Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 3956. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 02-Dec-2013 ****************************************** %chk=\\ic.ac.uk\homes\lt611\Computational Physical\Diels-Alder\ethlyene\ethylene _HF_AM1.chk Default route: MaxDisk=10GB --------------------------- # opt am1 geom=connectivity --------------------------- 1/14=-1,18=20,19=15,26=1,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=2,16=1,25=1,41=700000,71=1/1,2,3; 4/35=1/1; 5/5=2,35=1,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=1/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=2,16=1,25=1,41=700000,71=1,135=20/1,2,3; 4/5=5,16=3,35=1/1; 5/5=2,35=1,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=1/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C -0.65754 0. 0. C 0.65754 0. 0. H -1.22571 -0.91076 -0.00001 H -1.22571 0.91076 0.00002 H 1.22571 0.91076 0.00001 H 1.22571 -0.91076 -0.00002 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3151 estimate D2E/DX2 ! ! R2 R(1,3) 1.0735 estimate D2E/DX2 ! ! R3 R(1,4) 1.0735 estimate D2E/DX2 ! ! R4 R(2,5) 1.0735 estimate D2E/DX2 ! ! R5 R(2,6) 1.0735 estimate D2E/DX2 ! ! A1 A(2,1,3) 121.9575 estimate D2E/DX2 ! ! A2 A(2,1,4) 121.9575 estimate D2E/DX2 ! ! A3 A(3,1,4) 116.085 estimate D2E/DX2 ! ! A4 A(1,2,5) 121.9575 estimate D2E/DX2 ! ! A5 A(1,2,6) 121.9575 estimate D2E/DX2 ! ! A6 A(5,2,6) 116.085 estimate D2E/DX2 ! ! D1 D(3,1,2,5) -179.9999 estimate D2E/DX2 ! ! D2 D(3,1,2,6) -0.0001 estimate D2E/DX2 ! ! D3 D(4,1,2,5) -0.0001 estimate D2E/DX2 ! ! D4 D(4,1,2,6) 179.9998 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 25 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.657540 0.000000 0.000003 2 6 0 0.657540 0.000000 -0.000004 3 1 0 -1.225708 -0.910761 -0.000010 4 1 0 -1.225708 0.910762 0.000024 5 1 0 1.225708 0.910761 0.000011 6 1 0 1.225708 -0.910762 -0.000021 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.315080 0.000000 3 H 1.073453 2.091915 0.000000 4 H 1.073453 2.091915 1.821523 0.000000 5 H 2.091915 1.073453 3.054077 2.451416 0.000000 6 H 2.091915 1.073453 2.451416 3.054076 1.821523 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.657540 0.000000 0.000003 2 6 0 -0.657540 0.000000 -0.000004 3 1 0 1.225708 0.910761 -0.000010 4 1 0 1.225708 -0.910762 0.000024 5 1 0 -1.225708 -0.910761 0.000011 6 1 0 -1.225708 0.910762 -0.000021 --------------------------------------------------------------------- Rotational constants (GHZ): 151.1342254 30.7537760 25.5539017 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.3345106439 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Simple Huckel Guess. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RAM1) = 0.283257962063E-01 A.U. after 10 cycles NFock= 9 Conv=0.80D-09 -V/T= 1.0040 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -1.23602 -0.81152 -0.59019 -0.52710 -0.43964 Alpha occ. eigenvalues -- -0.39174 Alpha virt. eigenvalues -- 0.05300 0.15220 0.16760 0.19162 0.20826 Alpha virt. eigenvalues -- 0.21202 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.214332 0.000000 0.000000 0.000000 0.000000 0.000000 2 C 0.000000 4.214332 0.000000 0.000000 0.000000 0.000000 3 H 0.000000 0.000000 0.892834 0.000000 0.000000 0.000000 4 H 0.000000 0.000000 0.000000 0.892834 0.000000 0.000000 5 H 0.000000 0.000000 0.000000 0.000000 0.892834 0.000000 6 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.892834 Mulliken charges: 1 1 C -0.214332 2 C -0.214332 3 H 0.107166 4 H 0.107166 5 H 0.107166 6 H 0.107166 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.000000 2 C 0.000000 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 N-N= 2.733451064392D+01 E-N=-3.948838583900D+01 KE=-7.131587991378D+00 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.001144248 0.000000099 0.000000111 2 6 0.001144248 -0.000000099 0.000000155 3 1 -0.012003014 -0.015033262 -0.000000248 4 1 -0.012003008 0.015033213 0.000000251 5 1 0.012003014 0.015033262 0.000000161 6 1 0.012003008 -0.015033213 -0.000000430 ------------------------------------------------------------------- Cartesian Forces: Max 0.015033262 RMS 0.009076528 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.025150270 RMS 0.011888903 Search for a local minimum. Step number 1 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 R4 R5 R1 0.63173 R2 0.00000 0.36797 R3 0.00000 0.00000 0.36797 R4 0.00000 0.00000 0.00000 0.36797 R5 0.00000 0.00000 0.00000 0.00000 0.36797 A1 0.00000 0.00000 0.00000 0.00000 0.00000 A2 0.00000 0.00000 0.00000 0.00000 0.00000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 A4 0.00000 0.00000 0.00000 0.00000 0.00000 A5 0.00000 0.00000 0.00000 0.00000 0.00000 A6 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 A1 A2 A3 A4 A5 A1 0.16000 A2 0.00000 0.16000 A3 0.00000 0.00000 0.16000 A4 0.00000 0.00000 0.00000 0.16000 A5 0.00000 0.00000 0.00000 0.00000 0.16000 A6 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 A6 D1 D2 D3 D4 A6 0.16000 D1 0.00000 0.03212 D2 0.00000 0.00000 0.03212 D3 0.00000 0.00000 0.00000 0.03212 D4 0.00000 0.00000 0.00000 0.00000 0.03212 ITU= 0 Eigenvalues --- 0.03212 0.03212 0.03212 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.36797 0.36797 0.36797 Eigenvalues --- 0.36797 0.63173 RFO step: Lambda=-5.07306206D-03 EMin= 3.21208718D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.03738717 RMS(Int)= 0.00020559 Iteration 2 RMS(Cart)= 0.00024525 RMS(Int)= 0.00000003 Iteration 3 RMS(Cart)= 0.00000003 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.48514 0.02515 0.00000 0.03949 0.03949 2.52464 R2 2.02853 0.01911 0.00000 0.05122 0.05122 2.07975 R3 2.02853 0.01911 0.00000 0.05122 0.05122 2.07975 R4 2.02853 0.01911 0.00000 0.05122 0.05122 2.07975 R5 2.02853 0.01911 0.00000 0.05122 0.05122 2.07975 A1 2.12856 0.00151 0.00000 0.00912 0.00912 2.13768 A2 2.12856 0.00151 0.00000 0.00912 0.00912 2.13768 A3 2.02607 -0.00301 0.00000 -0.01824 -0.01824 2.00782 A4 2.12856 0.00151 0.00000 0.00912 0.00912 2.13768 A5 2.12856 0.00151 0.00000 0.00912 0.00912 2.13768 A6 2.02607 -0.00301 0.00000 -0.01824 -0.01824 2.00782 D1 -3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D4 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 Item Value Threshold Converged? Maximum Force 0.025150 0.000450 NO RMS Force 0.011889 0.000300 NO Maximum Displacement 0.062908 0.001800 NO RMS Displacement 0.037467 0.001200 NO Predicted change in Energy=-2.569640D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.667990 0.000000 0.000004 2 6 0 0.667990 0.000000 -0.000002 3 1 0 -1.258998 -0.928406 -0.000010 4 1 0 -1.258997 0.928406 0.000024 5 1 0 1.258998 0.928406 0.000010 6 1 0 1.258997 -0.928406 -0.000023 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.335979 0.000000 3 H 1.100558 2.138976 0.000000 4 H 1.100558 2.138976 1.856812 0.000000 5 H 2.138976 1.100558 3.128586 2.517995 0.000000 6 H 2.138976 1.100558 2.517995 3.128586 1.856812 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.667990 0.000000 0.000004 2 6 0 -0.667990 0.000000 -0.000003 3 1 0 1.258997 0.928406 -0.000011 4 1 0 1.258997 -0.928406 0.000023 5 1 0 -1.258997 -0.928406 0.000010 6 1 0 -1.258997 0.928406 -0.000024 --------------------------------------------------------------------- Rotational constants (GHZ): 145.4440611 29.5561338 24.5643391 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.0783916185 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\lt611\Computational Physical\Diels-Alder\ethlyene\ethylene_HF_AM1.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RAM1) = 0.263547923886E-01 A.U. after 8 cycles NFock= 7 Conv=0.86D-08 -V/T= 1.0037 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.012885134 0.000000021 -0.000000161 2 6 -0.012885134 -0.000000021 -0.000000050 3 1 0.000997188 0.001949463 0.000000094 4 1 0.000997189 -0.001949476 -0.000000002 5 1 -0.000997188 -0.001949463 0.000000037 6 1 -0.000997189 0.001949476 0.000000083 ------------------------------------------------------------------- Cartesian Forces: Max 0.012885134 RMS 0.004417343 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.014879511 RMS 0.004005445 Search for a local minimum. Step number 2 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -1.97D-03 DEPred=-2.57D-03 R= 7.67D-01 TightC=F SS= 1.41D+00 RLast= 1.14D-01 DXNew= 5.0454D-01 3.4275D-01 Trust test= 7.67D-01 RLast= 1.14D-01 DXMaxT set to 3.43D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.77045 R2 0.04596 0.37141 R3 0.04596 0.00344 0.37141 R4 0.04596 0.00344 0.00344 0.37141 R5 0.04596 0.00344 0.00344 0.00344 0.37141 A1 0.00168 -0.00073 -0.00073 -0.00073 -0.00073 A2 0.00168 -0.00073 -0.00073 -0.00073 -0.00073 A3 -0.00337 0.00146 0.00146 0.00146 0.00146 A4 0.00168 -0.00073 -0.00073 -0.00073 -0.00073 A5 0.00168 -0.00073 -0.00073 -0.00073 -0.00073 A6 -0.00337 0.00146 0.00146 0.00146 0.00146 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 A1 A2 A3 A4 A5 A1 0.15988 A2 -0.00012 0.15988 A3 0.00024 0.00024 0.15952 A4 -0.00012 -0.00012 0.00024 0.15988 A5 -0.00012 -0.00012 0.00024 -0.00012 0.15988 A6 0.00024 0.00024 -0.00048 0.00024 0.00024 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 A6 D1 D2 D3 D4 A6 0.15952 D1 0.00000 0.03212 D2 0.00000 0.00000 0.03212 D3 0.00000 0.00000 0.00000 0.03212 D4 0.00000 0.00000 0.00000 0.00000 0.03212 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.03212 0.03212 0.03212 0.15833 0.16000 Eigenvalues --- 0.16000 0.16000 0.36127 0.36797 0.36797 Eigenvalues --- 0.36797 0.79112 RFO step: Lambda=-1.30757503D-04 EMin= 3.21208718D-02 Quartic linear search produced a step of -0.17517. Iteration 1 RMS(Cart)= 0.00655242 RMS(Int)= 0.00000142 Iteration 2 RMS(Cart)= 0.00000173 RMS(Int)= 0.00000000 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.52464 -0.01488 -0.00692 -0.01166 -0.01858 2.50606 R2 2.07975 -0.00218 -0.00897 0.00502 -0.00395 2.07580 R3 2.07975 -0.00218 -0.00897 0.00502 -0.00395 2.07580 R4 2.07975 -0.00218 -0.00897 0.00502 -0.00395 2.07580 R5 2.07975 -0.00218 -0.00897 0.00502 -0.00395 2.07580 A1 2.13768 0.00014 -0.00160 0.00241 0.00081 2.13849 A2 2.13768 0.00014 -0.00160 0.00241 0.00081 2.13849 A3 2.00782 -0.00029 0.00320 -0.00481 -0.00162 2.00620 A4 2.13768 0.00014 -0.00160 0.00241 0.00081 2.13849 A5 2.13768 0.00014 -0.00160 0.00241 0.00081 2.13849 A6 2.00782 -0.00029 0.00320 -0.00481 -0.00162 2.00620 D1 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D4 -3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.014880 0.000450 NO RMS Force 0.004005 0.000300 NO Maximum Displacement 0.009998 0.001800 NO RMS Displacement 0.006554 0.001200 NO Predicted change in Energy=-1.534656D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.663074 0.000000 0.000004 2 6 0 0.663074 0.000000 -0.000003 3 1 0 -1.253707 -0.926163 -0.000010 4 1 0 -1.253707 0.926164 0.000024 5 1 0 1.253707 0.926163 0.000011 6 1 0 1.253707 -0.926164 -0.000022 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.326148 0.000000 3 H 1.098465 2.128809 0.000000 4 H 1.098465 2.128809 1.852327 0.000000 5 H 2.128809 1.098465 3.117409 2.507414 0.000000 6 H 2.128809 1.098465 2.507414 3.117409 1.852327 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.663074 0.000000 0.000003 2 6 0 -0.663074 0.000000 -0.000003 3 1 0 1.253707 0.926164 -0.000010 4 1 0 1.253707 -0.926164 0.000024 5 1 0 -1.253707 -0.926164 0.000011 6 1 0 -1.253707 0.926164 -0.000023 --------------------------------------------------------------------- Rotational constants (GHZ): 146.1492688 29.9247444 24.8388699 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.1314913561 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\lt611\Computational Physical\Diels-Alder\ethlyene\ethylene_HF_AM1.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RAM1) = 0.261972380825E-01 A.U. after 8 cycles NFock= 7 Conv=0.40D-08 -V/T= 1.0037 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000331217 0.000000008 0.000000056 2 6 -0.000331217 -0.000000008 0.000000072 3 1 -0.000319375 0.000435067 -0.000000014 4 1 -0.000319375 -0.000435071 -0.000000043 5 1 0.000319375 -0.000435067 -0.000000037 6 1 0.000319375 0.000435071 -0.000000034 ------------------------------------------------------------------- Cartesian Forces: Max 0.000435071 RMS 0.000277344 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000696376 RMS 0.000336814 Search for a local minimum. Step number 3 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 3 DE= -1.58D-04 DEPred=-1.53D-04 R= 1.03D+00 TightC=F SS= 1.41D+00 RLast= 2.04D-02 DXNew= 5.7643D-01 6.1156D-02 Trust test= 1.03D+00 RLast= 2.04D-02 DXMaxT set to 3.43D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.80222 R2 0.02860 0.36817 R3 0.02860 0.00020 0.36817 R4 0.02860 0.00020 0.00020 0.36817 R5 0.02860 0.00020 0.00020 0.00020 0.36817 A1 0.01746 0.00051 0.00051 0.00051 0.00051 A2 0.01746 0.00051 0.00051 0.00051 0.00051 A3 -0.03492 -0.00101 -0.00101 -0.00101 -0.00101 A4 0.01746 0.00051 0.00051 0.00051 0.00051 A5 0.01746 0.00051 0.00051 0.00051 0.00051 A6 -0.03492 -0.00101 -0.00101 -0.00101 -0.00101 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 A1 A2 A3 A4 A5 A1 0.15974 A2 -0.00026 0.15974 A3 0.00053 0.00053 0.15894 A4 -0.00026 -0.00026 0.00053 0.15974 A5 -0.00026 -0.00026 0.00053 -0.00026 0.15974 A6 0.00053 0.00053 -0.00106 0.00053 0.00053 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 A6 D1 D2 D3 D4 A6 0.15894 D1 0.00000 0.03212 D2 0.00000 0.00000 0.03212 D3 0.00000 0.00000 0.00000 0.03212 D4 0.00000 0.00000 0.00000 0.00000 0.03212 ITU= 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.03212 0.03212 0.03212 0.15120 0.16000 Eigenvalues --- 0.16000 0.16000 0.36145 0.36797 0.36797 Eigenvalues --- 0.36797 0.81519 RFO step: Lambda=-9.75570080D-06 EMin= 3.21208718D-02 Quartic linear search produced a step of 0.00236. Iteration 1 RMS(Cart)= 0.00239451 RMS(Int)= 0.00000274 Iteration 2 RMS(Cart)= 0.00000275 RMS(Int)= 0.00000000 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.50606 0.00031 -0.00004 -0.00008 -0.00012 2.50593 R2 2.07580 -0.00020 -0.00001 -0.00055 -0.00056 2.07524 R3 2.07580 -0.00020 -0.00001 -0.00055 -0.00056 2.07524 R4 2.07580 -0.00020 -0.00001 -0.00055 -0.00056 2.07524 R5 2.07580 -0.00020 -0.00001 -0.00055 -0.00056 2.07524 A1 2.13849 0.00035 0.00000 0.00224 0.00224 2.14073 A2 2.13849 0.00035 0.00000 0.00224 0.00224 2.14073 A3 2.00620 -0.00070 0.00000 -0.00448 -0.00448 2.00172 A4 2.13849 0.00035 0.00000 0.00224 0.00224 2.14073 A5 2.13849 0.00035 0.00000 0.00224 0.00224 2.14073 A6 2.00620 -0.00070 0.00000 -0.00448 -0.00448 2.00172 D1 -3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D4 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 Item Value Threshold Converged? Maximum Force 0.000696 0.000450 NO RMS Force 0.000337 0.000300 NO Maximum Displacement 0.003558 0.001800 NO RMS Displacement 0.002394 0.001200 NO Predicted change in Energy=-4.879873D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.663042 0.000000 0.000004 2 6 0 0.663042 0.000000 -0.000003 3 1 0 -1.255590 -0.924590 -0.000010 4 1 0 -1.255589 0.924590 0.000024 5 1 0 1.255590 0.924590 0.000011 6 1 0 1.255589 -0.924590 -0.000023 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.326084 0.000000 3 H 1.098171 2.129792 0.000000 4 H 1.098171 2.129792 1.849180 0.000000 5 H 2.129792 1.098171 3.118571 2.511179 0.000000 6 H 2.129792 1.098171 2.511179 3.118571 1.849180 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.663042 0.000000 0.000003 2 6 0 -0.663042 0.000000 -0.000003 3 1 0 1.255589 0.924590 -0.000011 4 1 0 1.255589 -0.924590 0.000023 5 1 0 -1.255589 -0.924590 0.000010 6 1 0 -1.255589 0.924590 -0.000023 --------------------------------------------------------------------- Rotational constants (GHZ): 146.6471030 29.8928502 24.8312057 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.1315885339 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\lt611\Computational Physical\Diels-Alder\ethlyene\ethylene_HF_AM1.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RAM1) = 0.261909613108E-01 A.U. after 7 cycles NFock= 6 Conv=0.26D-08 -V/T= 1.0037 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000316523 0.000000001 -0.000000044 2 6 -0.000316523 -0.000000001 -0.000000046 3 1 -0.000163077 0.000036665 0.000000025 4 1 -0.000163077 -0.000036665 0.000000020 5 1 0.000163077 -0.000036665 0.000000023 6 1 0.000163077 0.000036665 0.000000021 ------------------------------------------------------------------- Cartesian Forces: Max 0.000316523 RMS 0.000131683 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000217325 RMS 0.000101599 Search for a local minimum. Step number 4 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 1 2 3 4 DE= -6.28D-06 DEPred=-4.88D-06 R= 1.29D+00 TightC=F SS= 1.41D+00 RLast= 7.84D-03 DXNew= 5.7643D-01 2.3525D-02 Trust test= 1.29D+00 RLast= 7.84D-03 DXMaxT set to 3.43D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.80739 R2 0.02593 0.37445 R3 0.02593 0.00648 0.37445 R4 0.02593 0.00648 0.00648 0.37445 R5 0.02593 0.00648 0.00648 0.00648 0.37445 A1 0.01688 -0.00112 -0.00112 -0.00112 -0.00112 A2 0.01688 -0.00112 -0.00112 -0.00112 -0.00112 A3 -0.03376 0.00223 0.00223 0.00223 0.00223 A4 0.01688 -0.00112 -0.00112 -0.00112 -0.00112 A5 0.01688 -0.00112 -0.00112 -0.00112 -0.00112 A6 -0.03376 0.00223 0.00223 0.00223 0.00223 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 A1 A2 A3 A4 A5 A1 0.15556 A2 -0.00444 0.15556 A3 0.00888 0.00888 0.14224 A4 -0.00444 -0.00444 0.00888 0.15556 A5 -0.00444 -0.00444 0.00888 -0.00444 0.15556 A6 0.00888 0.00888 -0.01776 0.00888 0.00888 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 A6 D1 D2 D3 D4 A6 0.14224 D1 0.00000 0.03212 D2 0.00000 0.00000 0.03212 D3 0.00000 0.00000 0.00000 0.03212 D4 0.00000 0.00000 0.00000 0.00000 0.03212 ITU= 1 1 1 0 Eigenvalues --- 0.03212 0.03212 0.03212 0.10137 0.16000 Eigenvalues --- 0.16000 0.16000 0.36797 0.36797 0.36797 Eigenvalues --- 0.38825 0.81838 En-DIIS/RFO-DIIS IScMMF= 0 using points: 4 3 RFO step: Lambda=-4.67272867D-07. DidBck=F Rises=F RFO-DIIS coefs: 1.40107 -0.40107 Iteration 1 RMS(Cart)= 0.00108977 RMS(Int)= 0.00000062 Iteration 2 RMS(Cart)= 0.00000062 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.50593 0.00001 -0.00005 -0.00023 -0.00028 2.50565 R2 2.07524 0.00006 -0.00022 0.00042 0.00020 2.07544 R3 2.07524 0.00006 -0.00022 0.00042 0.00020 2.07544 R4 2.07524 0.00006 -0.00022 0.00042 0.00020 2.07544 R5 2.07524 0.00006 -0.00022 0.00042 0.00020 2.07544 A1 2.14073 0.00011 0.00090 0.00017 0.00107 2.14180 A2 2.14073 0.00011 0.00090 0.00017 0.00107 2.14180 A3 2.00172 -0.00022 -0.00180 -0.00035 -0.00214 1.99958 A4 2.14073 0.00011 0.00090 0.00017 0.00107 2.14180 A5 2.14073 0.00011 0.00090 0.00017 0.00107 2.14180 A6 2.00172 -0.00022 -0.00180 -0.00035 -0.00214 1.99958 D1 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D4 -3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000217 0.000450 YES RMS Force 0.000102 0.000300 YES Maximum Displacement 0.001838 0.001800 NO RMS Displacement 0.001090 0.001200 YES Predicted change in Energy=-7.199798D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.662967 0.000000 0.000004 2 6 0 0.662967 0.000000 -0.000003 3 1 0 -1.256562 -0.924044 -0.000010 4 1 0 -1.256562 0.924044 0.000024 5 1 0 1.256562 0.924044 0.000011 6 1 0 1.256562 -0.924044 -0.000022 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.325934 0.000000 3 H 1.098277 2.130364 0.000000 4 H 1.098277 2.130364 1.848088 0.000000 5 H 2.130364 1.098277 3.119491 2.513124 0.000000 6 H 2.130364 1.098277 2.513124 3.119491 1.848088 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.662967 0.000000 0.000003 2 6 0 -0.662967 0.000000 -0.000003 3 1 0 1.256562 0.924044 -0.000010 4 1 0 1.256562 -0.924044 0.000023 5 1 0 -1.256562 -0.924044 0.000011 6 1 0 -1.256562 0.924044 -0.000023 --------------------------------------------------------------------- Rotational constants (GHZ): 146.8205397 29.8796460 24.8270579 Standard basis: VSTO-6G (5D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 12 symmetry adapted basis functions of A symmetry. 12 basis functions, 72 primitive gaussians, 12 cartesian basis functions 6 alpha electrons 6 beta electrons nuclear repulsion energy 27.1307217975 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 12 RedAO= F EigKep= 0.00D+00 NBF= 12 NBsUse= 12 1.00D-04 EigRej= 0.00D+00 NBFU= 12 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\lt611\Computational Physical\Diels-Alder\ethlyene\ethylene_HF_AM1.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=884401. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RAM1) = 0.261902353695E-01 A.U. after 7 cycles NFock= 6 Conv=0.19D-08 -V/T= 1.0037 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000006496 -0.000000001 0.000000064 2 6 -0.000006496 0.000000001 0.000000070 3 1 -0.000004675 -0.000005895 -0.000000033 4 1 -0.000004675 0.000005895 -0.000000032 5 1 0.000004675 0.000005895 -0.000000034 6 1 0.000004675 -0.000005895 -0.000000034 ------------------------------------------------------------------- Cartesian Forces: Max 0.000006496 RMS 0.000004155 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000007487 RMS 0.000003963 Search for a local minimum. Step number 5 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 1 2 3 4 5 DE= -7.26D-07 DEPred=-7.20D-07 R= 1.01D+00 Trust test= 1.01D+00 RLast= 3.74D-03 DXMaxT set to 3.43D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.80646 R2 0.02320 0.37339 R3 0.02320 0.00541 0.37339 R4 0.02320 0.00541 0.00541 0.37339 R5 0.02320 0.00541 0.00541 0.00541 0.37339 A1 0.01681 -0.00169 -0.00169 -0.00169 -0.00169 A2 0.01681 -0.00169 -0.00169 -0.00169 -0.00169 A3 -0.03362 0.00339 0.00339 0.00339 0.00339 A4 0.01681 -0.00169 -0.00169 -0.00169 -0.00169 A5 0.01681 -0.00169 -0.00169 -0.00169 -0.00169 A6 -0.03362 0.00339 0.00339 0.00339 0.00339 D1 -0.00001 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00001 0.00000 0.00000 0.00000 0.00000 A1 A2 A3 A4 A5 A1 0.15555 A2 -0.00445 0.15555 A3 0.00889 0.00889 0.14221 A4 -0.00445 -0.00445 0.00889 0.15555 A5 -0.00445 -0.00445 0.00889 -0.00445 0.15555 A6 0.00889 0.00889 -0.01779 0.00889 0.00889 D1 0.00000 0.00000 -0.00001 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00001 0.00000 0.00000 A6 D1 D2 D3 D4 A6 0.14221 D1 -0.00001 0.03212 D2 0.00000 0.00000 0.03212 D3 0.00000 0.00000 0.00000 0.03212 D4 0.00001 0.00000 0.00000 0.00000 0.03212 ITU= 0 1 1 1 0 Eigenvalues --- 0.03212 0.03212 0.03212 0.10099 0.16000 Eigenvalues --- 0.16000 0.16000 0.36797 0.36797 0.36797 Eigenvalues --- 0.38566 0.81608 En-DIIS/RFO-DIIS IScMMF= 0 using points: 5 4 3 RFO step: Lambda= 0.00000000D+00. DidBck=F Rises=F RFO-DIIS coefs: 1.04256 -0.06009 0.01753 Iteration 1 RMS(Cart)= 0.00001214 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.50565 0.00000 -0.00001 0.00001 0.00000 2.50565 R2 2.07544 0.00001 0.00002 0.00000 0.00002 2.07546 R3 2.07544 0.00001 0.00002 0.00000 0.00002 2.07546 R4 2.07544 0.00001 0.00002 0.00000 0.00002 2.07546 R5 2.07544 0.00001 0.00002 0.00000 0.00002 2.07546 A1 2.14180 0.00000 0.00001 0.00000 0.00001 2.14181 A2 2.14180 0.00000 0.00001 0.00000 0.00001 2.14181 A3 1.99958 0.00000 -0.00001 0.00000 -0.00001 1.99957 A4 2.14180 0.00000 0.00001 0.00000 0.00001 2.14181 A5 2.14180 0.00000 0.00001 0.00000 0.00001 2.14181 A6 1.99958 0.00000 -0.00001 0.00000 -0.00001 1.99957 D1 -3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D4 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 Item Value Threshold Converged? Maximum Force 0.000007 0.000450 YES RMS Force 0.000004 0.000300 YES Maximum Displacement 0.000021 0.001800 YES RMS Displacement 0.000012 0.001200 YES Predicted change in Energy=-3.111549D-10 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3259 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0983 -DE/DX = 0.0 ! ! R3 R(1,4) 1.0983 -DE/DX = 0.0 ! ! R4 R(2,5) 1.0983 -DE/DX = 0.0 ! ! R5 R(2,6) 1.0983 -DE/DX = 0.0 ! ! A1 A(2,1,3) 122.7162 -DE/DX = 0.0 ! ! A2 A(2,1,4) 122.7162 -DE/DX = 0.0 ! ! A3 A(3,1,4) 114.5676 -DE/DX = 0.0 ! ! A4 A(1,2,5) 122.7162 -DE/DX = 0.0 ! ! A5 A(1,2,6) 122.7162 -DE/DX = 0.0 ! ! A6 A(5,2,6) 114.5676 -DE/DX = 0.0 ! ! D1 D(3,1,2,5) 180.0001 -DE/DX = 0.0 ! ! D2 D(3,1,2,6) 0.0 -DE/DX = 0.0 ! ! D3 D(4,1,2,5) 0.0 -DE/DX = 0.0 ! ! D4 D(4,1,2,6) -180.0001 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.662967 0.000000 0.000004 2 6 0 0.662967 0.000000 -0.000003 3 1 0 -1.256562 -0.924044 -0.000010 4 1 0 -1.256562 0.924044 0.000024 5 1 0 1.256562 0.924044 0.000011 6 1 0 1.256562 -0.924044 -0.000022 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.325934 0.000000 3 H 1.098277 2.130364 0.000000 4 H 1.098277 2.130364 1.848088 0.000000 5 H 2.130364 1.098277 3.119491 2.513124 0.000000 6 H 2.130364 1.098277 2.513124 3.119491 1.848088 6 6 H 0.000000 Stoichiometry C2H4 Framework group C1[X(C2H4)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.662967 0.000000 0.000003 2 6 0 -0.662967 0.000000 -0.000003 3 1 0 1.256562 0.924044 -0.000010 4 1 0 1.256562 -0.924044 0.000023 5 1 0 -1.256562 -0.924044 0.000011 6 1 0 -1.256562 0.924044 -0.000023 --------------------------------------------------------------------- Rotational constants (GHZ): 146.8205397 29.8796460 24.8270579 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -1.21849 -0.80441 -0.58045 -0.52562 -0.43497 Alpha occ. eigenvalues -- -0.38777 Alpha virt. eigenvalues -- 0.05284 0.14740 0.16158 0.18681 0.20430 Alpha virt. eigenvalues -- 0.21285 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.217966 0.000000 0.000000 0.000000 0.000000 0.000000 2 C 0.000000 4.217966 0.000000 0.000000 0.000000 0.000000 3 H 0.000000 0.000000 0.891017 0.000000 0.000000 0.000000 4 H 0.000000 0.000000 0.000000 0.891017 0.000000 0.000000 5 H 0.000000 0.000000 0.000000 0.000000 0.891017 0.000000 6 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.891017 Mulliken charges: 1 1 C -0.217966 2 C -0.217966 3 H 0.108983 4 H 0.108983 5 H 0.108983 6 H 0.108983 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.000000 2 C 0.000000 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 N-N= 2.713072179753D+01 E-N=-3.922085863100D+01 KE=-7.084796927828D+00 1|1| IMPERIAL COLLEGE-CHWS-270|FOpt|RAM1|ZDO|C2H4|LT611|02-Dec-2013|0| |# opt am1 geom=connectivity||Title Card Required||0,1|C,-0.6629670253 ,0.000000099,0.0000035279|C,0.6629670253,-0.0000000989,-0.000003192|H, -1.2565622899,-0.9240437516,-0.0000097548|H,-1.2565620148,0.9240441256 ,0.0000237449|H,1.2565622899,0.9240437516,0.0000110387|H,1.2565620148, -0.9240441256,-0.0000224647||Version=EM64W-G09RevD.01|State=1-A|HF=0.0 261902|RMSD=1.874e-009|RMSF=4.155e-006|Dipole=0.,0.,0.0000005|PG=C01 [ X(C2H4)]||@ TIME IS NATURE'S WAY OF MAKING SURE EVERYTHING DOESN'T HAPPEN AT ONCE. - WOODY ALLEN Job cpu time: 0 days 0 hours 0 minutes 11.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Mon Dec 02 10:11:11 2013.