Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 16512. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 02-May-2019 ****************************************** %chk=\\icnas2.cc.ic.ac.uk\bd817\Desktop\2nd Year Lab\BD_NMe3_631g.chk Default route: MaxDisk=10GB ---------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity ---------------------------------------- 1/14=-1,18=20,19=15,26=3,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 1 Multiplicity = 1 N 0. 0. 0. C 0. 0. 1.50955 H 0. 1.03142 1.86242 H -0.89323 -0.51571 1.86242 H 0.89323 -0.51571 1.86242 C 0. -1.42322 -0.50318 H -0.89323 -1.92781 -0.13459 H 0. -1.4121 -1.59324 H 0.89323 -1.92781 -0.13459 C 1.23254 0.71161 -0.50318 H 1.22291 0.70605 -1.59324 H 1.22291 1.73747 -0.13459 H 2.11615 0.19034 -0.13459 C -1.23254 0.71161 -0.50318 H -1.22291 1.73747 -0.13459 H -1.22291 0.70605 -1.59324 H -2.11615 0.19034 -0.13459 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.5096 estimate D2E/DX2 ! ! R2 R(1,6) 1.5096 estimate D2E/DX2 ! ! R3 R(1,10) 1.5096 estimate D2E/DX2 ! ! R4 R(1,14) 1.5096 estimate D2E/DX2 ! ! R5 R(2,3) 1.0901 estimate D2E/DX2 ! ! R6 R(2,4) 1.0901 estimate D2E/DX2 ! ! R7 R(2,5) 1.0901 estimate D2E/DX2 ! ! R8 R(6,7) 1.0901 estimate D2E/DX2 ! ! R9 R(6,8) 1.0901 estimate D2E/DX2 ! ! R10 R(6,9) 1.0901 estimate D2E/DX2 ! ! R11 R(10,11) 1.0901 estimate D2E/DX2 ! ! R12 R(10,12) 1.0901 estimate D2E/DX2 ! ! R13 R(10,13) 1.0901 estimate D2E/DX2 ! ! R14 R(14,15) 1.0901 estimate D2E/DX2 ! ! R15 R(14,16) 1.0901 estimate D2E/DX2 ! ! R16 R(14,17) 1.0901 estimate D2E/DX2 ! ! A1 A(2,1,6) 109.4712 estimate D2E/DX2 ! ! A2 A(2,1,10) 109.4712 estimate D2E/DX2 ! ! A3 A(2,1,14) 109.4712 estimate D2E/DX2 ! ! A4 A(6,1,10) 109.4712 estimate D2E/DX2 ! ! A5 A(6,1,14) 109.4712 estimate D2E/DX2 ! ! A6 A(10,1,14) 109.4712 estimate D2E/DX2 ! ! A7 A(1,2,3) 108.8869 estimate D2E/DX2 ! ! A8 A(1,2,4) 108.8869 estimate D2E/DX2 ! ! A9 A(1,2,5) 108.8869 estimate D2E/DX2 ! ! A10 A(3,2,4) 110.0492 estimate D2E/DX2 ! ! A11 A(3,2,5) 110.0492 estimate D2E/DX2 ! ! A12 A(4,2,5) 110.0492 estimate D2E/DX2 ! ! A13 A(1,6,7) 108.8869 estimate D2E/DX2 ! ! A14 A(1,6,8) 108.8869 estimate D2E/DX2 ! ! A15 A(1,6,9) 108.8869 estimate D2E/DX2 ! ! A16 A(7,6,8) 110.0492 estimate D2E/DX2 ! ! A17 A(7,6,9) 110.0492 estimate D2E/DX2 ! ! A18 A(8,6,9) 110.0492 estimate D2E/DX2 ! ! A19 A(1,10,11) 108.8869 estimate D2E/DX2 ! ! A20 A(1,10,12) 108.8869 estimate D2E/DX2 ! ! A21 A(1,10,13) 108.8869 estimate D2E/DX2 ! ! A22 A(11,10,12) 110.0492 estimate D2E/DX2 ! ! A23 A(11,10,13) 110.0492 estimate D2E/DX2 ! ! A24 A(12,10,13) 110.0492 estimate D2E/DX2 ! ! A25 A(1,14,15) 108.8869 estimate D2E/DX2 ! ! A26 A(1,14,16) 108.8869 estimate D2E/DX2 ! ! A27 A(1,14,17) 108.8869 estimate D2E/DX2 ! ! A28 A(15,14,16) 110.0492 estimate D2E/DX2 ! ! A29 A(15,14,17) 110.0492 estimate D2E/DX2 ! ! A30 A(16,14,17) 110.0492 estimate D2E/DX2 ! ! D1 D(6,1,2,3) 180.0 estimate D2E/DX2 ! ! D2 D(6,1,2,4) -60.0 estimate D2E/DX2 ! ! D3 D(6,1,2,5) 60.0 estimate D2E/DX2 ! ! D4 D(10,1,2,3) 60.0 estimate D2E/DX2 ! ! D5 D(10,1,2,4) 180.0 estimate D2E/DX2 ! ! D6 D(10,1,2,5) -60.0 estimate D2E/DX2 ! ! D7 D(14,1,2,3) -60.0 estimate D2E/DX2 ! ! D8 D(14,1,2,4) 60.0 estimate D2E/DX2 ! ! D9 D(14,1,2,5) -180.0 estimate D2E/DX2 ! ! D10 D(2,1,6,7) 60.0 estimate D2E/DX2 ! ! D11 D(2,1,6,8) 180.0 estimate D2E/DX2 ! ! D12 D(2,1,6,9) -60.0 estimate D2E/DX2 ! ! D13 D(10,1,6,7) 180.0 estimate D2E/DX2 ! ! D14 D(10,1,6,8) -60.0 estimate D2E/DX2 ! ! D15 D(10,1,6,9) 60.0 estimate D2E/DX2 ! ! D16 D(14,1,6,7) -60.0 estimate D2E/DX2 ! ! D17 D(14,1,6,8) 60.0 estimate D2E/DX2 ! ! D18 D(14,1,6,9) 180.0 estimate D2E/DX2 ! ! D19 D(2,1,10,11) 180.0 estimate D2E/DX2 ! ! D20 D(2,1,10,12) -60.0 estimate D2E/DX2 ! ! D21 D(2,1,10,13) 60.0 estimate D2E/DX2 ! ! D22 D(6,1,10,11) 60.0 estimate D2E/DX2 ! ! D23 D(6,1,10,12) -180.0 estimate D2E/DX2 ! ! D24 D(6,1,10,13) -60.0 estimate D2E/DX2 ! ! D25 D(14,1,10,11) -60.0 estimate D2E/DX2 ! ! D26 D(14,1,10,12) 60.0 estimate D2E/DX2 ! ! D27 D(14,1,10,13) 180.0 estimate D2E/DX2 ! ! D28 D(2,1,14,15) 60.0 estimate D2E/DX2 ! ! D29 D(2,1,14,16) -180.0 estimate D2E/DX2 ! ! D30 D(2,1,14,17) -60.0 estimate D2E/DX2 ! ! D31 D(6,1,14,15) 180.0 estimate D2E/DX2 ! ! D32 D(6,1,14,16) -60.0 estimate D2E/DX2 ! ! D33 D(6,1,14,17) 60.0 estimate D2E/DX2 ! ! D34 D(10,1,14,15) -60.0 estimate D2E/DX2 ! ! D35 D(10,1,14,16) 60.0 estimate D2E/DX2 ! ! D36 D(10,1,14,17) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 92 maximum allowed number of steps= 102. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.509550 3 1 0 0.000000 1.031417 1.862419 4 1 0 -0.893233 -0.515708 1.862419 5 1 0 0.893233 -0.515708 1.862419 6 6 0 0.000000 -1.423217 -0.503183 7 1 0 -0.893233 -1.927808 -0.134592 8 1 0 0.000000 -1.412100 -1.593235 9 1 0 0.893233 -1.927808 -0.134592 10 6 0 1.232542 0.711609 -0.503183 11 1 0 1.222914 0.706050 -1.593235 12 1 0 1.222914 1.737466 -0.134592 13 1 0 2.116147 0.190341 -0.134592 14 6 0 -1.232542 0.711609 -0.503183 15 1 0 -1.222914 1.737466 -0.134592 16 1 0 -1.222914 0.706050 -1.593235 17 1 0 -2.116147 0.190341 -0.134592 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 C 1.509550 0.000000 3 H 2.128949 1.090108 0.000000 4 H 2.128949 1.090108 1.786466 0.000000 5 H 2.128949 1.090108 1.786466 1.786466 0.000000 6 C 1.509550 2.465085 3.409003 2.686542 2.686542 7 H 2.128949 2.686542 3.680071 2.445828 3.028785 8 H 2.128949 3.409003 4.232294 3.680071 3.680071 9 H 2.128949 2.686542 3.680071 3.028785 2.445828 10 C 1.509550 2.465085 2.686542 3.409003 2.686542 11 H 2.128949 3.409003 3.680071 4.232294 3.680071 12 H 2.128949 2.686542 2.445828 3.680071 3.028785 13 H 2.128949 2.686542 3.028785 3.680071 2.445828 14 C 1.509550 2.465085 2.686542 2.686542 3.409003 15 H 2.128949 2.686542 2.445828 3.028785 3.680071 16 H 2.128949 3.409003 3.680071 3.680071 4.232294 17 H 2.128949 2.686542 3.028785 2.445828 3.680071 6 7 8 9 10 6 C 0.000000 7 H 1.090108 0.000000 8 H 1.090108 1.786466 0.000000 9 H 1.090108 1.786466 1.786466 0.000000 10 C 2.465085 3.409003 2.686542 2.686542 0.000000 11 H 2.686542 3.680071 2.445828 3.028785 1.090108 12 H 3.409003 4.232294 3.680071 3.680071 1.090108 13 H 2.686542 3.680071 3.028785 2.445828 1.090108 14 C 2.465085 2.686542 2.686542 3.409003 2.465085 15 H 3.409003 3.680071 3.680071 4.232294 2.686542 16 H 2.686542 3.028785 2.445828 3.680071 2.686542 17 H 2.686542 2.445828 3.028785 3.680071 3.409003 11 12 13 14 15 11 H 0.000000 12 H 1.786466 0.000000 13 H 1.786466 1.786466 0.000000 14 C 2.686542 2.686542 3.409003 0.000000 15 H 3.028785 2.445828 3.680071 1.090108 0.000000 16 H 2.445828 3.028785 3.680071 1.090108 1.786466 17 H 3.680071 3.680071 4.232294 1.090108 1.786466 16 17 16 H 0.000000 17 H 1.786466 0.000000 Stoichiometry C4H12N(1+) Framework group TD[O(N),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 6 0 0.871539 0.871539 0.871539 3 1 0 1.496342 1.496342 0.233120 4 1 0 0.233120 1.496342 1.496342 5 1 0 1.496342 0.233120 1.496342 6 6 0 -0.871539 -0.871539 0.871539 7 1 0 -1.496342 -0.233120 1.496342 8 1 0 -1.496342 -1.496342 0.233120 9 1 0 -0.233120 -1.496342 1.496342 10 6 0 0.871539 -0.871539 -0.871539 11 1 0 0.233120 -1.496342 -1.496342 12 1 0 1.496342 -0.233120 -1.496342 13 1 0 1.496342 -1.496342 -0.233120 14 6 0 -0.871539 0.871539 -0.871539 15 1 0 -0.233120 1.496342 -1.496342 16 1 0 -1.496342 0.233120 -1.496342 17 1 0 -1.496342 1.496342 -0.233120 --------------------------------------------------------------------- Rotational constants (GHZ): 4.6169001 4.6169001 4.6169001 Standard basis: 6-31G(d,p) (6D, 7F) There are 36 symmetry adapted cartesian basis functions of A symmetry. There are 33 symmetry adapted cartesian basis functions of B1 symmetry. There are 33 symmetry adapted cartesian basis functions of B2 symmetry. There are 33 symmetry adapted cartesian basis functions of B3 symmetry. There are 36 symmetry adapted basis functions of A symmetry. There are 33 symmetry adapted basis functions of B1 symmetry. There are 33 symmetry adapted basis functions of B2 symmetry. There are 33 symmetry adapted basis functions of B3 symmetry. 135 basis functions, 224 primitive gaussians, 135 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 213.0814334671 Hartrees. NAtoms= 17 NActive= 17 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 135 RedAO= T EigKep= 5.45D-03 NBF= 36 33 33 33 NBsUse= 135 1.00D-06 EigRej= -1.00D+00 NBFU= 36 33 33 33 ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (A1) (T2) (T2) (T2) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=52778759. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -214.181326689 A.U. after 12 cycles NFock= 12 Conv=0.22D-08 -V/T= 2.0102 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (A1) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A2) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (A1) (T2) (T2) (T2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -14.64879 -10.41435 -10.41435 -10.41435 -10.41433 Alpha occ. eigenvalues -- -1.19637 -0.92554 -0.92554 -0.92554 -0.80747 Alpha occ. eigenvalues -- -0.69894 -0.69894 -0.69894 -0.62248 -0.62248 Alpha occ. eigenvalues -- -0.58037 -0.58037 -0.58037 -0.57933 -0.57933 Alpha occ. eigenvalues -- -0.57933 Alpha virt. eigenvalues -- -0.13306 -0.06866 -0.06662 -0.06662 -0.06662 Alpha virt. eigenvalues -- -0.02633 -0.02633 -0.02633 -0.01160 -0.01160 Alpha virt. eigenvalues -- -0.00428 -0.00428 -0.00428 0.03889 0.03889 Alpha virt. eigenvalues -- 0.03889 0.29158 0.29158 0.29158 0.29673 Alpha virt. eigenvalues -- 0.29673 0.37122 0.44841 0.44841 0.44841 Alpha virt. eigenvalues -- 0.54821 0.54821 0.54821 0.62480 0.62480 Alpha virt. eigenvalues -- 0.62480 0.67852 0.67852 0.67852 0.67963 Alpha virt. eigenvalues -- 0.72997 0.73117 0.73117 0.73117 0.73829 Alpha virt. eigenvalues -- 0.73829 0.77920 0.77920 0.77920 1.03591 Alpha virt. eigenvalues -- 1.03591 1.27490 1.27490 1.27490 1.30282 Alpha virt. eigenvalues -- 1.30282 1.30282 1.58808 1.61870 1.61870 Alpha virt. eigenvalues -- 1.61870 1.63905 1.63905 1.69265 1.69265 Alpha virt. eigenvalues -- 1.69265 1.82229 1.82229 1.82229 1.83660 Alpha virt. eigenvalues -- 1.86855 1.86855 1.86855 1.90595 1.91325 Alpha virt. eigenvalues -- 1.91325 1.91325 1.92361 1.92361 2.10502 Alpha virt. eigenvalues -- 2.10502 2.10502 2.21827 2.21827 2.21827 Alpha virt. eigenvalues -- 2.40726 2.40726 2.44143 2.44143 2.44143 Alpha virt. eigenvalues -- 2.47234 2.47841 2.47841 2.47841 2.66418 Alpha virt. eigenvalues -- 2.66418 2.66418 2.71269 2.71269 2.75276 Alpha virt. eigenvalues -- 2.75276 2.75276 2.95999 3.03777 3.03777 Alpha virt. eigenvalues -- 3.03777 3.20534 3.20534 3.20534 3.23335 Alpha virt. eigenvalues -- 3.23335 3.23335 3.32452 3.32452 3.96294 Alpha virt. eigenvalues -- 4.31122 4.33170 4.33170 4.33170 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 N 6.780854 0.240641 -0.028834 -0.028834 -0.028834 0.240641 2 C 0.240641 4.928571 0.390127 0.390127 0.390127 -0.045881 3 H -0.028834 0.390127 0.499862 -0.023037 -0.023037 0.003861 4 H -0.028834 0.390127 -0.023037 0.499862 -0.023037 -0.002988 5 H -0.028834 0.390127 -0.023037 -0.023037 0.499862 -0.002988 6 C 0.240641 -0.045881 0.003861 -0.002988 -0.002988 4.928571 7 H -0.028834 -0.002988 0.000011 0.003155 -0.000389 0.390127 8 H -0.028834 0.003861 -0.000192 0.000011 0.000011 0.390127 9 H -0.028834 -0.002988 0.000011 -0.000389 0.003155 0.390127 10 C 0.240641 -0.045881 -0.002988 0.003861 -0.002988 -0.045881 11 H -0.028834 0.003861 0.000011 -0.000192 0.000011 -0.002988 12 H -0.028834 -0.002988 0.003155 0.000011 -0.000389 0.003861 13 H -0.028834 -0.002988 -0.000389 0.000011 0.003155 -0.002988 14 C 0.240641 -0.045881 -0.002988 -0.002988 0.003861 -0.045881 15 H -0.028834 -0.002988 0.003155 -0.000389 0.000011 0.003861 16 H -0.028834 0.003861 0.000011 0.000011 -0.000192 -0.002988 17 H -0.028834 -0.002988 -0.000389 0.003155 0.000011 -0.002988 7 8 9 10 11 12 1 N -0.028834 -0.028834 -0.028834 0.240641 -0.028834 -0.028834 2 C -0.002988 0.003861 -0.002988 -0.045881 0.003861 -0.002988 3 H 0.000011 -0.000192 0.000011 -0.002988 0.000011 0.003155 4 H 0.003155 0.000011 -0.000389 0.003861 -0.000192 0.000011 5 H -0.000389 0.000011 0.003155 -0.002988 0.000011 -0.000389 6 C 0.390127 0.390127 0.390127 -0.045881 -0.002988 0.003861 7 H 0.499862 -0.023037 -0.023037 0.003861 0.000011 -0.000192 8 H -0.023037 0.499862 -0.023037 -0.002988 0.003155 0.000011 9 H -0.023037 -0.023037 0.499862 -0.002988 -0.000389 0.000011 10 C 0.003861 -0.002988 -0.002988 4.928571 0.390127 0.390127 11 H 0.000011 0.003155 -0.000389 0.390127 0.499862 -0.023037 12 H -0.000192 0.000011 0.000011 0.390127 -0.023037 0.499862 13 H 0.000011 -0.000389 0.003155 0.390127 -0.023037 -0.023037 14 C -0.002988 -0.002988 0.003861 -0.045881 -0.002988 -0.002988 15 H 0.000011 0.000011 -0.000192 -0.002988 -0.000389 0.003155 16 H -0.000389 0.003155 0.000011 -0.002988 0.003155 -0.000389 17 H 0.003155 -0.000389 0.000011 0.003861 0.000011 0.000011 13 14 15 16 17 1 N -0.028834 0.240641 -0.028834 -0.028834 -0.028834 2 C -0.002988 -0.045881 -0.002988 0.003861 -0.002988 3 H -0.000389 -0.002988 0.003155 0.000011 -0.000389 4 H 0.000011 -0.002988 -0.000389 0.000011 0.003155 5 H 0.003155 0.003861 0.000011 -0.000192 0.000011 6 C -0.002988 -0.045881 0.003861 -0.002988 -0.002988 7 H 0.000011 -0.002988 0.000011 -0.000389 0.003155 8 H -0.000389 -0.002988 0.000011 0.003155 -0.000389 9 H 0.003155 0.003861 -0.000192 0.000011 0.000011 10 C 0.390127 -0.045881 -0.002988 -0.002988 0.003861 11 H -0.023037 -0.002988 -0.000389 0.003155 0.000011 12 H -0.023037 -0.002988 0.003155 -0.000389 0.000011 13 H 0.499862 0.003861 0.000011 0.000011 -0.000192 14 C 0.003861 4.928571 0.390127 0.390127 0.390127 15 H 0.000011 0.390127 0.499862 -0.023037 -0.023037 16 H 0.000011 0.390127 -0.023037 0.499862 -0.023037 17 H -0.000192 0.390127 -0.023037 -0.023037 0.499862 Mulliken charges: 1 1 N -0.397414 2 C -0.195606 3 H 0.181653 4 H 0.181653 5 H 0.181653 6 C -0.195606 7 H 0.181653 8 H 0.181653 9 H 0.181653 10 C -0.195606 11 H 0.181653 12 H 0.181653 13 H 0.181653 14 C -0.195606 15 H 0.181653 16 H 0.181653 17 H 0.181653 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N -0.397414 2 C 0.349354 6 C 0.349354 10 C 0.349354 14 C 0.349354 Electronic spatial extent (au): = 447.1542 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -25.8365 YY= -25.8365 ZZ= -25.8365 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.9871 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -181.1010 YYYY= -181.1010 ZZZZ= -181.1010 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -53.9853 XXZZ= -53.9853 YYZZ= -53.9853 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.130814334671D+02 E-N=-9.116235477545D+02 KE= 2.120118137992D+02 Symmetry A KE= 8.621772713227D+01 Symmetry B1 KE= 4.193136222230D+01 Symmetry B2 KE= 4.193136222230D+01 Symmetry B3 KE= 4.193136222230D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.000000000 0.000000000 0.000000000 2 6 0.000000000 0.000000000 -0.000142239 3 1 0.000000000 -0.000028589 0.000056282 4 1 0.000024759 0.000014294 0.000056282 5 1 -0.000024759 0.000014294 0.000056282 6 6 0.000000000 0.000134104 0.000047413 7 1 0.000024759 -0.000048298 -0.000032238 8 1 0.000000000 -0.000062593 0.000008193 9 1 -0.000024759 -0.000048298 -0.000032238 10 6 -0.000116138 -0.000067052 0.000047413 11 1 0.000054207 0.000031296 0.000008193 12 1 0.000054207 0.000002707 -0.000032238 13 1 0.000029448 0.000045591 -0.000032238 14 6 0.000116138 -0.000067052 0.000047413 15 1 -0.000054207 0.000002707 -0.000032238 16 1 -0.000054207 0.000031296 0.000008193 17 1 -0.000029448 0.000045591 -0.000032238 ------------------------------------------------------------------- Cartesian Forces: Max 0.000142239 RMS 0.000050244 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000065807 RMS 0.000035860 Search for a local minimum. Step number 1 out of a maximum of 92 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00243 0.00243 0.00243 0.00243 0.04744 Eigenvalues --- 0.04744 0.04744 0.05832 0.05832 0.05832 Eigenvalues --- 0.05832 0.05832 0.05832 0.05832 0.05832 Eigenvalues --- 0.14390 0.14390 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.31396 Eigenvalues --- 0.31396 0.31396 0.31396 0.34800 0.34800 Eigenvalues --- 0.34800 0.34800 0.34800 0.34800 0.34800 Eigenvalues --- 0.34800 0.34800 0.34800 0.34800 0.34800 RFO step: Lambda=-6.47222042D-07 EMin= 2.42642649D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00035521 RMS(Int)= 0.00000009 Iteration 2 RMS(Cart)= 0.00000007 RMS(Int)= 0.00000005 ClnCor: largest displacement from symmetrization is 1.02D-08 for atom 13. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.85264 0.00003 0.00000 0.00008 0.00008 2.85272 R2 2.85264 0.00003 0.00000 0.00008 0.00008 2.85272 R3 2.85264 0.00003 0.00000 0.00008 0.00008 2.85272 R4 2.85264 0.00003 0.00000 0.00008 0.00008 2.85272 R5 2.06001 -0.00001 0.00000 -0.00003 -0.00003 2.05998 R6 2.06001 -0.00001 0.00000 -0.00003 -0.00003 2.05998 R7 2.06001 -0.00001 0.00000 -0.00003 -0.00003 2.05998 R8 2.06001 -0.00001 0.00000 -0.00003 -0.00003 2.05998 R9 2.06001 -0.00001 0.00000 -0.00003 -0.00003 2.05998 R10 2.06001 -0.00001 0.00000 -0.00003 -0.00003 2.05998 R11 2.06001 -0.00001 0.00000 -0.00003 -0.00003 2.05998 R12 2.06001 -0.00001 0.00000 -0.00003 -0.00003 2.05998 R13 2.06001 -0.00001 0.00000 -0.00003 -0.00003 2.05998 R14 2.06001 -0.00001 0.00000 -0.00003 -0.00003 2.05998 R15 2.06001 -0.00001 0.00000 -0.00003 -0.00003 2.05998 R16 2.06001 -0.00001 0.00000 -0.00003 -0.00003 2.05998 A1 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A2 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A3 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A4 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A5 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A6 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A7 1.90043 0.00007 0.00000 0.00041 0.00041 1.90085 A8 1.90043 0.00007 0.00000 0.00041 0.00041 1.90085 A9 1.90043 0.00007 0.00000 0.00041 0.00041 1.90085 A10 1.92072 -0.00006 0.00000 -0.00040 -0.00040 1.92032 A11 1.92072 -0.00006 0.00000 -0.00040 -0.00040 1.92032 A12 1.92072 -0.00006 0.00000 -0.00040 -0.00040 1.92032 A13 1.90043 0.00007 0.00000 0.00041 0.00041 1.90085 A14 1.90043 0.00007 0.00000 0.00041 0.00041 1.90085 A15 1.90043 0.00007 0.00000 0.00041 0.00041 1.90085 A16 1.92072 -0.00006 0.00000 -0.00040 -0.00040 1.92032 A17 1.92072 -0.00006 0.00000 -0.00040 -0.00040 1.92032 A18 1.92072 -0.00006 0.00000 -0.00040 -0.00040 1.92032 A19 1.90043 0.00007 0.00000 0.00041 0.00041 1.90085 A20 1.90043 0.00007 0.00000 0.00041 0.00041 1.90085 A21 1.90043 0.00007 0.00000 0.00041 0.00041 1.90085 A22 1.92072 -0.00006 0.00000 -0.00040 -0.00040 1.92032 A23 1.92072 -0.00006 0.00000 -0.00040 -0.00040 1.92032 A24 1.92072 -0.00006 0.00000 -0.00040 -0.00040 1.92032 A25 1.90043 0.00007 0.00000 0.00041 0.00041 1.90085 A26 1.90043 0.00007 0.00000 0.00041 0.00041 1.90085 A27 1.90043 0.00007 0.00000 0.00041 0.00041 1.90085 A28 1.92072 -0.00006 0.00000 -0.00040 -0.00040 1.92032 A29 1.92072 -0.00006 0.00000 -0.00040 -0.00040 1.92032 A30 1.92072 -0.00006 0.00000 -0.00040 -0.00040 1.92032 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D2 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D3 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D4 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D6 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D7 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D8 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D9 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D10 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D14 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D15 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D16 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D17 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D19 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D20 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D21 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D22 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D23 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D24 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D25 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D26 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D27 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D28 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D29 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D30 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D31 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D32 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D33 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D34 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D35 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D36 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000066 0.000450 YES RMS Force 0.000036 0.000300 YES Maximum Displacement 0.000927 0.001800 YES RMS Displacement 0.000355 0.001200 YES Predicted change in Energy=-3.236110D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.5096 -DE/DX = 0.0 ! ! R2 R(1,6) 1.5096 -DE/DX = 0.0 ! ! R3 R(1,10) 1.5096 -DE/DX = 0.0 ! ! R4 R(1,14) 1.5096 -DE/DX = 0.0 ! ! R5 R(2,3) 1.0901 -DE/DX = 0.0 ! ! R6 R(2,4) 1.0901 -DE/DX = 0.0 ! ! R7 R(2,5) 1.0901 -DE/DX = 0.0 ! ! R8 R(6,7) 1.0901 -DE/DX = 0.0 ! ! R9 R(6,8) 1.0901 -DE/DX = 0.0 ! ! R10 R(6,9) 1.0901 -DE/DX = 0.0 ! ! R11 R(10,11) 1.0901 -DE/DX = 0.0 ! ! R12 R(10,12) 1.0901 -DE/DX = 0.0 ! ! R13 R(10,13) 1.0901 -DE/DX = 0.0 ! ! R14 R(14,15) 1.0901 -DE/DX = 0.0 ! ! R15 R(14,16) 1.0901 -DE/DX = 0.0 ! ! R16 R(14,17) 1.0901 -DE/DX = 0.0 ! ! A1 A(2,1,6) 109.4712 -DE/DX = 0.0 ! ! A2 A(2,1,10) 109.4712 -DE/DX = 0.0 ! ! A3 A(2,1,14) 109.4712 -DE/DX = 0.0 ! ! A4 A(6,1,10) 109.4712 -DE/DX = 0.0 ! ! A5 A(6,1,14) 109.4712 -DE/DX = 0.0 ! ! A6 A(10,1,14) 109.4712 -DE/DX = 0.0 ! ! A7 A(1,2,3) 108.8869 -DE/DX = 0.0001 ! ! A8 A(1,2,4) 108.8869 -DE/DX = 0.0001 ! ! A9 A(1,2,5) 108.8869 -DE/DX = 0.0001 ! ! A10 A(3,2,4) 110.0492 -DE/DX = -0.0001 ! ! A11 A(3,2,5) 110.0492 -DE/DX = -0.0001 ! ! A12 A(4,2,5) 110.0492 -DE/DX = -0.0001 ! ! A13 A(1,6,7) 108.8869 -DE/DX = 0.0001 ! ! A14 A(1,6,8) 108.8869 -DE/DX = 0.0001 ! ! A15 A(1,6,9) 108.8869 -DE/DX = 0.0001 ! ! A16 A(7,6,8) 110.0492 -DE/DX = -0.0001 ! ! A17 A(7,6,9) 110.0492 -DE/DX = -0.0001 ! ! A18 A(8,6,9) 110.0492 -DE/DX = -0.0001 ! ! A19 A(1,10,11) 108.8869 -DE/DX = 0.0001 ! ! A20 A(1,10,12) 108.8869 -DE/DX = 0.0001 ! ! A21 A(1,10,13) 108.8869 -DE/DX = 0.0001 ! ! A22 A(11,10,12) 110.0492 -DE/DX = -0.0001 ! ! A23 A(11,10,13) 110.0492 -DE/DX = -0.0001 ! ! A24 A(12,10,13) 110.0492 -DE/DX = -0.0001 ! ! A25 A(1,14,15) 108.8869 -DE/DX = 0.0001 ! ! A26 A(1,14,16) 108.8869 -DE/DX = 0.0001 ! ! A27 A(1,14,17) 108.8869 -DE/DX = 0.0001 ! ! A28 A(15,14,16) 110.0492 -DE/DX = -0.0001 ! ! A29 A(15,14,17) 110.0492 -DE/DX = -0.0001 ! ! A30 A(16,14,17) 110.0492 -DE/DX = -0.0001 ! ! D1 D(6,1,2,3) 180.0 -DE/DX = 0.0 ! ! D2 D(6,1,2,4) -60.0 -DE/DX = 0.0 ! ! D3 D(6,1,2,5) 60.0 -DE/DX = 0.0 ! ! D4 D(10,1,2,3) 60.0 -DE/DX = 0.0 ! ! D5 D(10,1,2,4) 180.0 -DE/DX = 0.0 ! ! D6 D(10,1,2,5) -60.0 -DE/DX = 0.0 ! ! D7 D(14,1,2,3) -60.0 -DE/DX = 0.0 ! ! D8 D(14,1,2,4) 60.0 -DE/DX = 0.0 ! ! D9 D(14,1,2,5) 180.0 -DE/DX = 0.0 ! ! D10 D(2,1,6,7) 60.0 -DE/DX = 0.0 ! ! D11 D(2,1,6,8) 180.0 -DE/DX = 0.0 ! ! D12 D(2,1,6,9) -60.0 -DE/DX = 0.0 ! ! D13 D(10,1,6,7) 180.0 -DE/DX = 0.0 ! ! D14 D(10,1,6,8) -60.0 -DE/DX = 0.0 ! ! D15 D(10,1,6,9) 60.0 -DE/DX = 0.0 ! ! D16 D(14,1,6,7) -60.0 -DE/DX = 0.0 ! ! D17 D(14,1,6,8) 60.0 -DE/DX = 0.0 ! ! D18 D(14,1,6,9) 180.0 -DE/DX = 0.0 ! ! D19 D(2,1,10,11) 180.0 -DE/DX = 0.0 ! ! D20 D(2,1,10,12) -60.0 -DE/DX = 0.0 ! ! D21 D(2,1,10,13) 60.0 -DE/DX = 0.0 ! ! D22 D(6,1,10,11) 60.0 -DE/DX = 0.0 ! ! D23 D(6,1,10,12) 180.0 -DE/DX = 0.0 ! ! D24 D(6,1,10,13) -60.0 -DE/DX = 0.0 ! ! D25 D(14,1,10,11) -60.0 -DE/DX = 0.0 ! ! D26 D(14,1,10,12) 60.0 -DE/DX = 0.0 ! ! D27 D(14,1,10,13) 180.0 -DE/DX = 0.0 ! ! D28 D(2,1,14,15) 60.0 -DE/DX = 0.0 ! ! D29 D(2,1,14,16) 180.0 -DE/DX = 0.0 ! ! D30 D(2,1,14,17) -60.0 -DE/DX = 0.0 ! ! D31 D(6,1,14,15) 180.0 -DE/DX = 0.0 ! ! D32 D(6,1,14,16) -60.0 -DE/DX = 0.0 ! ! D33 D(6,1,14,17) 60.0 -DE/DX = 0.0 ! ! D34 D(10,1,14,15) -60.0 -DE/DX = 0.0 ! ! D35 D(10,1,14,16) 60.0 -DE/DX = 0.0 ! ! D36 D(10,1,14,17) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.509550 3 1 0 0.000000 1.031417 1.862419 4 1 0 -0.893233 -0.515708 1.862419 5 1 0 0.893233 -0.515708 1.862419 6 6 0 0.000000 -1.423217 -0.503183 7 1 0 -0.893233 -1.927808 -0.134592 8 1 0 0.000000 -1.412100 -1.593235 9 1 0 0.893233 -1.927808 -0.134592 10 6 0 1.232542 0.711609 -0.503183 11 1 0 1.222914 0.706050 -1.593235 12 1 0 1.222914 1.737466 -0.134592 13 1 0 2.116147 0.190341 -0.134592 14 6 0 -1.232542 0.711609 -0.503183 15 1 0 -1.222914 1.737466 -0.134592 16 1 0 -1.222914 0.706050 -1.593235 17 1 0 -2.116147 0.190341 -0.134592 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 C 1.509550 0.000000 3 H 2.128949 1.090108 0.000000 4 H 2.128949 1.090108 1.786466 0.000000 5 H 2.128949 1.090108 1.786466 1.786466 0.000000 6 C 1.509550 2.465085 3.409003 2.686542 2.686542 7 H 2.128949 2.686542 3.680071 2.445828 3.028785 8 H 2.128949 3.409003 4.232294 3.680071 3.680071 9 H 2.128949 2.686542 3.680071 3.028785 2.445828 10 C 1.509550 2.465085 2.686542 3.409003 2.686542 11 H 2.128949 3.409003 3.680071 4.232294 3.680071 12 H 2.128949 2.686542 2.445828 3.680071 3.028785 13 H 2.128949 2.686542 3.028785 3.680071 2.445828 14 C 1.509550 2.465085 2.686542 2.686542 3.409003 15 H 2.128949 2.686542 2.445828 3.028785 3.680071 16 H 2.128949 3.409003 3.680071 3.680071 4.232294 17 H 2.128949 2.686542 3.028785 2.445828 3.680071 6 7 8 9 10 6 C 0.000000 7 H 1.090108 0.000000 8 H 1.090108 1.786466 0.000000 9 H 1.090108 1.786466 1.786466 0.000000 10 C 2.465085 3.409003 2.686542 2.686542 0.000000 11 H 2.686542 3.680071 2.445828 3.028785 1.090108 12 H 3.409003 4.232294 3.680071 3.680071 1.090108 13 H 2.686542 3.680071 3.028785 2.445828 1.090108 14 C 2.465085 2.686542 2.686542 3.409003 2.465085 15 H 3.409003 3.680071 3.680071 4.232294 2.686542 16 H 2.686542 3.028785 2.445828 3.680071 2.686542 17 H 2.686542 2.445828 3.028785 3.680071 3.409003 11 12 13 14 15 11 H 0.000000 12 H 1.786466 0.000000 13 H 1.786466 1.786466 0.000000 14 C 2.686542 2.686542 3.409003 0.000000 15 H 3.028785 2.445828 3.680071 1.090108 0.000000 16 H 2.445828 3.028785 3.680071 1.090108 1.786466 17 H 3.680071 3.680071 4.232294 1.090108 1.786466 16 17 16 H 0.000000 17 H 1.786466 0.000000 Stoichiometry C4H12N(1+) Framework group TD[O(N),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 6 0 0.871539 0.871539 0.871539 3 1 0 1.496342 1.496342 0.233120 4 1 0 0.233120 1.496342 1.496342 5 1 0 1.496342 0.233120 1.496342 6 6 0 -0.871539 -0.871539 0.871539 7 1 0 -1.496342 -0.233120 1.496342 8 1 0 -1.496342 -1.496342 0.233120 9 1 0 -0.233120 -1.496342 1.496342 10 6 0 0.871539 -0.871539 -0.871539 11 1 0 0.233120 -1.496342 -1.496342 12 1 0 1.496342 -0.233120 -1.496342 13 1 0 1.496342 -1.496342 -0.233120 14 6 0 -0.871539 0.871539 -0.871539 15 1 0 -0.233120 1.496342 -1.496342 16 1 0 -1.496342 0.233120 -1.496342 17 1 0 -1.496342 1.496342 -0.233120 --------------------------------------------------------------------- Rotational constants (GHZ): 4.6169001 4.6169001 4.6169001 1|1| IMPERIAL COLLEGE-SKCH-135-045|FOpt|RB3LYP|6-31G(d,p)|C4H12N1(1+)| BD817|02-May-2019|0||# opt b3lyp/6-31g(d,p) geom=connectivity||Title C ard Required||1,1|N,0.,0.0000000014,0.0000000014|C,0.0000000022,-0.000 0000005,1.50955009|H,0.000000001,1.0314166,1.86241856|H,-0.8932329747, -0.5157083029,1.8624185594|H,0.8932329819,-0.5157082999,1.8624185568|C ,0.0000000016,-1.4232174702,-0.5031833633|H,-0.8932329753,-1.927807821 8,-0.134591737|H,0.,-1.412099518,-1.5932350831|H,0.8932329813,-1.92780 78188,-0.1345917396|C,1.2325424842,0.7116087402,-0.5031833624|H,1.2229 140547,0.7060497661,-1.5932350823|H,1.2229140551,1.7374663652,-0.13459 17355|H,2.116147036,0.1903414653,-0.1345917387|C,-1.232542488,0.711608 7361,-0.5031833588|H,-1.2229140613,1.7374663612,-0.1345917319|H,-1.222 9140617,0.7060497621,-1.5932350787|H,-2.116147037,0.1903414583,-0.1345 917325||Version=EM64W-G09RevD.01|State=1-A1|HF=-214.1813267|RMSD=2.161 e-009|RMSF=5.024e-005|Dipole=0.,0.,0.|Quadrupole=0.,0.,0.,0.,0.,0.|PG= TD [O(N1),4C3(C1),6SGD(H2)]||@ ERWIN WITH HIS PSI CAN DO CALCULATIONS QUITE A FEW. BUT ONE THING HAS NOT BEEN SEEN JUST WHAT DOES PSI REALLY MEAN. -- WALTER HUCKEL, TRANS. BY FELIX BLOCH Job cpu time: 0 days 0 hours 0 minutes 16.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Thu May 02 15:36:53 2019.