Entering Gaussian System, Link 0=g16 Input=/Users/julianbecker/Dropbox/work/documents/Jobs/1styearlab/JBecker_h2_singlepoint.gjf Output=/Users/julianbecker/Dropbox/work/documents/Jobs/1styearlab/JBecker_h2_singlepoint.log Initial command: /Applications/g16/l1.exe "/Users/julianbecker/Work/Jobs/tmp/Gau-74928.inp" -scrdir="/Users/julianbecker/Work/Jobs/tmp/" Entering Link 1 = /Applications/g16/l1.exe PID= 74929. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2016, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 16 program. It is based on the Gaussian(R) 09 system (copyright 2009, Gaussian, Inc.), the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016. ****************************************** Gaussian 16: EM64M-G16RevA.03 25-Dec-2016 8-Feb-2019 ****************************************** %chk=JBecker_h2_singlepoint.chk ---------------------------------------------------------------------- # b3lyp/6-31g(d,p) pop=(full,nbo) geom=connectivity integral=grid=ultr afine ---------------------------------------------------------------------- 1/38=1,57=2,172=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,25=1,30=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=3,28=1,40=1/1,7; 99/5=1,9=1/99; ----------- H2 optf pop ----------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 H 0. 0. 0.3714 H 0. 0. -0.3714 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.371397 2 1 0 0.000000 0.000000 -0.371397 --------------------------------------------------------------------- Stoichiometry H2 Framework group D*H[C*(H.H)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.371397 2 1 0 0.000000 0.000000 -0.371397 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 1817.7128530 1817.7128530 Standard basis: 6-31G(d,p) (6D, 7F) There are 3 symmetry adapted cartesian basis functions of AG symmetry. There are 0 symmetry adapted cartesian basis functions of B1G symmetry. There are 1 symmetry adapted cartesian basis functions of B2G symmetry. There are 1 symmetry adapted cartesian basis functions of B3G symmetry. There are 0 symmetry adapted cartesian basis functions of AU symmetry. There are 3 symmetry adapted cartesian basis functions of B1U symmetry. There are 1 symmetry adapted cartesian basis functions of B2U symmetry. There are 1 symmetry adapted cartesian basis functions of B3U symmetry. There are 3 symmetry adapted basis functions of AG symmetry. There are 0 symmetry adapted basis functions of B1G symmetry. There are 1 symmetry adapted basis functions of B2G symmetry. There are 1 symmetry adapted basis functions of B3G symmetry. There are 0 symmetry adapted basis functions of AU symmetry. There are 3 symmetry adapted basis functions of B1U symmetry. There are 1 symmetry adapted basis functions of B2U symmetry. There are 1 symmetry adapted basis functions of B3U symmetry. 10 basis functions, 14 primitive gaussians, 10 cartesian basis functions 1 alpha electrons 1 beta electrons nuclear repulsion energy 0.7124144930 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 10 RedAO= T EigKep= 9.68D-02 NBF= 3 0 1 1 0 3 1 1 NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 1 1 0 3 1 1 ExpMin= 1.61D-01 ExpMax= 1.87D+01 ExpMxC= 1.87D+01 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SGG) Virtual (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) The electronic state of the initial guess is 1-SGG. Keep R1 ints in memory in symmetry-blocked form, NReq=863685. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -1.17853935735 A.U. after 6 cycles NFock= 6 Conv=0.54D-09 -V/T= 2.0314 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SGG) Virtual (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) The electronic state is 1-SGG. Alpha occ. eigenvalues -- -0.43158 Alpha virt. eigenvalues -- 0.10097 0.57700 1.03609 1.67471 1.67471 Alpha virt. eigenvalues -- 2.37887 2.61566 2.61566 4.15286 Molecular Orbital Coefficients: 1 2 3 4 5 (SGG)--O (SGU)--V (SGG)--V (SGU)--V (PIU)--V Eigenvalues -- -0.43158 0.10097 0.57700 1.03609 1.67471 1 1 H 1S 0.32475 0.17234 0.74182 -0.90218 0.00000 2 2S 0.27049 1.63357 -0.67787 1.48128 0.00000 3 3PX 0.00000 0.00000 0.00000 0.00000 0.00000 4 3PY 0.00000 0.00000 0.00000 0.00000 0.61122 5 3PZ -0.01536 0.01056 -0.04073 -0.24977 0.00000 6 2 H 1S 0.32475 -0.17234 0.74182 0.90218 0.00000 7 2S 0.27049 -1.63357 -0.67787 -1.48128 0.00000 8 3PX 0.00000 0.00000 0.00000 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00000 0.61122 10 3PZ 0.01536 0.01056 0.04073 -0.24977 0.00000 6 7 8 9 10 (PIU)--V (SGG)--V (PIG)--V (PIG)--V (SGU)--V Eigenvalues -- 1.67471 2.37887 2.61566 2.61566 4.15286 1 1 H 1S 0.00000 0.38957 0.00000 0.00000 -1.41475 2 2S 0.00000 -0.19261 0.00000 0.00000 -0.18976 3 3PX 0.61122 0.00000 0.86930 0.00000 0.00000 4 3PY 0.00000 0.00000 0.00000 0.86930 0.00000 5 3PZ 0.00000 0.64659 0.00000 0.00000 1.57584 6 2 H 1S 0.00000 0.38957 0.00000 0.00000 1.41475 7 2S 0.00000 -0.19261 0.00000 0.00000 0.18976 8 3PX 0.61122 0.00000 -0.86930 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 -0.86930 0.00000 10 3PZ 0.00000 -0.64659 0.00000 0.00000 1.57584 Density Matrix: 1 2 3 4 5 1 1 H 1S 0.21092 2 2S 0.17568 0.14632 3 3PX -0.00000 -0.00000 0.00000 4 3PY -0.00000 -0.00000 0.00000 0.00000 5 3PZ -0.00998 -0.00831 0.00000 0.00000 0.00047 6 2 H 1S 0.21092 0.17568 -0.00000 -0.00000 -0.00998 7 2S 0.17568 0.14632 -0.00000 -0.00000 -0.00831 8 3PX 0.00000 0.00000 -0.00000 -0.00000 -0.00000 9 3PY 0.00000 0.00000 -0.00000 -0.00000 -0.00000 10 3PZ 0.00998 0.00831 -0.00000 -0.00000 -0.00047 6 7 8 9 10 6 2 H 1S 0.21092 7 2S 0.17568 0.14632 8 3PX 0.00000 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00000 10 3PZ 0.00998 0.00831 0.00000 0.00000 0.00047 Full Mulliken population analysis: 1 2 3 4 5 1 1 H 1S 0.21092 2 2S 0.11565 0.14632 3 3PX 0.00000 0.00000 0.00000 4 3PY 0.00000 0.00000 0.00000 0.00000 5 3PZ 0.00000 0.00000 0.00000 0.00000 0.00047 6 2 H 1S 0.09551 0.08926 0.00000 0.00000 0.00468 7 2S 0.08926 0.12483 0.00000 0.00000 0.00129 8 3PX 0.00000 0.00000 -0.00000 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 -0.00000 0.00000 10 3PZ 0.00468 0.00129 0.00000 0.00000 0.00019 6 7 8 9 10 6 2 H 1S 0.21092 7 2S 0.11565 0.14632 8 3PX 0.00000 0.00000 0.00000 9 3PY 0.00000 0.00000 0.00000 0.00000 10 3PZ 0.00000 0.00000 0.00000 0.00000 0.00047 Gross orbital populations: 1 1 1 H 1S 0.51601 2 2S 0.47735 3 3PX 0.00000 4 3PY 0.00000 5 3PZ 0.00663 6 2 H 1S 0.51601 7 2S 0.47735 8 3PX 0.00000 9 3PY 0.00000 10 3PZ 0.00663 Condensed to atoms (all electrons): 1 2 1 H 0.589017 0.410983 2 H 0.410983 0.589017 Mulliken charges: 1 1 H 0.000000 2 H 0.000000 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 Electronic spatial extent (au): = 5.1232 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -2.0291 YY= -2.0291 ZZ= -1.5076 XY= -0.0000 XZ= -0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.1738 YY= -0.1738 ZZ= 0.3477 XY= -0.0000 XZ= -0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.0000 YYY= -0.0000 ZZZ= -0.0000 XYY= -0.0000 XXY= -0.0000 XXZ= 0.0000 XZZ= -0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1.8759 YYYY= -1.8759 ZZZZ= -2.7679 XXXY= -0.0000 XXXZ= 0.0000 YYYX= -0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.6253 XXZZ= -0.7888 YYZZ= -0.7888 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= -0.0000 N-N= 7.124144930088D-01 E-N=-3.645448733609D+00 KE= 1.142712268251D+00 Symmetry AG KE= 1.142712268251D+00 Symmetry B1G KE= 0.000000000000D+00 Symmetry B2G KE= 2.251252212456D-34 Symmetry B3G KE= 2.251252212456D-34 Symmetry AU KE= 0.000000000000D+00 Symmetry B1U KE= 1.807321570101D-32 Symmetry B2U KE= 6.480151614593D-35 Symmetry B3U KE= 6.480151614593D-35 Orbital energies and kinetic energies (alpha): 1 2 1 (SGG)--O -0.431577 0.571356 2 (SGU)--V 0.100966 0.493362 3 (SGG)--V 0.577005 1.407578 4 (SGU)--V 1.036092 2.257788 5 (PIU)--V 1.674709 2.448639 6 (PIU)--V 1.674709 2.448639 7 (SGG)--V 2.378874 3.275101 8 (PIG)--V 2.615664 3.359580 9 (PIG)--V 2.615664 3.359580 10 (SGU)--V 4.152858 5.416544 Total kinetic energy from orbitals= 1.142712268251D+00 ******************************Gaussian NBO Version 3.1****************************** N A T U R A L A T O M I C O R B I T A L A N D N A T U R A L B O N D O R B I T A L A N A L Y S I S ******************************Gaussian NBO Version 3.1****************************** /RESON / : Allow strongly delocalized NBO set Analyzing the SCF density Job title: H2 optf pop Storage needed: 370 in NPA, 439 in NBO ( 65535972 available) NATURAL POPULATIONS: Natural atomic orbital occupancies NAO Atom No lang Type(AO) Occupancy Energy ---------------------------------------------------------- 1 H 1 S Val( 1S) 0.99944 -0.03361 2 H 1 S Ryd( 2S) 0.00000 0.71748 3 H 1 px Ryd( 2p) 0.00000 2.14519 4 H 1 py Ryd( 2p) 0.00000 2.14519 5 H 1 pz Ryd( 2p) 0.00056 3.22324 6 H 2 S Val( 1S) 0.99944 -0.03361 7 H 2 S Ryd( 2S) 0.00000 0.71748 8 H 2 px Ryd( 2p) 0.00000 2.14519 9 H 2 py Ryd( 2p) 0.00000 2.14519 10 H 2 pz Ryd( 2p) 0.00056 3.22324 Summary of Natural Population Analysis: Natural Population Natural ----------------------------------------------- Atom No Charge Core Valence Rydberg Total ----------------------------------------------------------------------- H 1 0.00000 0.00000 0.99944 0.00056 1.00000 H 2 0.00000 0.00000 0.99944 0.00056 1.00000 ======================================================================= * Total * 0.00000 0.00000 1.99888 0.00112 2.00000 Natural Population -------------------------------------------------------- Valence 1.99888 ( 99.9438% of 2) Natural Minimal Basis 1.99888 ( 99.9438% of 2) Natural Rydberg Basis 0.00112 ( 0.0562% of 2) -------------------------------------------------------- Atom No Natural Electron Configuration ---------------------------------------------------------------------------- H 1 1S( 1.00) H 2 1S( 1.00) NATURAL BOND ORBITAL ANALYSIS: Occupancies Lewis Structure Low High Occ. ------------------- ----------------- occ occ Cycle Thresh. Lewis Non-Lewis CR BD 3C LP (L) (NL) Dev ============================================================================= 1(1) 1.90 2.00000 0.00000 0 1 0 0 0 0 0.00 ----------------------------------------------------------------------------- Structure accepted: No low occupancy Lewis orbitals -------------------------------------------------------- Valence Lewis 2.00000 (100.000% of 2) ================== ============================ Total Lewis 2.00000 (100.000% of 2) ----------------------------------------------------- Valence non-Lewis 0.00000 ( 0.000% of 2) Rydberg non-Lewis 0.00000 ( 0.000% of 2) ================== ============================ Total non-Lewis 0.00000 ( 0.000% of 2) -------------------------------------------------------- (Occupancy) Bond orbital/ Coefficients/ Hybrids --------------------------------------------------------------------------------- 1. (2.00000) BD ( 1) H 1 - H 2 ( 50.00%) 0.7071* H 1 s( 99.94%)p 0.00( 0.06%) 0.9997 0.0000 0.0000 0.0000 -0.0237 ( 50.00%) 0.7071* H 2 s( 99.94%)p 0.00( 0.06%) 0.9997 0.0000 0.0000 0.0000 0.0237 2. (0.00000) RY*( 1) H 1 s(100.00%) 3. (0.00000) RY*( 2) H 1 s( 0.00%)p 1.00(100.00%) 4. (0.00000) RY*( 3) H 1 s( 0.00%)p 1.00(100.00%) 5. (0.00000) RY*( 4) H 1 s( 0.06%)p99.99( 99.94%) 6. (0.00000) RY*( 1) H 2 s(100.00%) 7. (0.00000) RY*( 2) H 2 s( 0.00%)p 1.00(100.00%) 8. (0.00000) RY*( 3) H 2 s( 0.00%)p 1.00(100.00%) 9. (0.00000) RY*( 4) H 2 s( 0.06%)p99.99( 99.94%) 10. (0.00000) BD*( 1) H 1 - H 2 ( 50.00%) 0.7071* H 1 s( 99.94%)p 0.00( 0.06%) ( 50.00%) -0.7071* H 2 s( 99.94%)p 0.00( 0.06%) NHO Directionality and "Bond Bending" (deviations from line of nuclear centers) [Thresholds for printing: angular deviation > 1.0 degree] hybrid p-character > 25.0% orbital occupancy > 0.10e Line of Centers Hybrid 1 Hybrid 2 --------------- ------------------- ------------------ NBO Theta Phi Theta Phi Dev Theta Phi Dev ======================================================================================== None exceeding thresholds Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis Threshold for printing: 0.50 kcal/mol E(2) E(j)-E(i) F(i,j) Donor NBO (i) Acceptor NBO (j) kcal/mol a.u. a.u. =================================================================================================== within unit 1 None above threshold Natural Bond Orbitals (Summary): Principal Delocalizations NBO Occupancy Energy (geminal,vicinal,remote) ==================================================================================== Molecular unit 1 (H2) 1. BD ( 1) H 1 - H 2 2.00000 -0.43158 2. RY*( 1) H 1 0.00000 0.71748 3. RY*( 2) H 1 0.00000 2.14519 4. RY*( 3) H 1 0.00000 2.14519 5. RY*( 4) H 1 0.00000 3.21667 6. RY*( 1) H 2 0.00000 0.71748 7. RY*( 2) H 2 0.00000 2.14519 8. RY*( 3) H 2 0.00000 2.14519 9. RY*( 4) H 2 0.00000 3.21667 10. BD*( 1) H 1 - H 2 0.00000 0.37750 ------------------------------- Total Lewis 2.00000 (100.0000%) Valence non-Lewis 0.00000 ( 0.0000%) Rydberg non-Lewis 0.00000 ( 0.0000%) ------------------------------- Total unit 1 2.00000 (100.0000%) Charge unit 1 0.00000 1\1\GINC-CH-SAGE\SP\RB3LYP\6-31G(d,p)\H2\JULIANBECKER\08-Feb-2019\0\\# b3lyp/6-31g(d,p) pop=(full,nbo) geom=connectivity integral=grid=ultra fine\\H2 optf pop\\0,1\H,0,0.,0.,0.371397\H,0,0.,0.,-0.371397\\Version =EM64M-G16RevA.03\State=1-SGG\HF=-1.1785394\RMSD=5.410e-10\Dipole=0.,0 .,0.\Quadrupole=-0.1292351,-0.1292351,0.2584702,0.,0.,0.\PG=D*H [C*(H1 .H1)]\\@ HAPPINESS IS NOT HAVING WHAT YOU WANT -- HAPPINESS IS WANTING WHAT YOU HAVE! -- FROM MRS. SEVERN'S DESK Job cpu time: 0 days 0 hours 0 minutes 1.0 seconds. Elapsed time: 0 days 0 hours 0 minutes 0.9 seconds. File lengths (MBytes): RWF= 6 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 16 at Fri Feb 8 09:23:42 2019.