There are 120 symmetry adapted basis functions of A symmetry. Integral buffers will be 262144 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 120 basis functions, 200 primitive gaussians, 125 cartesian basis functions 18 alpha electrons 18 beta electrons nuclear repulsion energy 148.8027996911 Hartrees. NAtoms= 10 NActive= 10 NUniq= 10 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 120 RedAO= T NBF= 120 NBsUse= 120 1.00D-06 NBFU= 120 Harris functional with IExCor= 205 diagonalized for initial guess. ExpMin= 1.03D-01 ExpMax= 4.56D+03 ExpMxC= 6.82D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state of the initial guess is 1-A. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=32070556. SCF Done: E(RHF) = -192.233952020 A.U. after 10 cycles Convg = 0.5838D-08 -V/T = 2.0009 ExpMin= 1.03D-01 ExpMax= 4.56D+03 ExpMxC= 6.82D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV=-2 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 6 120 NBasis= 120 NAE= 18 NBE= 18 NFC= 5 NFV= 0 NROrb= 115 NOA= 13 NOB= 13 NVA= 102 NVB= 102 **** Warning!!: The largest alpha MO coefficient is 0.14359813D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 6 to 18 NPSUse= 1 ParTrn=F ParDer=F DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.3681945158D-01 E2= -0.9422594848D-01 alpha-beta T2 = 0.1938402131D+00 E2= -0.5298147925D+00 beta-beta T2 = 0.3681945158D-01 E2= -0.9422594848D-01 ANorm= 0.1125823750D+01 E2 = -0.7182666894D+00 EUMP2 = -0.19295221870982D+03 IDoAtm=1111111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=31832477. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0. LinEq1: Iter= 0 NonCon= 1 RMS=4.24D-03 Max=7.25D-02 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.24D-03 Max=1.66D-02 LinEq1: Iter= 2 NonCon= 1 RMS=3.03D-04 Max=4.24D-03 LinEq1: Iter= 3 NonCon= 1 RMS=5.63D-05 Max=1.09D-03 LinEq1: Iter= 4 NonCon= 1 RMS=7.65D-06 Max=1.11D-04 LinEq1: Iter= 5 NonCon= 1 RMS=7.10D-07 Max=8.51D-06 LinEq1: Iter= 6 NonCon= 1 RMS=6.77D-08 Max=1.01D-06 LinEq1: Iter= 7 NonCon= 1 RMS=6.45D-09 Max=5.66D-08 LinEq1: Iter= 8 NonCon= 1 RMS=1.79D-09 Max=2.59D-08 LinEq1: Iter= 9 NonCon= 1 RMS=4.52D-10 Max=1.09D-08 LinEq1: Iter= 10 NonCon= 1 RMS=1.94D-10 Max=4.61D-09 LinEq1: Iter= 11 NonCon= 1 RMS=7.90D-11 Max=1.13D-09 LinEq1: Iter= 12 NonCon= 0 RMS=6.75D-12 Max=6.07D-11 Linear equations converged to 1.000D-10 1.000D-09 after 12 iterations. End of Minotr Frequency-dependent properties file 721 does not exist. End of Minotr Frequency-dependent properties file 722 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -10.98656 -10.98586 -10.98585 -10.98462 -10.98461 Alpha occ. eigenvalues -- -0.90979 -0.71101 -0.71100 -0.50296 -0.50296 Alpha occ. eigenvalues -- -0.46794 -0.31151 -0.31147 -0.28749 -0.28748 Alpha occ. eigenvalues -- -0.26856 -0.05840 -0.05838 Alpha virt. eigenvalues -- 0.33303 0.35934 0.35934 0.38133 0.38134 Alpha virt. eigenvalues -- 0.43874 0.43875 0.60573 0.60575 0.64172 Alpha virt. eigenvalues -- 0.64172 0.65266 0.80455 0.80456 0.81000 Alpha virt. eigenvalues -- 0.81676 0.83361 0.83362 0.85562 0.85563 Alpha virt. eigenvalues -- 0.92862 0.97565 0.97565 1.01760 1.01761 Alpha virt. eigenvalues -- 1.05667 1.05668 1.05794 1.11906 1.11907 Alpha virt. eigenvalues -- 1.24590 1.26082 1.26085 1.26560 1.26560 Alpha virt. eigenvalues -- 1.39290 1.43078 1.43079 1.56054 1.56054 Alpha virt. eigenvalues -- 1.60159 1.60163 1.63712 1.96704 1.96705 Alpha virt. eigenvalues -- 2.01720 2.01729 2.01936 2.01936 2.02218 Alpha virt. eigenvalues -- 2.09959 2.09963 2.18002 2.28832 2.28833 Alpha virt. eigenvalues -- 2.28840 2.28842 2.38408 2.39106 2.39111 Alpha virt. eigenvalues -- 2.43431 2.43432 2.49797 2.49798 2.74413 Alpha virt. eigenvalues -- 2.75897 2.79715 2.79717 2.87563 2.87564 Alpha virt. eigenvalues -- 3.02508 3.02512 3.08137 3.09936 3.09945 Alpha virt. eigenvalues -- 3.18263 3.18270 3.19274 3.19275 3.21623 Alpha virt. eigenvalues -- 3.33869 3.35576 3.35577 3.60376 3.60377 Alpha virt. eigenvalues -- 3.80903 3.80908 3.90006 3.90010 4.04759 Alpha virt. eigenvalues -- 4.04762 4.06943 4.68178 4.68180 4.68313 Alpha virt. eigenvalues -- 4.68313 5.34675 24.94824 25.34602 25.34610 Alpha virt. eigenvalues -- 25.51410 25.51418 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.016283 0.421118 0.552785 -0.049628 -0.132172 0.007130 2 H 0.421118 0.677426 -0.049632 -0.003215 0.007131 -0.000393 3 C 0.552785 -0.049632 5.016257 0.421129 0.552772 -0.049629 4 H -0.049628 -0.003215 0.421129 0.677395 -0.049625 -0.003215 5 C -0.132172 0.007131 0.552772 -0.049625 5.016279 0.421117 6 H 0.007130 -0.000393 -0.049629 -0.003215 0.421117 0.677422 7 C 0.552802 -0.049631 -0.132120 0.007128 -0.132145 0.007130 8 H -0.049628 -0.003215 0.007129 -0.000393 0.007128 -0.000393 9 C -0.132157 0.007130 -0.132128 0.007128 0.552807 -0.049633 10 H 0.007129 -0.000393 0.007129 -0.000393 -0.049627 -0.003215 7 8 9 10 1 C 0.552802 -0.049628 -0.132157 0.007129 2 H -0.049631 -0.003215 0.007130 -0.000393 3 C -0.132120 0.007129 -0.132128 0.007129 4 H 0.007128 -0.000393 0.007128 -0.000393 5 C -0.132145 0.007128 0.552807 -0.049627 6 H 0.007130 -0.000393 -0.049633 -0.003215 7 C 5.016278 0.421120 0.552759 -0.049625 8 H 0.421120 0.677404 -0.049624 -0.003213 9 C 0.552759 -0.049624 5.016301 0.421120 10 H -0.049625 -0.003213 0.421120 0.677402 Mulliken atomic charges: 1 1 C -0.193661 2 H -0.006324 3 C -0.193691 4 H -0.006312 5 C -0.193665 6 H -0.006322 7 C -0.193696 8 H -0.006315 9 C -0.193701 10 H -0.006313 Sum of Mulliken atomic charges = -1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.199985 3 C -0.200002 5 C -0.199986 7 C -0.200011 9 C -0.200015 Sum of Mulliken charges with hydrogens summed into heavy atoms = -1.00000 Electronic spatial extent (au): = 332.9544 Charge= -1.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.0001 Y= 0.0000 Z= 0.0000 Tot= 0.0001 Quadrupole moment (field-independent basis, Debye-Ang): XX= -36.9472 YY= -36.9474 ZZ= -38.9912 XY= 0.0002 XZ= 0.0000 YZ= 0.0001 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.6814 YY= 0.6812 ZZ= -1.3626 XY= 0.0002 XZ= 0.0000 YZ= 0.0001 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.0013 YYY= 0.0005 ZZZ= 0.0000 XYY= 0.0010 XXY= -0.0007 XXZ= -0.0015 XZZ= -0.0003 YZZ= -0.0001 YYZ= 0.0016 XYZ= 0.0015 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -232.5082 YYYY= -232.5013 ZZZZ= -49.3494 XXXY= 0.0011 XXXZ= 0.0006 YYYX= 0.0006 YYYZ= -0.0016 ZZZX= -0.0002 ZZZY= -0.0014 XXYY= -77.5016 XXZZ= -52.7022 YYZZ= -52.7005 XXYZ= 0.0005 YYXZ= -0.0007 ZZXY= 0.0000 N-N= 1.488027996911D+02 E-N=-7.534951182142D+02 KE= 1.920545048622D+02 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.001165918 -0.003942731 -0.000058648 2 1 0.000313769 0.001046728 -0.000017354 3 6 -0.004087188 -0.000105084 0.000041384 4 1 0.001102400 0.000030381 0.000012359 5 6 -0.001315184 0.003894223 -0.000008200 6 1 0.000354505 -0.001038655 -0.000002866 7 6 0.003352443 -0.002323950 0.000052864 8 1 -0.000908509 0.000634393 0.000015887 9 6 0.003225661 0.002473516 -0.000026934 10 1 -0.000871979 -0.000668821 -0.000008493 ------------------------------------------------------------------- Cartesian Forces: Max 0.004087188 RMS 0.001729527 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.002565267 RMS 0.000924016 Search for a local minimum. Step number 1 out of a maximum of 55 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01898 0.01898 0.01899 0.01899 0.01899 Eigenvalues --- 0.01899 0.01899 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.22000 0.22000 0.34731 Eigenvalues --- 0.34732 0.34732 0.34733 0.34733 0.38523 Eigenvalues --- 0.38526 0.43316 0.43320 0.43322 RFO step: Lambda=-9.23863099D-05 EMin= 1.89836312D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00186411 RMS(Int)= 0.00000152 Iteration 2 RMS(Cart)= 0.00000070 RMS(Int)= 0.00000015 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.06110 -0.00109 0.00000 -0.00315 -0.00315 2.05796 R2 2.67275 0.00256 0.00000 0.00590 0.00590 2.67865 R3 2.67279 0.00254 0.00000 0.00585 0.00585 2.67864 R4 2.06112 -0.00110 0.00000 -0.00317 -0.00317 2.05794 R5 2.67272 0.00257 0.00000 0.00592 0.00592 2.67864 R6 2.06112 -0.00110 0.00000 -0.00316 -0.00316 2.05796 R7 2.67283 0.00252 0.00000 0.00582 0.00582 2.67865 R8 2.06114 -0.00111 0.00000 -0.00319 -0.00319 2.05795 R9 2.67279 0.00254 0.00000 0.00587 0.00587 2.67866 R10 2.06111 -0.00110 0.00000 -0.00316 -0.00316 2.05795 A1 2.19909 0.00001 0.00000 0.00004 0.00004 2.19913 A2 2.19907 0.00001 0.00000 0.00004 0.00004 2.19911 A3 1.88503 -0.00002 0.00000 -0.00008 -0.00008 1.88495 A4 2.19908 0.00000 0.00000 0.00000 0.00000 2.19908 A5 1.88490 0.00001 0.00000 0.00007 0.00007 1.88497 A6 2.19921 -0.00001 0.00000 -0.00007 -0.00007 2.19914 A7 2.19920 0.00000 0.00000 -0.00002 -0.00002 2.19918 A8 1.88501 -0.00001 0.00000 -0.00006 -0.00006 1.88495 A9 2.19897 0.00002 0.00000 0.00009 0.00009 2.19906 A10 2.19907 0.00000 0.00000 0.00000 0.00000 2.19908 A11 1.88491 0.00001 0.00000 0.00005 0.00005 1.88496 A12 2.19920 -0.00001 0.00000 -0.00005 -0.00005 2.19915 A13 1.88492 0.00001 0.00000 0.00003 0.00003 1.88495 A14 2.19907 0.00000 0.00000 0.00001 0.00001 2.19907 A15 2.19920 -0.00001 0.00000 -0.00004 -0.00004 2.19916 D1 0.00006 0.00000 0.00000 -0.00003 -0.00003 0.00003 D2 3.14136 0.00001 0.00000 0.00069 0.00069 -3.14114 D3 3.14122 0.00002 0.00000 0.00098 0.00098 -3.14098 D4 -0.00067 0.00003 0.00000 0.00169 0.00169 0.00103 D5 -0.00007 0.00000 0.00000 0.00003 0.00003 -0.00003 D6 -3.14128 -0.00002 0.00000 -0.00088 -0.00088 3.14102 D7 -3.14123 -0.00002 0.00000 -0.00097 -0.00097 3.14098 D8 0.00074 -0.00004 0.00000 -0.00189 -0.00189 -0.00115 D9 -3.14130 -0.00001 0.00000 -0.00071 -0.00071 3.14117 D10 0.00034 -0.00002 0.00000 -0.00085 -0.00085 -0.00051 D11 -0.00001 0.00000 0.00000 0.00001 0.00001 0.00000 D12 -3.14156 0.00000 0.00000 -0.00013 -0.00013 3.14150 D13 0.00012 -0.00001 0.00000 -0.00032 -0.00032 -0.00019 D14 3.14154 0.00000 0.00000 0.00015 0.00015 -3.14150 D15 -3.14142 -0.00001 0.00000 -0.00046 -0.00046 3.14130 D16 -0.00001 0.00000 0.00000 0.00001 0.00001 0.00000 D17 -0.00054 0.00003 0.00000 0.00137 0.00137 0.00083 D18 3.14124 0.00002 0.00000 0.00090 0.00090 -3.14105 D19 3.14143 0.00001 0.00000 0.00045 0.00045 -3.14130 D20 0.00002 0.00000 0.00000 -0.00002 -0.00002 0.00001 Item Value Threshold Converged? Maximum Force 0.002565 0.000450 NO RMS Force 0.000924 0.000300 NO Maximum Displacement 0.004924 0.001800 NO RMS Displacement 0.001864 0.001200 NO Predicted change in Energy=-4.620409D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.346404 -1.154955 -0.000377 2 1 0 -0.659260 -2.198074 -0.000739 3 6 0 -1.205462 -0.027448 0.000255 4 1 0 -2.294196 -0.052270 0.000491 5 6 0 -0.398617 1.137986 -0.000038 6 1 0 -0.758574 2.165802 -0.000069 7 6 0 0.991374 -0.686356 0.000323 8 1 0 1.886730 -1.306275 0.000621 9 6 0 0.959109 0.730763 -0.000157 10 1 0 1.825317 1.390797 -0.000299 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.089025 0.000000 3 C 1.417481 2.238292 0.000000 4 H 2.238260 2.697682 1.089018 0.000000 5 C 2.293536 3.346226 1.417475 2.238287 0.000000 6 H 3.346238 4.365006 2.238315 2.697773 1.089024 7 C 1.417476 2.238278 2.293523 3.346197 2.293534 8 H 2.238255 2.697660 3.346199 4.364937 3.346226 9 C 2.293533 3.346222 2.293523 3.346212 1.417481 10 H 3.346226 4.364988 3.346198 4.364956 2.238258 6 7 8 9 10 6 H 0.000000 7 C 3.346210 0.000000 8 H 4.364969 1.089019 0.000000 9 C 2.238252 1.417486 2.238304 0.000000 10 H 2.697615 2.238309 2.697772 1.089019 0.000000 Stoichiometry C5H5(1-) Framework group C1[X(C5H5)] Deg. of freedom 24 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.188779 0.201785 0.000378 2 1 0 2.262447 0.384024 0.000740 3 6 0 0.175439 1.192943 -0.000254 4 1 0 0.333924 2.270367 -0.000490 5 6 0 -1.080349 0.535500 0.000039 6 1 0 -2.056114 1.019088 0.000070 7 6 0 0.559265 -1.068235 -0.000322 8 1 0 1.064405 -2.033012 -0.000620 9 6 0 -0.843136 -0.861991 0.000158 10 1 0 -1.604657 -1.640482 0.000300 --------------------------------------------------------------------- Rotational constants (GHZ): 8.8842466 8.8840531 4.4420754 Standard basis: 6-311G(d,p) (5D, 7F) There are 120 symmetry adapted basis functions of A symmetry. Integral buffers will be 262144 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 120 basis functions, 200 primitive gaussians, 125 cartesian basis functions 18 alpha electrons 18 beta electrons nuclear repulsion energy 148.5671308115 Hartrees. NAtoms= 10 NActive= 10 NUniq= 10 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 120 RedAO= T NBF= 120 NBsUse= 120 1.00D-06 NBFU= 120 Initial guess read from the read-write file. B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=32070556. SCF Done: E(RHF) = -192.233693377 A.U. after 14 cycles Convg = 0.5951D-08 -V/T = 2.0011 ExpMin= 1.03D-01 ExpMax= 4.56D+03 ExpMxC= 6.82D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV=-2 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 6 120 NBasis= 120 NAE= 18 NBE= 18 NFC= 5 NFV= 0 NROrb= 115 NOA= 13 NOB= 13 NVA= 102 NVB= 102 **** Warning!!: The largest alpha MO coefficient is 0.14143918D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 6 to 18 NPSUse= 1 ParTrn=F ParDer=F DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.3688629748D-01 E2= -0.9424259909D-01 alpha-beta T2 = 0.1942259950D+00 E2= -0.5300824556D+00 beta-beta T2 = 0.3688629748D-01 E2= -0.9424259909D-01 ANorm= 0.1126054435D+01 E2 = -0.7185676538D+00 EUMP2 = -0.19295226103113D+03 IDoAtm=1111111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=31832477. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0. LinEq1: Iter= 0 NonCon= 1 RMS=4.25D-03 Max=7.33D-02 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.25D-03 Max=1.68D-02 LinEq1: Iter= 2 NonCon= 1 RMS=3.03D-04 Max=4.25D-03 LinEq1: Iter= 3 NonCon= 1 RMS=5.64D-05 Max=1.09D-03 LinEq1: Iter= 4 NonCon= 1 RMS=7.65D-06 Max=1.11D-04 LinEq1: Iter= 5 NonCon= 1 RMS=7.09D-07 Max=8.60D-06 LinEq1: Iter= 6 NonCon= 1 RMS=6.74D-08 Max=1.01D-06 LinEq1: Iter= 7 NonCon= 1 RMS=5.80D-09 Max=5.59D-08 LinEq1: Iter= 8 NonCon= 1 RMS=7.74D-10 Max=1.47D-08 LinEq1: Iter= 9 NonCon= 1 RMS=3.06D-10 Max=4.67D-09 LinEq1: Iter= 10 NonCon= 1 RMS=7.73D-11 Max=1.55D-09 LinEq1: Iter= 11 NonCon= 0 RMS=3.40D-11 Max=5.14D-10 Linear equations converged to 1.000D-10 1.000D-09 after 11 iterations. End of Minotr Frequency-dependent properties file 721 does not exist. End of Minotr Frequency-dependent properties file 722 does not exist. Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000079824 0.000271293 0.000091767 2 1 0.000003510 0.000015519 0.000028533 3 6 0.000275097 0.000002016 -0.000065342 4 1 0.000009911 0.000002822 -0.000020127 5 6 0.000099697 -0.000262556 0.000013820 6 1 -0.000000272 -0.000016232 0.000004114 7 6 -0.000228269 0.000162586 -0.000083688 8 1 -0.000007166 0.000009199 -0.000025740 9 6 -0.000225306 -0.000174491 0.000043428 10 1 -0.000007025 -0.000010157 0.000013237 ------------------------------------------------------------------- Cartesian Forces: Max 0.000275097 RMS 0.000118186 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.000256146 RMS 0.000085055 Search for a local minimum. Step number 2 out of a maximum of 55 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swaping is turned off. Update second derivatives using D2CorX and points 1 2 DE= -4.23D-05 DEPred=-4.62D-05 R= 9.16D-01 SS= 1.41D+00 RLast= 1.54D-02 DXNew= 5.0454D-01 4.6147D-02 Trust test= 9.16D-01 RLast= 1.54D-02 DXMaxT set to 3.00D-01 ITU= 1 0 Eigenvalues --- 0.01898 0.01899 0.01899 0.01899 0.01899 Eigenvalues --- 0.01899 0.01914 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.22000 0.22000 0.34101 Eigenvalues --- 0.34731 0.34732 0.34733 0.34733 0.38539 Eigenvalues --- 0.38542 0.43317 0.43321 0.47361 En-DIIS/RFO-DIIS IScMMF= 0 using points: 2 1 RFO step: Lambda=-5.35748292D-07. DidBck=F Rises=F RFO-DIIS coefs: 0.92445 0.07555 Iteration 1 RMS(Cart)= 0.00086388 RMS(Int)= 0.00000054 Iteration 2 RMS(Cart)= 0.00000061 RMS(Int)= 0.00000029 Variable Old X -DE/DX Delta X Delta X Delta X New X (DIIS) (GDIIS) (Total) R1 2.05796 -0.00002 0.00024 -0.00030 -0.00006 2.05789 R2 2.67865 -0.00025 -0.00045 -0.00005 -0.00049 2.67816 R3 2.67864 -0.00025 -0.00044 -0.00004 -0.00048 2.67816 R4 2.05794 -0.00001 0.00024 -0.00029 -0.00005 2.05790 R5 2.67864 -0.00025 -0.00045 -0.00004 -0.00049 2.67815 R6 2.05796 -0.00002 0.00024 -0.00030 -0.00006 2.05789 R7 2.67865 -0.00025 -0.00044 -0.00005 -0.00049 2.67816 R8 2.05795 -0.00001 0.00024 -0.00029 -0.00005 2.05790 R9 2.67866 -0.00026 -0.00044 -0.00006 -0.00051 2.67815 R10 2.05795 -0.00001 0.00024 -0.00029 -0.00005 2.05789 A1 2.19913 0.00000 0.00000 -0.00001 -0.00001 2.19911 A2 2.19911 0.00000 0.00000 0.00000 0.00000 2.19911 A3 1.88495 0.00000 0.00001 0.00001 0.00001 1.88496 A4 2.19908 0.00000 0.00000 0.00002 0.00002 2.19910 A5 1.88497 0.00000 -0.00001 -0.00001 -0.00002 1.88495 A6 2.19914 0.00000 0.00001 -0.00001 -0.00001 2.19913 A7 2.19918 -0.00001 0.00000 -0.00004 -0.00004 2.19914 A8 1.88495 0.00000 0.00000 0.00000 0.00001 1.88496 A9 2.19906 0.00000 -0.00001 0.00004 0.00003 2.19909 A10 2.19908 0.00000 0.00000 0.00002 0.00002 2.19910 A11 1.88496 0.00000 0.00000 0.00000 -0.00001 1.88495 A12 2.19915 0.00000 0.00000 -0.00002 -0.00002 2.19913 A13 1.88495 0.00000 0.00000 0.00000 0.00000 1.88495 A14 2.19907 0.00000 0.00000 0.00002 0.00002 2.19910 A15 2.19916 0.00000 0.00000 -0.00003 -0.00002 2.19913 D1 0.00003 0.00000 0.00000 0.00000 0.00001 0.00004 D2 -3.14114 -0.00002 -0.00005 -0.00096 -0.00102 3.14103 D3 -3.14098 -0.00003 -0.00007 -0.00136 -0.00143 3.14077 D4 0.00103 -0.00005 -0.00013 -0.00232 -0.00245 -0.00142 D5 -0.00003 0.00000 0.00000 -0.00001 -0.00001 -0.00004 D6 3.14102 0.00003 0.00007 0.00123 0.00130 -3.14086 D7 3.14098 0.00003 0.00007 0.00135 0.00143 -3.14077 D8 -0.00115 0.00006 0.00014 0.00259 0.00274 0.00159 D9 3.14117 0.00002 0.00005 0.00096 0.00101 -3.14100 D10 -0.00051 0.00003 0.00006 0.00117 0.00123 0.00071 D11 0.00000 0.00000 0.00000 -0.00001 -0.00001 -0.00001 D12 3.14150 0.00000 0.00001 0.00020 0.00021 -3.14148 D13 -0.00019 0.00001 0.00002 0.00044 0.00046 0.00027 D14 -3.14150 0.00000 -0.00001 -0.00021 -0.00022 3.14147 D15 3.14130 0.00001 0.00003 0.00064 0.00068 -3.14120 D16 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00001 D17 0.00083 -0.00004 -0.00010 -0.00187 -0.00198 -0.00115 D18 -3.14105 -0.00003 -0.00007 -0.00123 -0.00130 3.14084 D19 -3.14130 -0.00001 -0.00003 -0.00063 -0.00067 3.14122 D20 0.00001 0.00000 0.00000 0.00001 0.00001 0.00002 Item Value Threshold Converged? Maximum Force 0.000256 0.000450 YES RMS Force 0.000085 0.000300 YES Maximum Displacement 0.003101 0.001800 NO RMS Displacement 0.000864 0.001200 YES Predicted change in Energy=-6.148533D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.346341 -1.154737 0.000486 2 1 0 -0.659192 -2.197821 0.000902 3 6 0 -1.205249 -0.027443 -0.000359 4 1 0 -2.293958 -0.052248 -0.000673 5 6 0 -0.398542 1.137772 0.000091 6 1 0 -0.758518 2.165545 0.000174 7 6 0 0.991199 -0.686228 -0.000462 8 1 0 1.886543 -1.306115 -0.000869 9 6 0 0.958938 0.730623 0.000250 10 1 0 1.825138 1.390621 0.000471 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.088991 0.000000 3 C 1.417220 2.238017 0.000000 4 H 2.238012 2.697396 1.088991 0.000000 5 C 2.293103 3.345761 1.417217 2.238023 0.000000 6 H 3.345767 4.364496 2.238027 2.697439 1.088991 7 C 1.417220 2.238014 2.293116 3.345772 2.293110 8 H 2.238010 2.697390 3.345771 4.364490 3.345773 9 C 2.293105 3.345763 2.293113 3.345776 1.417223 10 H 3.345769 4.364495 3.345767 4.364496 2.238009 6 7 8 9 10 6 H 0.000000 7 C 3.345761 0.000000 8 H 4.364490 1.088991 0.000000 9 C 2.238003 1.417218 2.238025 0.000000 10 H 2.697367 2.238026 2.697435 1.088991 0.000000 Stoichiometry C5H5(1-) Framework group C1[X(C5H5)] Deg. of freedom 24 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.853783 0.851127 -0.000485 2 1 0 -1.625012 1.619962 -0.000901 3 6 0 -1.073310 -0.548988 0.000360 4 1 0 -2.042844 -1.044876 0.000674 5 6 0 0.190442 -1.190420 -0.000090 6 1 0 0.362502 -2.265732 -0.000173 7 6 0 0.545641 1.075013 0.000464 8 1 0 1.038505 2.046088 0.000870 9 6 0 1.191009 -0.186734 -0.000249 10 1 0 2.266854 -0.355436 -0.000470 --------------------------------------------------------------------- Rotational constants (GHZ): 8.8871203 8.8870806 4.4435510 Standard basis: 6-311G(d,p) (5D, 7F) There are 120 symmetry adapted basis functions of A symmetry. Integral buffers will be 262144 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 120 basis functions, 200 primitive gaussians, 125 cartesian basis functions 18 alpha electrons 18 beta electrons nuclear repulsion energy 148.5905812728 Hartrees. NAtoms= 10 NActive= 10 NUniq= 10 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 120 RedAO= T NBF= 120 NBsUse= 120 1.00D-06 NBFU= 120 Initial guess read from the read-write file. B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=32070556. SCF Done: E(RHF) = -192.233730286 A.U. after 11 cycles Convg = 0.3430D-08 -V/T = 2.0011 ExpMin= 1.03D-01 ExpMax= 4.56D+03 ExpMxC= 6.82D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV=-2 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 6 120 NBasis= 120 NAE= 18 NBE= 18 NFC= 5 NFV= 0 NROrb= 115 NOA= 13 NOB= 13 NVA= 102 NVB= 102 **** Warning!!: The largest alpha MO coefficient is 0.14052264D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 6 to 18 NPSUse= 1 ParTrn=F ParDer=F DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.3687923511D-01 E2= -0.9424076723D-01 alpha-beta T2 = 0.1941801415D+00 E2= -0.5300494305D+00 beta-beta T2 = 0.3687923511D-01 E2= -0.9424076723D-01 ANorm= 0.1126027802D+01 E2 = -0.7185309650D+00 EUMP2 = -0.19295226125061D+03 IDoAtm=1111111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=31832477. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0. LinEq1: Iter= 0 NonCon= 1 RMS=4.25D-03 Max=7.32D-02 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.25D-03 Max=1.69D-02 LinEq1: Iter= 2 NonCon= 1 RMS=3.03D-04 Max=4.25D-03 LinEq1: Iter= 3 NonCon= 1 RMS=5.64D-05 Max=1.09D-03 LinEq1: Iter= 4 NonCon= 1 RMS=7.65D-06 Max=1.11D-04 LinEq1: Iter= 5 NonCon= 1 RMS=7.09D-07 Max=8.62D-06 LinEq1: Iter= 6 NonCon= 1 RMS=6.74D-08 Max=1.01D-06 LinEq1: Iter= 7 NonCon= 1 RMS=5.74D-09 Max=5.59D-08 LinEq1: Iter= 8 NonCon= 1 RMS=4.60D-10 Max=4.93D-09 LinEq1: Iter= 9 NonCon= 1 RMS=1.72D-10 Max=3.15D-09 LinEq1: Iter= 10 NonCon= 1 RMS=4.37D-11 Max=1.02D-09 LinEq1: Iter= 11 NonCon= 0 RMS=1.65D-11 Max=2.87D-10 Linear equations converged to 1.000D-10 1.000D-09 after 11 iterations. End of Minotr Frequency-dependent properties file 721 does not exist. End of Minotr Frequency-dependent properties file 722 does not exist. Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000008620 0.000027452 -0.000127256 2 1 -0.000003490 -0.000010833 -0.000038189 3 6 0.000029506 -0.000001918 0.000090146 4 1 -0.000010531 0.000000913 0.000027177 5 6 0.000014306 -0.000024963 -0.000018695 6 1 -0.000005855 0.000009852 -0.000005735 7 6 -0.000025563 0.000015289 0.000115381 8 1 0.000009573 -0.000005218 0.000034813 9 6 -0.000026215 -0.000016191 -0.000059583 10 1 0.000009648 0.000005617 -0.000018060 ------------------------------------------------------------------- Cartesian Forces: Max 0.000127256 RMS 0.000040940 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.000077560 RMS 0.000023855 Search for a local minimum. Step number 3 out of a maximum of 55 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swaping is turned off. Update second derivatives using D2CorX and points 1 2 3 DE= -2.19D-07 DEPred=-6.15D-07 R= 3.57D-01 Trust test= 3.57D-01 RLast= 5.56D-03 DXMaxT set to 3.00D-01 ITU= 0 1 0 Eigenvalues --- 0.01898 0.01899 0.01899 0.01899 0.01899 Eigenvalues --- 0.01899 0.04370 0.15985 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.22000 0.22001 0.33812 Eigenvalues --- 0.34731 0.34732 0.34733 0.34733 0.38471 Eigenvalues --- 0.38539 0.38601 0.43318 0.43322 En-DIIS/RFO-DIIS IScMMF= 0 using points: 3 2 1 RFO step: Lambda=-1.17968522D-07. DidBck=T Rises=F RFO-DIIS coefs: 0.43507 0.51922 0.04571 Iteration 1 RMS(Cart)= 0.00050200 RMS(Int)= 0.00000017 Iteration 2 RMS(Cart)= 0.00000022 RMS(Int)= 0.00000005 Variable Old X -DE/DX Delta X Delta X Delta X New X (DIIS) (GDIIS) (Total) R1 2.05789 0.00001 0.00018 -0.00016 0.00002 2.05791 R2 2.67816 -0.00002 0.00001 -0.00007 -0.00006 2.67810 R3 2.67816 -0.00002 0.00001 -0.00006 -0.00006 2.67810 R4 2.05790 0.00001 0.00017 -0.00015 0.00002 2.05792 R5 2.67815 -0.00001 0.00000 -0.00006 -0.00006 2.67810 R6 2.05789 0.00001 0.00018 -0.00016 0.00002 2.05791 R7 2.67816 -0.00002 0.00001 -0.00007 -0.00006 2.67810 R8 2.05790 0.00001 0.00018 -0.00016 0.00002 2.05791 R9 2.67815 -0.00001 0.00002 -0.00007 -0.00006 2.67810 R10 2.05789 0.00001 0.00018 -0.00016 0.00002 2.05791 A1 2.19911 0.00000 0.00001 -0.00001 0.00000 2.19911 A2 2.19911 0.00000 0.00000 0.00000 0.00000 2.19911 A3 1.88496 0.00000 0.00000 0.00000 0.00000 1.88496 A4 2.19910 0.00000 -0.00001 0.00002 0.00000 2.19911 A5 1.88495 0.00000 0.00001 0.00000 0.00000 1.88495 A6 2.19913 0.00000 0.00001 -0.00001 0.00000 2.19913 A7 2.19914 0.00000 0.00002 -0.00003 -0.00001 2.19913 A8 1.88496 0.00000 0.00000 0.00000 0.00000 1.88496 A9 2.19909 0.00000 -0.00002 0.00003 0.00001 2.19909 A10 2.19910 0.00000 -0.00001 0.00002 0.00000 2.19911 A11 1.88495 0.00000 0.00000 0.00000 0.00000 1.88495 A12 2.19913 0.00000 0.00001 -0.00002 0.00000 2.19913 A13 1.88495 0.00000 0.00000 0.00000 0.00000 1.88496 A14 2.19910 0.00000 -0.00001 0.00002 0.00000 2.19910 A15 2.19913 0.00000 0.00001 -0.00002 -0.00001 2.19913 D1 0.00004 0.00000 0.00000 -0.00001 -0.00001 0.00002 D2 3.14103 0.00003 0.00054 0.00006 0.00060 -3.14156 D3 3.14077 0.00004 0.00076 0.00009 0.00086 -3.14156 D4 -0.00142 0.00007 0.00131 0.00017 0.00147 0.00005 D5 -0.00004 0.00000 0.00000 0.00001 0.00002 -0.00002 D6 -3.14086 -0.00004 -0.00069 -0.00008 -0.00077 3.14155 D7 -3.14077 -0.00004 -0.00076 -0.00009 -0.00085 3.14156 D8 0.00159 -0.00008 -0.00146 -0.00018 -0.00164 -0.00005 D9 -3.14100 -0.00003 -0.00054 -0.00007 -0.00061 3.14158 D10 0.00071 -0.00003 -0.00066 -0.00008 -0.00074 -0.00002 D11 -0.00001 0.00000 0.00000 0.00000 0.00001 0.00000 D12 -3.14148 -0.00001 -0.00011 -0.00001 -0.00012 3.14158 D13 0.00027 -0.00001 -0.00025 -0.00003 -0.00028 -0.00001 D14 3.14147 0.00001 0.00012 0.00001 0.00013 -3.14159 D15 -3.14120 -0.00002 -0.00036 -0.00004 -0.00041 3.14158 D16 -0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 D17 -0.00115 0.00006 0.00105 0.00013 0.00119 0.00004 D18 3.14084 0.00004 0.00069 0.00009 0.00078 -3.14157 D19 3.14122 0.00002 0.00036 0.00004 0.00040 -3.14157 D20 0.00002 0.00000 -0.00001 0.00000 -0.00001 0.00001 Item Value Threshold Converged? Maximum Force 0.000078 0.000450 YES RMS Force 0.000024 0.000300 YES Maximum Displacement 0.001854 0.001800 NO RMS Displacement 0.000502 0.001200 YES Predicted change in Energy=-2.733693D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.346334 -1.154713 -0.000034 2 1 0 -0.659189 -2.197807 -0.000079 3 6 0 -1.205223 -0.027443 0.000010 4 1 0 -2.293942 -0.052243 0.000023 5 6 0 -0.398532 1.137748 0.000014 6 1 0 -0.758520 2.165529 0.000028 7 6 0 0.991177 -0.686214 0.000009 8 1 0 1.886533 -1.306102 0.000023 9 6 0 0.958917 0.730607 0.000006 10 1 0 1.825129 1.390608 0.000010 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.089001 0.000000 3 C 1.417190 2.237997 0.000000 4 H 2.237994 2.697381 1.089002 0.000000 5 C 2.293056 3.345724 1.417187 2.238003 0.000000 6 H 3.345729 4.364466 2.238005 2.697411 1.089001 7 C 1.417190 2.237996 2.293066 3.345733 2.293061 8 H 2.237994 2.697377 3.345732 4.364463 3.345733 9 C 2.293058 3.345726 2.293064 3.345735 1.417192 10 H 3.345730 4.364465 3.345729 4.364466 2.237992 6 7 8 9 10 6 H 0.000000 7 C 3.345725 0.000000 8 H 4.364462 1.089002 0.000000 9 C 2.237988 1.417188 2.238003 0.000000 10 H 2.697360 2.238004 2.697409 1.089001 0.000000 Stoichiometry C5H5(1-) Framework group C1[X(C5H5)] Deg. of freedom 24 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.737765 0.953419 0.000035 2 1 0 -1.404214 1.814679 0.000080 3 6 0 -1.134742 -0.407036 -0.000009 4 1 0 -2.159797 -0.774714 -0.000022 5 6 0 0.036456 -1.204980 -0.000013 6 1 0 0.069412 -2.293483 -0.000027 7 6 0 0.678777 0.996281 -0.000008 8 1 0 1.291929 1.896264 -0.000022 9 6 0 1.157273 -0.337684 -0.000005 10 1 0 2.202674 -0.642743 -0.000009 --------------------------------------------------------------------- Rotational constants (GHZ): 8.8874343 8.8874024 4.4437092 Standard basis: 6-311G(d,p) (5D, 7F) There are 120 symmetry adapted basis functions of A symmetry. Integral buffers will be 262144 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 120 basis functions, 200 primitive gaussians, 125 cartesian basis functions 18 alpha electrons 18 beta electrons nuclear repulsion energy 148.5929957138 Hartrees. NAtoms= 10 NActive= 10 NUniq= 10 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 120 RedAO= T NBF= 120 NBsUse= 120 1.00D-06 NBFU= 120 Initial guess read from the read-write file. B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=32070556. DSYEVD returned Info= 241 IAlg= 4 N= 120 NDim= 120 NE2= 20769 trying DSYEV. DSYEVD returned Info= 241 IAlg= 4 N= 120 NDim= 120 NE2= 20769 trying DSYEV. SCF Done: E(RHF) = -192.233733923 A.U. after 9 cycles Convg = 0.3984D-08 -V/T = 2.0011 ExpMin= 1.03D-01 ExpMax= 4.56D+03 ExpMxC= 6.82D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV=-2 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 6 120 NBasis= 120 NAE= 18 NBE= 18 NFC= 5 NFV= 0 NROrb= 115 NOA= 13 NOB= 13 NVA= 102 NVB= 102 **** Warning!!: The largest alpha MO coefficient is 0.14079138D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 6 to 18 NPSUse= 1 ParTrn=F ParDer=F DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.3687852654D-01 E2= -0.9424057943D-01 alpha-beta T2 = 0.1941758722D+00 E2= -0.5300464071D+00 beta-beta T2 = 0.3687852654D-01 E2= -0.9424057943D-01 ANorm= 0.1126025277D+01 E2 = -0.7185275660D+00 EUMP2 = -0.19295226148919D+03 IDoAtm=1111111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=31832477. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0. LinEq1: Iter= 0 NonCon= 1 RMS=4.25D-03 Max=7.33D-02 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.25D-03 Max=1.69D-02 LinEq1: Iter= 2 NonCon= 1 RMS=3.03D-04 Max=4.25D-03 LinEq1: Iter= 3 NonCon= 1 RMS=5.64D-05 Max=1.09D-03 LinEq1: Iter= 4 NonCon= 1 RMS=7.65D-06 Max=1.11D-04 LinEq1: Iter= 5 NonCon= 1 RMS=7.09D-07 Max=8.62D-06 LinEq1: Iter= 6 NonCon= 1 RMS=6.74D-08 Max=1.01D-06 LinEq1: Iter= 7 NonCon= 1 RMS=5.74D-09 Max=5.59D-08 LinEq1: Iter= 8 NonCon= 1 RMS=4.26D-10 Max=4.87D-09 LinEq1: Iter= 9 NonCon= 1 RMS=1.26D-10 Max=2.60D-09 LinEq1: Iter= 10 NonCon= 0 RMS=3.45D-11 Max=7.74D-10 Linear equations converged to 1.000D-10 1.000D-09 after 10 iterations. End of Minotr Frequency-dependent properties file 721 does not exist. End of Minotr Frequency-dependent properties file 722 does not exist. Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.000002337 -0.000009024 0.000004311 2 1 -0.000001479 -0.000004457 0.000001715 3 6 -0.000008766 -0.000002089 -0.000003174 4 1 -0.000004022 0.000000716 -0.000001150 5 6 0.000000312 0.000010435 0.000000752 6 1 -0.000003027 0.000003806 0.000000185 7 6 0.000006227 -0.000006357 -0.000004109 8 1 0.000003885 -0.000001719 -0.000001462 9 6 0.000005120 0.000006843 0.000002218 10 1 0.000004088 0.000001846 0.000000714 ------------------------------------------------------------------- Cartesian Forces: Max 0.000010435 RMS 0.000004427 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.000012542 RMS 0.000004195 Search for a local minimum. Step number 4 out of a maximum of 55 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swaping is turned off. Update second derivatives using D2CorX and points 1 2 3 4 DE= -2.39D-07 DEPred=-2.73D-07 R= 8.73D-01 Trust test= 8.73D-01 RLast= 3.27D-03 DXMaxT set to 3.00D-01 ITU= 0 0 1 0 Eigenvalues --- 0.01898 0.01899 0.01899 0.01899 0.01899 Eigenvalues --- 0.01899 0.04896 0.15965 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.22000 0.22001 0.31747 Eigenvalues --- 0.34731 0.34732 0.34732 0.34733 0.38537 Eigenvalues --- 0.38539 0.43312 0.43319 0.46878 En-DIIS/RFO-DIIS IScMMF= 0 using points: 4 3 2 1 RFO step: Lambda= 0.00000000D+00. DidBck=F Rises=F RFO-DIIS coefs: 0.85079 0.07924 0.06669 0.00327 Iteration 1 RMS(Cart)= 0.00002294 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000001 Variable Old X -DE/DX Delta X Delta X Delta X New X (DIIS) (GDIIS) (Total) R1 2.05791 0.00000 0.00001 0.00000 0.00001 2.05793 R2 2.67810 0.00001 0.00002 0.00000 0.00002 2.67812 R3 2.67810 0.00001 0.00002 0.00000 0.00002 2.67812 R4 2.05792 0.00000 0.00001 0.00000 0.00001 2.05793 R5 2.67810 0.00001 0.00002 0.00000 0.00003 2.67812 R6 2.05791 0.00000 0.00001 0.00000 0.00001 2.05793 R7 2.67810 0.00001 0.00002 0.00000 0.00002 2.67813 R8 2.05791 0.00000 0.00001 0.00000 0.00001 2.05793 R9 2.67810 0.00001 0.00002 0.00000 0.00003 2.67812 R10 2.05791 0.00000 0.00001 0.00000 0.00001 2.05793 A1 2.19911 0.00000 0.00000 0.00000 0.00000 2.19912 A2 2.19911 0.00000 0.00000 0.00000 0.00000 2.19911 A3 1.88496 0.00000 0.00000 0.00000 0.00000 1.88496 A4 2.19911 0.00000 0.00000 0.00000 0.00000 2.19911 A5 1.88495 0.00000 0.00000 0.00000 0.00000 1.88495 A6 2.19913 0.00000 0.00000 -0.00001 -0.00001 2.19912 A7 2.19913 0.00000 0.00000 -0.00001 -0.00001 2.19913 A8 1.88496 0.00000 0.00000 0.00000 0.00000 1.88496 A9 2.19909 0.00000 0.00000 0.00001 0.00001 2.19910 A10 2.19911 0.00000 0.00000 0.00001 0.00000 2.19911 A11 1.88495 0.00000 0.00000 0.00000 0.00000 1.88495 A12 2.19913 0.00000 0.00000 -0.00001 -0.00001 2.19912 A13 1.88496 0.00000 0.00000 0.00000 0.00000 1.88496 A14 2.19910 0.00000 0.00000 0.00001 0.00001 2.19911 A15 2.19913 0.00000 0.00000 -0.00001 -0.00001 2.19912 D1 0.00002 0.00000 0.00000 -0.00001 -0.00001 0.00002 D2 -3.14156 0.00000 -0.00002 0.00000 -0.00003 -3.14158 D3 -3.14156 0.00000 -0.00003 0.00000 -0.00003 -3.14159 D4 0.00005 0.00000 -0.00005 0.00000 -0.00005 0.00000 D5 -0.00002 0.00000 0.00000 0.00001 0.00001 -0.00002 D6 3.14155 0.00000 0.00003 0.00000 0.00003 3.14158 D7 3.14156 0.00000 0.00003 0.00000 0.00003 3.14159 D8 -0.00005 0.00000 0.00006 0.00000 0.00006 0.00000 D9 3.14158 0.00000 0.00002 0.00000 0.00002 -3.14159 D10 -0.00002 0.00000 0.00003 0.00000 0.00003 0.00000 D11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D12 3.14158 0.00000 0.00000 0.00000 0.00001 3.14159 D13 -0.00001 0.00000 0.00001 0.00000 0.00001 0.00000 D14 -3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D15 3.14158 0.00000 0.00001 0.00000 0.00002 3.14159 D16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D17 0.00004 0.00000 -0.00004 0.00000 -0.00004 0.00000 D18 -3.14157 0.00000 -0.00003 0.00000 -0.00003 3.14159 D19 -3.14157 0.00000 -0.00001 0.00000 -0.00002 -3.14159 D20 0.00001 0.00000 0.00000 0.00000 0.00000 0.00001 Item Value Threshold Converged? Maximum Force 0.000013 0.000450 YES RMS Force 0.000004 0.000300 YES Maximum Displacement 0.000071 0.001800 YES RMS Displacement 0.000023 0.001200 YES Predicted change in Energy=-1.236407D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.089 -DE/DX = 0.0 ! ! R2 R(1,3) 1.4172 -DE/DX = 0.0 ! ! R3 R(1,7) 1.4172 -DE/DX = 0.0 ! ! R4 R(3,4) 1.089 -DE/DX = 0.0 ! ! R5 R(3,5) 1.4172 -DE/DX = 0.0 ! ! R6 R(5,6) 1.089 -DE/DX = 0.0 ! ! R7 R(5,9) 1.4172 -DE/DX = 0.0 ! ! R8 R(7,8) 1.089 -DE/DX = 0.0 ! ! R9 R(7,9) 1.4172 -DE/DX = 0.0 ! ! R10 R(9,10) 1.089 -DE/DX = 0.0 ! ! A1 A(2,1,3) 126.0 -DE/DX = 0.0 ! ! A2 A(2,1,7) 125.9998 -DE/DX = 0.0 ! ! A3 A(3,1,7) 108.0003 -DE/DX = 0.0 ! ! A4 A(1,3,4) 125.9996 -DE/DX = 0.0 ! ! A5 A(1,3,5) 107.9997 -DE/DX = 0.0 ! ! A6 A(4,3,5) 126.0007 -DE/DX = 0.0 ! ! A7 A(3,5,6) 126.001 -DE/DX = 0.0 ! ! A8 A(3,5,9) 108.0002 -DE/DX = 0.0 ! ! A9 A(6,5,9) 125.9988 -DE/DX = 0.0 ! ! A10 A(1,7,8) 125.9995 -DE/DX = 0.0 ! ! A11 A(1,7,9) 107.9998 -DE/DX = 0.0 ! ! A12 A(8,7,9) 126.0007 -DE/DX = 0.0 ! ! A13 A(5,9,7) 108.0 -DE/DX = 0.0 ! ! A14 A(5,9,10) 125.9992 -DE/DX = 0.0 ! ! A15 A(7,9,10) 126.0008 -DE/DX = 0.0 ! ! D1 D(2,1,3,4) 0.0013 -DE/DX = 0.0 ! ! D2 D(2,1,3,5) -179.9979 -DE/DX = 0.0 ! ! D3 D(7,1,3,4) -179.998 -DE/DX = 0.0 ! ! D4 D(7,1,3,5) 0.0028 -DE/DX = 0.0 ! ! D5 D(2,1,7,8) -0.0014 -DE/DX = 0.0 ! ! D6 D(2,1,7,9) 179.9976 -DE/DX = 0.0 ! ! D7 D(3,1,7,8) 179.9979 -DE/DX = 0.0 ! ! D8 D(3,1,7,9) -0.0031 -DE/DX = 0.0 ! ! D9 D(1,3,5,6) -180.001 -DE/DX = 0.0 ! ! D10 D(1,3,5,9) -0.0014 -DE/DX = 0.0 ! ! D11 D(4,3,5,6) -0.0002 -DE/DX = 0.0 ! ! D12 D(4,3,5,9) 179.9994 -DE/DX = 0.0 ! ! D13 D(3,5,9,7) -0.0005 -DE/DX = 0.0 ! ! D14 D(3,5,9,10) 180.0002 -DE/DX = 0.0 ! ! D15 D(6,5,9,7) 179.9991 -DE/DX = 0.0 ! ! D16 D(6,5,9,10) -0.0002 -DE/DX = 0.0 ! ! D17 D(1,7,9,5) 0.0023 -DE/DX = 0.0 ! ! D18 D(1,7,9,10) 180.0015 -DE/DX = 0.0 ! ! D19 D(8,7,9,5) -179.9988 -DE/DX = 0.0 ! ! D20 D(8,7,9,10) 0.0005 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.346334 -1.154713 -0.000034 2 1 0 -0.659189 -2.197807 -0.000079 3 6 0 -1.205223 -0.027443 0.000010 4 1 0 -2.293942 -0.052243 0.000023 5 6 0 -0.398532 1.137748 0.000014 6 1 0 -0.758520 2.165529 0.000028 7 6 0 0.991177 -0.686214 0.000009 8 1 0 1.886533 -1.306102 0.000023 9 6 0 0.958917 0.730607 0.000006 10 1 0 1.825129 1.390608 0.000010 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.089001 0.000000 3 C 1.417190 2.237997 0.000000 4 H 2.237994 2.697381 1.089002 0.000000 5 C 2.293056 3.345724 1.417187 2.238003 0.000000 6 H 3.345729 4.364466 2.238005 2.697411 1.089001 7 C 1.417190 2.237996 2.293066 3.345733 2.293061 8 H 2.237994 2.697377 3.345732 4.364463 3.345733 9 C 2.293058 3.345726 2.293064 3.345735 1.417192 10 H 3.345730 4.364465 3.345729 4.364466 2.237992 6 7 8 9 10 6 H 0.000000 7 C 3.345725 0.000000 8 H 4.364462 1.089002 0.000000 9 C 2.237988 1.417188 2.238003 0.000000 10 H 2.697360 2.238004 2.697409 1.089001 0.000000 Stoichiometry C5H5(1-) Framework group C1[X(C5H5)] Deg. of freedom 24 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.737765 0.953419 0.000035 2 1 0 -1.404214 1.814679 0.000080 3 6 0 -1.134742 -0.407036 -0.000009 4 1 0 -2.159797 -0.774714 -0.000022 5 6 0 0.036456 -1.204980 -0.000013 6 1 0 0.069412 -2.293483 -0.000027 7 6 0 0.678777 0.996281 -0.000008 8 1 0 1.291929 1.896264 -0.000022 9 6 0 1.157273 -0.337684 -0.000005 10 1 0 2.202674 -0.642743 -0.000009 --------------------------------------------------------------------- Rotational constants (GHZ): 8.8874343 8.8874024 4.4437092 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -10.98718 -10.98649 -10.98649 -10.98527 -10.98527 Alpha occ. eigenvalues -- -0.90798 -0.71063 -0.71063 -0.50351 -0.50351 Alpha occ. eigenvalues -- -0.46785 -0.31172 -0.31172 -0.28727 -0.28726 Alpha occ. eigenvalues -- -0.26743 -0.05814 -0.05814 Alpha virt. eigenvalues -- 0.33318 0.35921 0.35921 0.38116 0.38116 Alpha virt. eigenvalues -- 0.43777 0.43777 0.60488 0.60488 0.64163 Alpha virt. eigenvalues -- 0.64163 0.65325 0.80480 0.80480 0.81063 Alpha virt. eigenvalues -- 0.81539 0.83324 0.83324 0.85606 0.85606 Alpha virt. eigenvalues -- 0.92900 0.97511 0.97511 1.01776 1.01776 Alpha virt. eigenvalues -- 1.05614 1.05614 1.05864 1.11773 1.11773 Alpha virt. eigenvalues -- 1.24320 1.25777 1.25777 1.26555 1.26555 Alpha virt. eigenvalues -- 1.39332 1.43131 1.43131 1.55966 1.55966 Alpha virt. eigenvalues -- 1.60046 1.60046 1.63817 1.96549 1.96549 Alpha virt. eigenvalues -- 2.01556 2.01558 2.01866 2.01866 2.02055 Alpha virt. eigenvalues -- 2.09830 2.09830 2.18151 2.28688 2.28689 Alpha virt. eigenvalues -- 2.28811 2.28811 2.38319 2.39100 2.39101 Alpha virt. eigenvalues -- 2.43283 2.43283 2.49666 2.49666 2.74009 Alpha virt. eigenvalues -- 2.75938 2.79633 2.79633 2.87272 2.87273 Alpha virt. eigenvalues -- 3.02246 3.02247 3.08244 3.09816 3.09818 Alpha virt. eigenvalues -- 3.18324 3.18325 3.19230 3.19230 3.21562 Alpha virt. eigenvalues -- 3.33654 3.35503 3.35504 3.60159 3.60159 Alpha virt. eigenvalues -- 3.80368 3.80368 3.89668 3.89668 4.04306 Alpha virt. eigenvalues -- 4.04307 4.06802 4.68308 4.68309 4.68443 Alpha virt. eigenvalues -- 4.68443 5.34274 24.95238 25.34161 25.34162 Alpha virt. eigenvalues -- 25.50505 25.50506 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.016470 0.421013 0.552312 -0.049449 -0.131464 0.007069 2 H 0.421013 0.676393 -0.049449 -0.003143 0.007069 -0.000390 3 C 0.552312 -0.049449 5.016467 0.421014 0.552310 -0.049448 4 H -0.049449 -0.003143 0.421014 0.676391 -0.049448 -0.003143 5 C -0.131464 0.007069 0.552310 -0.049448 5.016468 0.421013 6 H 0.007069 -0.000390 -0.049448 -0.003143 0.421013 0.676392 7 C 0.552313 -0.049449 -0.131460 0.007069 -0.131462 0.007069 8 H -0.049449 -0.003143 0.007069 -0.000390 0.007069 -0.000390 9 C -0.131464 0.007069 -0.131461 0.007069 0.552314 -0.049449 10 H 0.007069 -0.000390 0.007069 -0.000390 -0.049449 -0.003143 7 8 9 10 1 C 0.552313 -0.049449 -0.131464 0.007069 2 H -0.049449 -0.003143 0.007069 -0.000390 3 C -0.131460 0.007069 -0.131461 0.007069 4 H 0.007069 -0.000390 0.007069 -0.000390 5 C -0.131462 0.007069 0.552314 -0.049449 6 H 0.007069 -0.000390 -0.049449 -0.003143 7 C 5.016467 0.421014 0.552310 -0.049448 8 H 0.421014 0.676391 -0.049448 -0.003143 9 C 0.552310 -0.049448 5.016469 0.421013 10 H -0.049448 -0.003143 0.421013 0.676392 Mulliken atomic charges: 1 1 C -0.194420 2 H -0.005579 3 C -0.194422 4 H -0.005578 5 C -0.194420 6 H -0.005579 7 C -0.194422 8 H -0.005579 9 C -0.194422 10 H -0.005579 Sum of Mulliken atomic charges = -1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.199999 3 C -0.200001 5 C -0.199999 7 C -0.200000 9 C -0.200001 Sum of Mulliken charges with hydrogens summed into heavy atoms = -1.00000 Electronic spatial extent (au): = 333.6273 Charge= -1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -36.9305 YY= -36.9305 ZZ= -39.0209 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.6968 YY= 0.6968 ZZ= -1.3936 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.0001 YYY= 0.0001 ZZZ= 0.0000 XYY= 0.0002 XXY= -0.0001 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= -0.0002 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -232.7653 YYYY= -232.7650 ZZZZ= -49.4274 XXXY= -0.0001 XXXZ= 0.0007 YYYX= -0.0002 YYYZ= -0.0010 ZZZX= 0.0009 ZZZY= -0.0014 XXYY= -77.5884 XXZZ= -52.8031 YYZZ= -52.8030 XXYZ= -0.0003 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.485929957138D+02 E-N=-7.530516322749D+02 KE= 1.920311336317D+02 1|1|UNPC-CHWS-LAP29|FOpt|RMP2-FC|6-311G(d,p)|C5H5(1-)|MC608|11-Mar-201 1|0||# opt mp2/6-311g(d,p) geom=connectivity||Cyclopentadiene Opt 3||- 1,1|C,-0.3463338675,-1.1547132224,-0.0000336359|H,-0.6591892313,-2.197 8071233,-0.0000793611|C,-1.2052225579,-0.0274431046,0.0000097125|H,-2. 2939418675,-0.0522427717,0.0000233598|C,-0.3985323644,1.1377482955,0.0 000142562|H,-0.7585203998,2.1655285396,0.0000284135|C,0.991177324,-0.6 862135135,0.0000091777|H,1.886533452,-1.3061021015,0.0000231125|C,0.95 89170904,0.7306074609,0.0000060319|H,1.8251294219,1.3906075411,0.00000 99329||Version=IA32W-G09RevB.01|State=1-A|HF=-192.2337339|MP2=-192.952 2615|RMSD=3.984e-009|RMSF=4.427e-006|Dipole=0.0000003,-0.0000001,0.|PG =C01 [X(C5H5)]||@ CHARLIE BROWN..'I CAN'T GET THAT STUPID KITE IN THE AIR... I CAN'T... I C A N N O T...' LUCY..'OH COME NOW CHARLIE BROWN...THAT'S NO WAY TO TALK... THE TROUBLE WITH YOU IS YOU DON'T BELIEVE IN YOURSELF... YOU DON'T BELIEVE IN YOUR OWN ABILITIES... YOU'VE GOT TO SAY TO YOURSELF...'I BELIEVE I CAN FLY THIS KITE.'... GO AHEAD SAY IT....' CHARLIE BROWN..'I BELIEVE THAT I CAN FLY THIS STUPID KITE.....I BELIEVE THAT I CAN FLY THIS KITE........ I A C T U A L L Y B E L I E V E T H A T I C A N ******' LUCY..'I'LL BET YOU TEN-TO-ONE YOU'RE WRONG.......' SCHULZ Job cpu time: 0 days 0 hours 7 minutes 9.0 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Fri Mar 11 18:28:31 2011.