Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 156. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 18-Nov-2013 ****************************************** %chk=\\ic.ac.uk\homes\jg2710\3rd year\Y3C\Week 2\Benzene\jg2710_benzene_opt.chk Default route: MaxDisk=10GB ---------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity ---------------------------------------- 1/14=-1,18=20,19=15,26=3,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------ jg2710_benzene_opt ------------------ Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 1.39499 0. C -1.2081 0.6975 0. C -1.2081 -0.6975 0. C 0. -1.39499 0. C 1.2081 -0.6975 0. C 1.2081 0.6975 0. H 0. 2.4946 0. H -2.16039 1.2473 0. H -2.16039 -1.2473 0. H 0. -2.4946 0. H 2.16039 -1.2473 0. H 2.16039 1.2473 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.395 estimate D2E/DX2 ! ! R2 R(1,6) 1.395 estimate D2E/DX2 ! ! R3 R(1,7) 1.0996 estimate D2E/DX2 ! ! R4 R(2,3) 1.395 estimate D2E/DX2 ! ! R5 R(2,8) 1.0996 estimate D2E/DX2 ! ! R6 R(3,4) 1.395 estimate D2E/DX2 ! ! R7 R(3,9) 1.0996 estimate D2E/DX2 ! ! R8 R(4,5) 1.395 estimate D2E/DX2 ! ! R9 R(4,10) 1.0996 estimate D2E/DX2 ! ! R10 R(5,6) 1.395 estimate D2E/DX2 ! ! R11 R(5,11) 1.0996 estimate D2E/DX2 ! ! R12 R(6,12) 1.0996 estimate D2E/DX2 ! ! A1 A(2,1,6) 120.0 estimate D2E/DX2 ! ! A2 A(2,1,7) 120.0 estimate D2E/DX2 ! ! A3 A(6,1,7) 120.0 estimate D2E/DX2 ! ! A4 A(1,2,3) 120.0 estimate D2E/DX2 ! ! A5 A(1,2,8) 120.0 estimate D2E/DX2 ! ! A6 A(3,2,8) 120.0 estimate D2E/DX2 ! ! A7 A(2,3,4) 120.0 estimate D2E/DX2 ! ! A8 A(2,3,9) 120.0 estimate D2E/DX2 ! ! A9 A(4,3,9) 120.0 estimate D2E/DX2 ! ! A10 A(3,4,5) 120.0 estimate D2E/DX2 ! ! A11 A(3,4,10) 120.0 estimate D2E/DX2 ! ! A12 A(5,4,10) 120.0 estimate D2E/DX2 ! ! A13 A(4,5,6) 120.0 estimate D2E/DX2 ! ! A14 A(4,5,11) 120.0 estimate D2E/DX2 ! ! A15 A(6,5,11) 120.0 estimate D2E/DX2 ! ! A16 A(1,6,5) 120.0 estimate D2E/DX2 ! ! A17 A(1,6,12) 120.0 estimate D2E/DX2 ! ! A18 A(5,6,12) 120.0 estimate D2E/DX2 ! ! D1 D(6,1,2,3) 0.0 estimate D2E/DX2 ! ! D2 D(6,1,2,8) 180.0 estimate D2E/DX2 ! ! D3 D(7,1,2,3) 180.0 estimate D2E/DX2 ! ! D4 D(7,1,2,8) 0.0 estimate D2E/DX2 ! ! D5 D(2,1,6,5) 0.0 estimate D2E/DX2 ! ! D6 D(2,1,6,12) 180.0 estimate D2E/DX2 ! ! D7 D(7,1,6,5) 180.0 estimate D2E/DX2 ! ! D8 D(7,1,6,12) 0.0 estimate D2E/DX2 ! ! D9 D(1,2,3,4) 0.0 estimate D2E/DX2 ! ! D10 D(1,2,3,9) 180.0 estimate D2E/DX2 ! ! D11 D(8,2,3,4) 180.0 estimate D2E/DX2 ! ! D12 D(8,2,3,9) 0.0 estimate D2E/DX2 ! ! D13 D(2,3,4,5) 0.0 estimate D2E/DX2 ! ! D14 D(2,3,4,10) 180.0 estimate D2E/DX2 ! ! D15 D(9,3,4,5) 180.0 estimate D2E/DX2 ! ! D16 D(9,3,4,10) 0.0 estimate D2E/DX2 ! ! D17 D(3,4,5,6) 0.0 estimate D2E/DX2 ! ! D18 D(3,4,5,11) 180.0 estimate D2E/DX2 ! ! D19 D(10,4,5,6) 180.0 estimate D2E/DX2 ! ! D20 D(10,4,5,11) 0.0 estimate D2E/DX2 ! ! D21 D(4,5,6,1) 0.0 estimate D2E/DX2 ! ! D22 D(4,5,6,12) 180.0 estimate D2E/DX2 ! ! D23 D(11,5,6,1) 180.0 estimate D2E/DX2 ! ! D24 D(11,5,6,12) 0.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 64 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.394991 0.000000 2 6 0 -1.208097 0.697495 0.000000 3 6 0 -1.208097 -0.697495 0.000000 4 6 0 0.000000 -1.394991 0.000000 5 6 0 1.208097 -0.697495 0.000000 6 6 0 1.208097 0.697495 0.000000 7 1 0 0.000000 2.494601 0.000000 8 1 0 -2.160388 1.247300 0.000000 9 1 0 -2.160388 -1.247300 0.000000 10 1 0 0.000000 -2.494601 0.000000 11 1 0 2.160388 -1.247300 0.000000 12 1 0 2.160388 1.247300 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.394991 0.000000 3 C 2.416195 1.394991 0.000000 4 C 2.789981 2.416195 1.394991 0.000000 5 C 2.416195 2.789981 2.416195 1.394991 0.000000 6 C 1.394991 2.416195 2.789981 2.416195 1.394991 7 H 1.099610 2.165430 3.413060 3.889592 3.413060 8 H 2.165430 1.099610 2.165430 3.413060 3.889592 9 H 3.413060 2.165430 1.099610 2.165430 3.413060 10 H 3.889592 3.413060 2.165430 1.099610 2.165430 11 H 3.413060 3.889592 3.413060 2.165430 1.099610 12 H 2.165430 3.413060 3.889592 3.413060 2.165430 6 7 8 9 10 6 C 0.000000 7 H 2.165430 0.000000 8 H 3.413060 2.494601 0.000000 9 H 3.889592 4.320776 2.494601 0.000000 10 H 3.413060 4.989202 4.320776 2.494601 0.000000 11 H 2.165430 4.320776 4.989202 4.320776 2.494601 12 H 1.099610 2.494601 4.320776 4.989202 4.320776 11 12 11 H 0.000000 12 H 2.494601 0.000000 Stoichiometry C6H6 Framework group D6H[3C2'(HC.CH)] Deg. of freedom 2 Full point group D6H NOp 24 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.394991 0.000000 2 6 0 1.208097 0.697495 0.000000 3 6 0 1.208097 -0.697495 0.000000 4 6 0 0.000000 -1.394991 0.000000 5 6 0 -1.208097 -0.697495 0.000000 6 6 0 -1.208097 0.697495 0.000000 7 1 0 0.000000 2.494601 0.000000 8 1 0 2.160388 1.247300 0.000000 9 1 0 2.160388 -1.247300 0.000000 10 1 0 0.000000 -2.494601 0.000000 11 1 0 -2.160388 -1.247300 0.000000 12 1 0 -2.160388 1.247300 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 5.6866485 5.6866485 2.8433242 Standard basis: 6-31G(d,p) (6D, 7F) There are 26 symmetry adapted cartesian basis functions of AG symmetry. There are 19 symmetry adapted cartesian basis functions of B1G symmetry. There are 6 symmetry adapted cartesian basis functions of B2G symmetry. There are 9 symmetry adapted cartesian basis functions of B3G symmetry. There are 6 symmetry adapted cartesian basis functions of AU symmetry. There are 9 symmetry adapted cartesian basis functions of B1U symmetry. There are 26 symmetry adapted cartesian basis functions of B2U symmetry. There are 19 symmetry adapted cartesian basis functions of B3U symmetry. There are 26 symmetry adapted basis functions of AG symmetry. There are 19 symmetry adapted basis functions of B1G symmetry. There are 6 symmetry adapted basis functions of B2G symmetry. There are 9 symmetry adapted basis functions of B3G symmetry. There are 6 symmetry adapted basis functions of AU symmetry. There are 9 symmetry adapted basis functions of B1U symmetry. There are 26 symmetry adapted basis functions of B2U symmetry. There are 19 symmetry adapted basis functions of B3U symmetry. 120 basis functions, 210 primitive gaussians, 120 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 203.0352966056 Hartrees. NAtoms= 12 NActive= 12 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 120 RedAO= T EigKep= 4.39D-04 NBF= 26 19 6 9 6 9 26 19 NBsUse= 120 1.00D-06 EigRej= -1.00D+00 NBFU= 26 19 6 9 6 9 26 19 ExpMin= 1.61D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (A1G) (B2U) (B1U) (E1U) (E1U) (A2U) (E2G) (E2G) (E1G) (E1G) Virtual (E2U) (E2U) (A1G) (B2G) (E1U) (E1U) (E2G) (E2G) (B1U) (E2G) (E2G) (E1U) (E1U) (B2U) (B1U) (A2U) (A2G) (A1G) (E2G) (E2G) (E1G) (E1G) (A1G) (E1U) (E1U) (E2U) (E2U) (B2G) (B1U) (E2G) (E2G) (E1U) (E1U) (A1G) (E1U) (E1U) (A2G) (E2G) (E2G) (E1U) (E1U) (B1U) (B1G) (A2U) (E1G) (E1G) (E2U) (E2U) (E2G) (E2G) (A1G) (B2U) (A1G) (E1U) (E1U) (B1U) (E2G) (E2G) (E2U) (E2U) (B2G) (E1U) (E1U) (E1G) (E1G) (E2G) (E2G) (A2U) (E1G) (E1G) (B2U) (E1U) (E1U) (E2G) (E2G) (B1U) (E2U) (E2U) (A2G) (A1U) (B2G) (E2G) (E2G) (E1U) (E1U) (B1U) (A1G) (E1U) (E1U) (A2G) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) The electronic state of the initial guess is 1-A1G. Keep R1 ints in memory in symmetry-blocked form, NReq=29961214. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -232.257546233 A.U. after 11 cycles NFock= 11 Conv=0.40D-09 -V/T= 2.0105 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (A1G) (B1U) (B2U) (E1U) (E1U) (A2U) (E2G) (E2G) (E1G) (E1G) Virtual (E2U) (E2U) (A1G) (E1U) (E1U) (B2G) (E2G) (E2G) (B1U) (E2G) (E2G) (E1U) (E1U) (B2U) (A2U) (B1U) (A1G) (A2G) (A1G) (E1G) (E1G) (E2G) (E2G) (E1U) (E1U) (E2U) (E2U) (B2G) (E2G) (E2G) (B1U) (E1U) (E1U) (A1G) (E1U) (E1U) (A2G) (E2G) (E2G) (E1U) (E1U) (B1U) (B1G) (A2U) (E1G) (E1G) (E2G) (E2G) (E2U) (E2U) (A1G) (B2U) (A1G) (B1U) (E1U) (E1U) (E2G) (E2G) (E2U) (E2U) (B2G) (E1U) (E1U) (E1G) (E1G) (E2G) (E2G) (A2U) (B2U) (E1G) (E1G) (E1U) (E1U) (E2G) (E2G) (B1U) (E2U) (E2U) (A2G) (A1U) (B2G) (E2G) (E2G) (E1U) (E1U) (B1U) (A1G) (E1U) (E1U) (A2G) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) The electronic state is 1-A1G. Alpha occ. eigenvalues -- -10.18955 -10.18928 -10.18928 -10.18872 -10.18872 Alpha occ. eigenvalues -- -10.18845 -0.84761 -0.73971 -0.73971 -0.59595 Alpha occ. eigenvalues -- -0.59595 -0.51588 -0.45423 -0.43943 -0.41518 Alpha occ. eigenvalues -- -0.41518 -0.36090 -0.33862 -0.33862 -0.24750 Alpha occ. eigenvalues -- -0.24750 Alpha virt. eigenvalues -- 0.00266 0.00266 0.08636 0.14126 0.14126 Alpha virt. eigenvalues -- 0.16238 0.17957 0.17957 0.18681 0.29989 Alpha virt. eigenvalues -- 0.29989 0.31908 0.31908 0.46637 0.52628 Alpha virt. eigenvalues -- 0.54782 0.55099 0.56222 0.59294 0.60077 Alpha virt. eigenvalues -- 0.60077 0.60084 0.60084 0.62384 0.62384 Alpha virt. eigenvalues -- 0.66653 0.66653 0.74180 0.81178 0.81178 Alpha virt. eigenvalues -- 0.82134 0.83694 0.83694 0.91676 0.93745 Alpha virt. eigenvalues -- 0.93745 0.95812 1.08054 1.08054 1.12992 Alpha virt. eigenvalues -- 1.12992 1.20098 1.26111 1.30051 1.40786 Alpha virt. eigenvalues -- 1.40786 1.42585 1.42585 1.42914 1.42914 Alpha virt. eigenvalues -- 1.74102 1.76078 1.80542 1.87583 1.90680 Alpha virt. eigenvalues -- 1.90680 1.97195 1.97195 1.97924 1.97924 Alpha virt. eigenvalues -- 2.02762 2.07664 2.07664 2.29609 2.29609 Alpha virt. eigenvalues -- 2.34429 2.34429 2.35491 2.39944 2.40328 Alpha virt. eigenvalues -- 2.40328 2.44636 2.44636 2.48731 2.48731 Alpha virt. eigenvalues -- 2.50802 2.58538 2.58538 2.60300 2.65987 Alpha virt. eigenvalues -- 2.75521 2.80103 2.80103 3.03123 3.03123 Alpha virt. eigenvalues -- 3.18490 3.20485 3.21867 3.21867 3.37166 Alpha virt. eigenvalues -- 3.48298 3.48298 3.93339 4.13215 4.16289 Alpha virt. eigenvalues -- 4.16289 4.43754 4.43754 4.82384 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.804144 0.550058 -0.036549 -0.040338 -0.036549 0.550058 2 C 0.550058 4.804144 0.550058 -0.036549 -0.040338 -0.036549 3 C -0.036549 0.550058 4.804144 0.550058 -0.036549 -0.040338 4 C -0.040338 -0.036549 0.550058 4.804144 0.550058 -0.036549 5 C -0.036549 -0.040338 -0.036549 0.550058 4.804144 0.550058 6 C 0.550058 -0.036549 -0.040338 -0.036549 0.550058 4.804144 7 H 0.366792 -0.041298 0.004698 0.000583 0.004698 -0.041298 8 H -0.041298 0.366792 -0.041298 0.004698 0.000583 0.004698 9 H 0.004698 -0.041298 0.366792 -0.041298 0.004698 0.000583 10 H 0.000583 0.004698 -0.041298 0.366792 -0.041298 0.004698 11 H 0.004698 0.000583 0.004698 -0.041298 0.366792 -0.041298 12 H -0.041298 0.004698 0.000583 0.004698 -0.041298 0.366792 7 8 9 10 11 12 1 C 0.366792 -0.041298 0.004698 0.000583 0.004698 -0.041298 2 C -0.041298 0.366792 -0.041298 0.004698 0.000583 0.004698 3 C 0.004698 -0.041298 0.366792 -0.041298 0.004698 0.000583 4 C 0.000583 0.004698 -0.041298 0.366792 -0.041298 0.004698 5 C 0.004698 0.000583 0.004698 -0.041298 0.366792 -0.041298 6 C -0.041298 0.004698 0.000583 0.004698 -0.041298 0.366792 7 H 0.633835 -0.006331 -0.000180 0.000015 -0.000180 -0.006331 8 H -0.006331 0.633835 -0.006331 -0.000180 0.000015 -0.000180 9 H -0.000180 -0.006331 0.633835 -0.006331 -0.000180 0.000015 10 H 0.000015 -0.000180 -0.006331 0.633835 -0.006331 -0.000180 11 H -0.000180 0.000015 -0.000180 -0.006331 0.633835 -0.006331 12 H -0.006331 -0.000180 0.000015 -0.000180 -0.006331 0.633835 Mulliken charges: 1 1 C -0.084998 2 C -0.084998 3 C -0.084998 4 C -0.084998 5 C -0.084998 6 C -0.084998 7 H 0.084998 8 H 0.084998 9 H 0.084998 10 H 0.084998 11 H 0.084998 12 H 0.084998 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.000000 2 C 0.000000 3 C 0.000000 4 C 0.000000 5 C 0.000000 6 C 0.000000 Electronic spatial extent (au): = 459.0977 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -31.5324 YY= -31.5324 ZZ= -38.6013 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 2.3563 YY= 2.3563 ZZ= -4.7126 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -271.8088 YYYY= -271.8088 ZZZZ= -39.9810 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -90.6029 XXZZ= -60.7705 YYZZ= -60.7705 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.030352966056D+02 E-N=-9.433645011381D+02 KE= 2.298541099504D+02 Symmetry AG KE= 7.404405653274D+01 Symmetry B1G KE= 3.746037732853D+01 Symmetry B2G KE= 2.237741425888D+00 Symmetry B3G KE= 2.237741425888D+00 Symmetry AU KE=-1.255711243114D-18 Symmetry B1U KE= 1.866355281534D+00 Symmetry B2U KE= 7.173931711925D+01 Symmetry B3U KE= 4.026852083659D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 0.009723231 0.000000000 2 6 -0.008420565 0.004861615 0.000000000 3 6 -0.008420565 -0.004861615 0.000000000 4 6 0.000000000 -0.009723231 0.000000000 5 6 0.008420565 -0.004861615 0.000000000 6 6 0.008420565 0.004861615 0.000000000 7 1 0.000000000 -0.008668940 0.000000000 8 1 0.007507522 -0.004334470 0.000000000 9 1 0.007507522 0.004334470 0.000000000 10 1 0.000000000 0.008668940 0.000000000 11 1 -0.007507522 0.004334470 0.000000000 12 1 -0.007507522 -0.004334470 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.009723231 RMS 0.005318078 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.008668940 RMS 0.002910938 Search for a local minimum. Step number 1 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.02155 0.02155 0.02155 0.02155 0.02155 Eigenvalues --- 0.02155 0.02155 0.02155 0.02155 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.33725 0.33725 Eigenvalues --- 0.33725 0.33725 0.33725 0.33725 0.42118 Eigenvalues --- 0.42118 0.46461 0.46461 0.46461 0.46461 RFO step: Lambda=-1.34598801D-03 EMin= 2.15501943D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00781640 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.30D-11 for atom 11. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.63615 0.00105 0.00000 0.00226 0.00226 2.63841 R2 2.63615 0.00105 0.00000 0.00226 0.00226 2.63841 R3 2.07796 -0.00867 0.00000 -0.02560 -0.02560 2.05236 R4 2.63615 0.00105 0.00000 0.00226 0.00226 2.63841 R5 2.07796 -0.00867 0.00000 -0.02560 -0.02560 2.05236 R6 2.63615 0.00105 0.00000 0.00226 0.00226 2.63841 R7 2.07796 -0.00867 0.00000 -0.02560 -0.02560 2.05236 R8 2.63615 0.00105 0.00000 0.00226 0.00226 2.63841 R9 2.07796 -0.00867 0.00000 -0.02560 -0.02560 2.05236 R10 2.63615 0.00105 0.00000 0.00226 0.00226 2.63841 R11 2.07796 -0.00867 0.00000 -0.02560 -0.02560 2.05236 R12 2.07796 -0.00867 0.00000 -0.02560 -0.02560 2.05236 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A3 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A4 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A5 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A6 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A7 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A8 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A9 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A10 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A11 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A12 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A13 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A14 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A15 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A16 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A17 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A18 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 D1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D6 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D7 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D10 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D14 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D15 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D19 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D21 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D22 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D23 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D24 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Item Value Threshold Converged? Maximum Force 0.008669 0.000450 NO RMS Force 0.002911 0.000300 NO Maximum Displacement 0.023340 0.001800 NO RMS Displacement 0.007816 0.001200 NO Predicted change in Energy=-6.756615D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.396188 0.000000 2 6 0 -1.209134 0.698094 0.000000 3 6 0 -1.209134 -0.698094 0.000000 4 6 0 0.000000 -1.396188 0.000000 5 6 0 1.209134 -0.698094 0.000000 6 6 0 1.209134 0.698094 0.000000 7 1 0 0.000000 2.482250 0.000000 8 1 0 -2.149692 1.241125 0.000000 9 1 0 -2.149692 -1.241125 0.000000 10 1 0 0.000000 -2.482250 0.000000 11 1 0 2.149692 -1.241125 0.000000 12 1 0 2.149692 1.241125 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.396188 0.000000 3 C 2.418269 1.396188 0.000000 4 C 2.792376 2.418269 1.396188 0.000000 5 C 2.418269 2.792376 2.418269 1.396188 0.000000 6 C 1.396188 2.418269 2.792376 2.418269 1.396188 7 H 1.086062 2.155277 3.402439 3.878438 3.402439 8 H 2.155277 1.086062 2.155277 3.402439 3.878438 9 H 3.402439 2.155277 1.086062 2.155277 3.402439 10 H 3.878438 3.402439 2.155277 1.086062 2.155277 11 H 3.402439 3.878438 3.402439 2.155277 1.086062 12 H 2.155277 3.402439 3.878438 3.402439 2.155277 6 7 8 9 10 6 C 0.000000 7 H 2.155277 0.000000 8 H 3.402439 2.482250 0.000000 9 H 3.878438 4.299383 2.482250 0.000000 10 H 3.402439 4.964500 4.299383 2.482250 0.000000 11 H 2.155277 4.299383 4.964500 4.299383 2.482250 12 H 1.086062 2.482250 4.299383 4.964500 4.299383 11 12 11 H 0.000000 12 H 2.482250 0.000000 Stoichiometry C6H6 Framework group D6H[3C2'(HC.CH)] Deg. of freedom 2 Full point group D6H NOp 24 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.396188 0.000000 2 6 0 1.209134 0.698094 0.000000 3 6 0 1.209134 -0.698094 0.000000 4 6 0 0.000000 -1.396188 0.000000 5 6 0 -1.209134 -0.698094 0.000000 6 6 0 -1.209134 0.698094 0.000000 7 1 0 0.000000 2.482250 0.000000 8 1 0 2.149692 1.241125 0.000000 9 1 0 2.149692 -1.241125 0.000000 10 1 0 0.000000 -2.482250 0.000000 11 1 0 -2.149692 -1.241125 0.000000 12 1 0 -2.149692 1.241125 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 5.6908451 5.6908451 2.8454226 Standard basis: 6-31G(d,p) (6D, 7F) There are 26 symmetry adapted cartesian basis functions of AG symmetry. There are 19 symmetry adapted cartesian basis functions of B1G symmetry. There are 6 symmetry adapted cartesian basis functions of B2G symmetry. There are 9 symmetry adapted cartesian basis functions of B3G symmetry. There are 6 symmetry adapted cartesian basis functions of AU symmetry. There are 9 symmetry adapted cartesian basis functions of B1U symmetry. There are 26 symmetry adapted cartesian basis functions of B2U symmetry. There are 19 symmetry adapted cartesian basis functions of B3U symmetry. There are 26 symmetry adapted basis functions of AG symmetry. There are 19 symmetry adapted basis functions of B1G symmetry. There are 6 symmetry adapted basis functions of B2G symmetry. There are 9 symmetry adapted basis functions of B3G symmetry. There are 6 symmetry adapted basis functions of AU symmetry. There are 9 symmetry adapted basis functions of B1U symmetry. There are 26 symmetry adapted basis functions of B2U symmetry. There are 19 symmetry adapted basis functions of B3U symmetry. 120 basis functions, 210 primitive gaussians, 120 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 203.2664016272 Hartrees. NAtoms= 12 NActive= 12 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 120 RedAO= T EigKep= 4.39D-04 NBF= 26 19 6 9 6 9 26 19 NBsUse= 120 1.00D-06 EigRej= -1.00D+00 NBFU= 26 19 6 9 6 9 26 19 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\jg2710\3rd year\Y3C\Week 2\Benzene\jg2710_benzene_opt.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (A1G) (B1U) (B2U) (E1U) (E1U) (A2U) (E2G) (E2G) (E1G) (E1G) Virtual (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) ExpMin= 1.61D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=29961214. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -232.258213870 A.U. after 8 cycles NFock= 8 Conv=0.58D-08 -V/T= 2.0101 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 -0.000058034 0.000000000 2 6 0.000050259 -0.000029017 0.000000000 3 6 0.000050259 0.000029017 0.000000000 4 6 0.000000000 0.000058034 0.000000000 5 6 -0.000050259 0.000029017 0.000000000 6 6 -0.000050259 -0.000029017 0.000000000 7 1 0.000000000 0.000198675 0.000000000 8 1 -0.000172057 0.000099337 0.000000000 9 1 -0.000172057 -0.000099337 0.000000000 10 1 0.000000000 -0.000198675 0.000000000 11 1 0.000172057 -0.000099337 0.000000000 12 1 0.000172057 0.000099337 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000198675 RMS 0.000084498 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000198675 RMS 0.000081139 Search for a local minimum. Step number 2 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -6.68D-04 DEPred=-6.76D-04 R= 9.88D-01 TightC=F SS= 1.41D+00 RLast= 6.30D-02 DXNew= 5.0454D-01 1.8887D-01 Trust test= 9.88D-01 RLast= 6.30D-02 DXMaxT set to 3.00D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.02155 0.02155 0.02155 0.02155 0.02155 Eigenvalues --- 0.02155 0.02155 0.02155 0.02155 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.33725 0.33725 Eigenvalues --- 0.33725 0.33725 0.33725 0.34659 0.42124 Eigenvalues --- 0.42124 0.46354 0.46461 0.46461 0.46461 RFO step: Lambda=-3.32309262D-07 EMin= 2.15501943D-02 Quartic linear search produced a step of -0.02004. Iteration 1 RMS(Cart)= 0.00029943 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 5.18D-13 for atom 2. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.63841 0.00014 -0.00005 0.00034 0.00030 2.63871 R2 2.63841 0.00014 -0.00005 0.00034 0.00030 2.63871 R3 2.05236 0.00020 0.00051 0.00004 0.00055 2.05291 R4 2.63841 0.00014 -0.00005 0.00034 0.00030 2.63871 R5 2.05236 0.00020 0.00051 0.00004 0.00055 2.05291 R6 2.63841 0.00014 -0.00005 0.00034 0.00030 2.63871 R7 2.05236 0.00020 0.00051 0.00004 0.00055 2.05291 R8 2.63841 0.00014 -0.00005 0.00034 0.00030 2.63871 R9 2.05236 0.00020 0.00051 0.00004 0.00055 2.05291 R10 2.63841 0.00014 -0.00005 0.00034 0.00030 2.63871 R11 2.05236 0.00020 0.00051 0.00004 0.00055 2.05291 R12 2.05236 0.00020 0.00051 0.00004 0.00055 2.05291 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A3 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A4 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A5 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A6 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A7 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A8 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A9 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A10 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A11 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A12 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A13 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A14 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A15 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A16 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A17 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A18 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 D1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D6 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D7 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D10 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D14 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D15 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D19 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D21 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D22 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D23 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D24 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Item Value Threshold Converged? Maximum Force 0.000199 0.000450 YES RMS Force 0.000081 0.000300 YES Maximum Displacement 0.000847 0.001800 YES RMS Displacement 0.000299 0.001200 YES Predicted change in Energy=-4.636871D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3962 -DE/DX = 0.0001 ! ! R2 R(1,6) 1.3962 -DE/DX = 0.0001 ! ! R3 R(1,7) 1.0861 -DE/DX = 0.0002 ! ! R4 R(2,3) 1.3962 -DE/DX = 0.0001 ! ! R5 R(2,8) 1.0861 -DE/DX = 0.0002 ! ! R6 R(3,4) 1.3962 -DE/DX = 0.0001 ! ! R7 R(3,9) 1.0861 -DE/DX = 0.0002 ! ! R8 R(4,5) 1.3962 -DE/DX = 0.0001 ! ! R9 R(4,10) 1.0861 -DE/DX = 0.0002 ! ! R10 R(5,6) 1.3962 -DE/DX = 0.0001 ! ! R11 R(5,11) 1.0861 -DE/DX = 0.0002 ! ! R12 R(6,12) 1.0861 -DE/DX = 0.0002 ! ! A1 A(2,1,6) 120.0 -DE/DX = 0.0 ! ! A2 A(2,1,7) 120.0 -DE/DX = 0.0 ! ! A3 A(6,1,7) 120.0 -DE/DX = 0.0 ! ! A4 A(1,2,3) 120.0 -DE/DX = 0.0 ! ! A5 A(1,2,8) 120.0 -DE/DX = 0.0 ! ! A6 A(3,2,8) 120.0 -DE/DX = 0.0 ! ! A7 A(2,3,4) 120.0 -DE/DX = 0.0 ! ! A8 A(2,3,9) 120.0 -DE/DX = 0.0 ! ! A9 A(4,3,9) 120.0 -DE/DX = 0.0 ! ! A10 A(3,4,5) 120.0 -DE/DX = 0.0 ! ! A11 A(3,4,10) 120.0 -DE/DX = 0.0 ! ! A12 A(5,4,10) 120.0 -DE/DX = 0.0 ! ! A13 A(4,5,6) 120.0 -DE/DX = 0.0 ! ! A14 A(4,5,11) 120.0 -DE/DX = 0.0 ! ! A15 A(6,5,11) 120.0 -DE/DX = 0.0 ! ! A16 A(1,6,5) 120.0 -DE/DX = 0.0 ! ! A17 A(1,6,12) 120.0 -DE/DX = 0.0 ! ! A18 A(5,6,12) 120.0 -DE/DX = 0.0 ! ! D1 D(6,1,2,3) 0.0 -DE/DX = 0.0 ! ! D2 D(6,1,2,8) 180.0 -DE/DX = 0.0 ! ! D3 D(7,1,2,3) 180.0 -DE/DX = 0.0 ! ! D4 D(7,1,2,8) 0.0 -DE/DX = 0.0 ! ! D5 D(2,1,6,5) 0.0 -DE/DX = 0.0 ! ! D6 D(2,1,6,12) 180.0 -DE/DX = 0.0 ! ! D7 D(7,1,6,5) 180.0 -DE/DX = 0.0 ! ! D8 D(7,1,6,12) 0.0 -DE/DX = 0.0 ! ! D9 D(1,2,3,4) 0.0 -DE/DX = 0.0 ! ! D10 D(1,2,3,9) 180.0 -DE/DX = 0.0 ! ! D11 D(8,2,3,4) 180.0 -DE/DX = 0.0 ! ! D12 D(8,2,3,9) 0.0 -DE/DX = 0.0 ! ! D13 D(2,3,4,5) 0.0 -DE/DX = 0.0 ! ! D14 D(2,3,4,10) 180.0 -DE/DX = 0.0 ! ! D15 D(9,3,4,5) 180.0 -DE/DX = 0.0 ! ! D16 D(9,3,4,10) 0.0 -DE/DX = 0.0 ! ! D17 D(3,4,5,6) 0.0 -DE/DX = 0.0 ! ! D18 D(3,4,5,11) 180.0 -DE/DX = 0.0 ! ! D19 D(10,4,5,6) 180.0 -DE/DX = 0.0 ! ! D20 D(10,4,5,11) 0.0 -DE/DX = 0.0 ! ! D21 D(4,5,6,1) 0.0 -DE/DX = 0.0 ! ! D22 D(4,5,6,12) 180.0 -DE/DX = 0.0 ! ! D23 D(11,5,6,1) 180.0 -DE/DX = 0.0 ! ! D24 D(11,5,6,12) 0.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.396188 0.000000 2 6 0 -1.209134 0.698094 0.000000 3 6 0 -1.209134 -0.698094 0.000000 4 6 0 0.000000 -1.396188 0.000000 5 6 0 1.209134 -0.698094 0.000000 6 6 0 1.209134 0.698094 0.000000 7 1 0 0.000000 2.482250 0.000000 8 1 0 -2.149692 1.241125 0.000000 9 1 0 -2.149692 -1.241125 0.000000 10 1 0 0.000000 -2.482250 0.000000 11 1 0 2.149692 -1.241125 0.000000 12 1 0 2.149692 1.241125 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.396188 0.000000 3 C 2.418269 1.396188 0.000000 4 C 2.792376 2.418269 1.396188 0.000000 5 C 2.418269 2.792376 2.418269 1.396188 0.000000 6 C 1.396188 2.418269 2.792376 2.418269 1.396188 7 H 1.086062 2.155277 3.402439 3.878438 3.402439 8 H 2.155277 1.086062 2.155277 3.402439 3.878438 9 H 3.402439 2.155277 1.086062 2.155277 3.402439 10 H 3.878438 3.402439 2.155277 1.086062 2.155277 11 H 3.402439 3.878438 3.402439 2.155277 1.086062 12 H 2.155277 3.402439 3.878438 3.402439 2.155277 6 7 8 9 10 6 C 0.000000 7 H 2.155277 0.000000 8 H 3.402439 2.482250 0.000000 9 H 3.878438 4.299383 2.482250 0.000000 10 H 3.402439 4.964500 4.299383 2.482250 0.000000 11 H 2.155277 4.299383 4.964500 4.299383 2.482250 12 H 1.086062 2.482250 4.299383 4.964500 4.299383 11 12 11 H 0.000000 12 H 2.482250 0.000000 Stoichiometry C6H6 Framework group D6H[3C2'(HC.CH)] Deg. of freedom 2 Full point group D6H NOp 24 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.396188 0.000000 2 6 0 1.209134 0.698094 0.000000 3 6 0 1.209134 -0.698094 0.000000 4 6 0 0.000000 -1.396188 0.000000 5 6 0 -1.209134 -0.698094 0.000000 6 6 0 -1.209134 0.698094 0.000000 7 1 0 0.000000 2.482250 0.000000 8 1 0 2.149692 1.241125 0.000000 9 1 0 2.149692 -1.241125 0.000000 10 1 0 0.000000 -2.482250 0.000000 11 1 0 -2.149692 -1.241125 0.000000 12 1 0 -2.149692 1.241125 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 5.6908451 5.6908451 2.8454226 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (A1G) (B1U) (B2U) (E1U) (E1U) (A2U) (E2G) (E2G) (E1G) (E1G) Virtual (E2U) (E2U) (A1G) (E1U) (E1U) (B2G) (E2G) (E2G) (B1U) (E2G) (E2G) (E1U) (E1U) (B2U) (A2U) (B1U) (A1G) (A2G) (A1G) (E2G) (E2G) (E1G) (E1G) (E1U) (E1U) (E2U) (E2U) (B2G) (E2G) (E2G) (B1U) (E1U) (E1U) (A1G) (E1U) (E1U) (A2G) (E2G) (E2G) (E1U) (E1U) (B1U) (B1G) (A2U) (E1G) (E1G) (E2U) (E2U) (E2G) (E2G) (A1G) (B2U) (A1G) (B1U) (E1U) (E1U) (E2G) (E2G) (E2U) (E2U) (B2G) (E1U) (E1U) (E1G) (E1G) (E2G) (E2G) (A2U) (B2U) (E1G) (E1G) (E1U) (E1U) (E2G) (E2G) (B1U) (A2G) (E2U) (E2U) (A1U) (B2G) (E2G) (E2G) (E1U) (E1U) (B1U) (A1G) (E1U) (E1U) (A2G) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) The electronic state is 1-A1G. Alpha occ. eigenvalues -- -10.18792 -10.18766 -10.18766 -10.18711 -10.18711 Alpha occ. eigenvalues -- -10.18684 -0.84678 -0.74005 -0.74005 -0.59740 Alpha occ. eigenvalues -- -0.59740 -0.51795 -0.45822 -0.43854 -0.41657 Alpha occ. eigenvalues -- -0.41657 -0.35999 -0.33961 -0.33961 -0.24691 Alpha occ. eigenvalues -- -0.24691 Alpha virt. eigenvalues -- 0.00267 0.00267 0.09117 0.14516 0.14516 Alpha virt. eigenvalues -- 0.16190 0.18187 0.18187 0.19075 0.30073 Alpha virt. eigenvalues -- 0.30073 0.31821 0.31821 0.46726 0.52697 Alpha virt. eigenvalues -- 0.54834 0.55038 0.56116 0.59184 0.60125 Alpha virt. eigenvalues -- 0.60125 0.60154 0.60154 0.62468 0.62468 Alpha virt. eigenvalues -- 0.66713 0.66713 0.74251 0.81990 0.81990 Alpha virt. eigenvalues -- 0.82632 0.84428 0.84428 0.92464 0.93701 Alpha virt. eigenvalues -- 0.93701 0.95846 1.07892 1.07892 1.12965 Alpha virt. eigenvalues -- 1.12965 1.20180 1.26174 1.30038 1.40667 Alpha virt. eigenvalues -- 1.40667 1.42838 1.42838 1.43163 1.43163 Alpha virt. eigenvalues -- 1.75003 1.75785 1.81488 1.88214 1.92377 Alpha virt. eigenvalues -- 1.92377 1.96915 1.96915 1.97804 1.97804 Alpha virt. eigenvalues -- 2.02384 2.07420 2.07420 2.29655 2.29655 Alpha virt. eigenvalues -- 2.35670 2.35670 2.36699 2.41104 2.41496 Alpha virt. eigenvalues -- 2.41496 2.44332 2.44332 2.49464 2.49464 Alpha virt. eigenvalues -- 2.52597 2.59337 2.60038 2.60038 2.65790 Alpha virt. eigenvalues -- 2.77197 2.81151 2.81151 3.04932 3.04932 Alpha virt. eigenvalues -- 3.19266 3.23528 3.24816 3.24816 3.39480 Alpha virt. eigenvalues -- 3.50926 3.50926 3.95294 4.13048 4.16188 Alpha virt. eigenvalues -- 4.16188 4.43906 4.43906 4.83094 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.803166 0.549533 -0.035801 -0.040524 -0.035801 0.549533 2 C 0.549533 4.803166 0.549533 -0.035801 -0.040524 -0.035801 3 C -0.035801 0.549533 4.803166 0.549533 -0.035801 -0.040524 4 C -0.040524 -0.035801 0.549533 4.803166 0.549533 -0.035801 5 C -0.035801 -0.040524 -0.035801 0.549533 4.803166 0.549533 6 C 0.549533 -0.035801 -0.040524 -0.035801 0.549533 4.803166 7 H 0.368561 -0.042252 0.004829 0.000601 0.004829 -0.042252 8 H -0.042252 0.368561 -0.042252 0.004829 0.000601 0.004829 9 H 0.004829 -0.042252 0.368561 -0.042252 0.004829 0.000601 10 H 0.000601 0.004829 -0.042252 0.368561 -0.042252 0.004829 11 H 0.004829 0.000601 0.004829 -0.042252 0.368561 -0.042252 12 H -0.042252 0.004829 0.000601 0.004829 -0.042252 0.368561 7 8 9 10 11 12 1 C 0.368561 -0.042252 0.004829 0.000601 0.004829 -0.042252 2 C -0.042252 0.368561 -0.042252 0.004829 0.000601 0.004829 3 C 0.004829 -0.042252 0.368561 -0.042252 0.004829 0.000601 4 C 0.000601 0.004829 -0.042252 0.368561 -0.042252 0.004829 5 C 0.004829 0.000601 0.004829 -0.042252 0.368561 -0.042252 6 C -0.042252 0.004829 0.000601 0.004829 -0.042252 0.368561 7 H 0.634536 -0.006455 -0.000189 0.000015 -0.000189 -0.006455 8 H -0.006455 0.634536 -0.006455 -0.000189 0.000015 -0.000189 9 H -0.000189 -0.006455 0.634536 -0.006455 -0.000189 0.000015 10 H 0.000015 -0.000189 -0.006455 0.634536 -0.006455 -0.000189 11 H -0.000189 0.000015 -0.000189 -0.006455 0.634536 -0.006455 12 H -0.006455 -0.000189 0.000015 -0.000189 -0.006455 0.634536 Mulliken charges: 1 1 C -0.084421 2 C -0.084421 3 C -0.084421 4 C -0.084421 5 C -0.084421 6 C -0.084421 7 H 0.084421 8 H 0.084421 9 H 0.084421 10 H 0.084421 11 H 0.084421 12 H 0.084421 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.000000 2 C 0.000000 3 C 0.000000 4 C 0.000000 5 C 0.000000 6 C 0.000000 Electronic spatial extent (au): = 458.0694 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -31.4726 YY= -31.4726 ZZ= -38.5313 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 2.3529 YY= 2.3529 ZZ= -4.7058 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -270.6740 YYYY= -270.6740 ZZZZ= -39.8988 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -90.2247 XXZZ= -60.4090 YYZZ= -60.4090 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.032664016272D+02 E-N=-9.439044569672D+02 KE= 2.299467480780D+02 Symmetry AG KE= 7.407555231054D+01 Symmetry B1G KE= 3.748033879310D+01 Symmetry B2G KE= 2.235152536353D+00 Symmetry B3G KE= 2.235152536353D+00 Symmetry AU KE= 3.929172093326D-16 Symmetry B1U KE= 1.864572042027D+00 Symmetry B2U KE= 7.177697239905D+01 Symmetry B3U KE= 4.027900746059D+01 1|1| IMPERIAL COLLEGE-CHWS-147|FOpt|RB3LYP|6-31G(d,p)|C6H6|JG2710|18-N ov-2013|0||# opt b3lyp/6-31g(d,p) geom=connectivity||jg2710_benzene_op t||0,1|C,-0.0000000015,1.3961880207,0.|C,-1.2091342951,0.698094009,0.| C,-1.2091342936,-0.6980940117,0.|C,0.0000000015,-1.3961880207,0.|C,1.2 091342951,-0.698094009,0.|C,1.2091342936,0.6980940117,0.|H,-0.00000000 27,2.4822501041,0.|H,-2.14969165,1.2411250497,0.|H,-2.1496916473,-1.24 11250544,0.|H,0.0000000027,-2.4822501041,0.|H,2.14969165,-1.2411250497 ,0.|H,2.1496916473,1.2411250544,0.||Version=EM64W-G09RevD.01|State=1-A 1G|HF=-232.2582139|RMSD=5.798e-009|RMSF=8.450e-005|Dipole=0.,0.,0.|Qua drupole=1.7493239,1.7493239,-3.4986478,0.,0.,0.|PG=D06H [3C2'(H1C1.C1H 1)]||@ MY DESCRIPTION OF EXPERIENCE IS NOT WHAT HAPPENS TO A MAN. EXPERIENCE IS WHAT A MAN DOES WITH WHAT HAPPENS TO HIM. - CHUCK KNOX, SEATTLE SEAHAWKS, 1985 Job cpu time: 0 days 0 hours 0 minutes 12.0 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Mon Nov 18 12:45:38 2013.