Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 7204. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 23-May-2019 ****************************************** %chk=\\icnas1.cc.ic.ac.uk\sg2317\2ndyearlab\SG2317_P+_631G_td.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ----------------------- [P(CH3)4]+ optimisation ----------------------- Symbolic Z-matrix: Charge = 1 Multiplicity = 1 P 0. 0. 0. C 0. 0. 1.81638 H -0.89018 -0.51394 2.18898 H 0.89018 -0.51394 2.18898 H 0. 1.02789 2.18898 C 0. -1.7125 -0.60546 H -0.89018 -2.23511 -0.24511 H 0. -1.72116 -1.69876 H 0.89018 -2.23511 -0.24511 C -1.48307 0.85625 -0.60546 H -1.49057 1.88847 -0.24511 H -1.49057 0.86058 -1.69876 H -2.38075 0.34664 -0.24511 C 1.48307 0.85625 -0.60546 H 1.49057 0.86058 -1.69876 H 1.49057 1.88847 -0.24511 H 2.38075 0.34664 -0.24511 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.8164 estimate D2E/DX2 ! ! R2 R(1,6) 1.8164 estimate D2E/DX2 ! ! R3 R(1,10) 1.8164 estimate D2E/DX2 ! ! R4 R(1,14) 1.8164 estimate D2E/DX2 ! ! R5 R(2,3) 1.0933 estimate D2E/DX2 ! ! R6 R(2,4) 1.0933 estimate D2E/DX2 ! ! R7 R(2,5) 1.0933 estimate D2E/DX2 ! ! R8 R(6,7) 1.0933 estimate D2E/DX2 ! ! R9 R(6,8) 1.0933 estimate D2E/DX2 ! ! R10 R(6,9) 1.0933 estimate D2E/DX2 ! ! R11 R(10,11) 1.0933 estimate D2E/DX2 ! ! R12 R(10,12) 1.0933 estimate D2E/DX2 ! ! R13 R(10,13) 1.0933 estimate D2E/DX2 ! ! R14 R(14,15) 1.0933 estimate D2E/DX2 ! ! R15 R(14,16) 1.0933 estimate D2E/DX2 ! ! R16 R(14,17) 1.0933 estimate D2E/DX2 ! ! A1 A(2,1,6) 109.4712 estimate D2E/DX2 ! ! A2 A(2,1,10) 109.4712 estimate D2E/DX2 ! ! A3 A(2,1,14) 109.4712 estimate D2E/DX2 ! ! A4 A(6,1,10) 109.4712 estimate D2E/DX2 ! ! A5 A(6,1,14) 109.4712 estimate D2E/DX2 ! ! A6 A(10,1,14) 109.4712 estimate D2E/DX2 ! ! A7 A(1,2,3) 109.9251 estimate D2E/DX2 ! ! A8 A(1,2,4) 109.9251 estimate D2E/DX2 ! ! A9 A(1,2,5) 109.9251 estimate D2E/DX2 ! ! A10 A(3,2,4) 109.0136 estimate D2E/DX2 ! ! A11 A(3,2,5) 109.0136 estimate D2E/DX2 ! ! A12 A(4,2,5) 109.0136 estimate D2E/DX2 ! ! A13 A(1,6,7) 109.9251 estimate D2E/DX2 ! ! A14 A(1,6,8) 109.9251 estimate D2E/DX2 ! ! A15 A(1,6,9) 109.9251 estimate D2E/DX2 ! ! A16 A(7,6,8) 109.0136 estimate D2E/DX2 ! ! A17 A(7,6,9) 109.0136 estimate D2E/DX2 ! ! A18 A(8,6,9) 109.0136 estimate D2E/DX2 ! ! A19 A(1,10,11) 109.9251 estimate D2E/DX2 ! ! A20 A(1,10,12) 109.9251 estimate D2E/DX2 ! ! A21 A(1,10,13) 109.9251 estimate D2E/DX2 ! ! A22 A(11,10,12) 109.0136 estimate D2E/DX2 ! ! A23 A(11,10,13) 109.0136 estimate D2E/DX2 ! ! A24 A(12,10,13) 109.0136 estimate D2E/DX2 ! ! A25 A(1,14,15) 109.9251 estimate D2E/DX2 ! ! A26 A(1,14,16) 109.9251 estimate D2E/DX2 ! ! A27 A(1,14,17) 109.9251 estimate D2E/DX2 ! ! A28 A(15,14,16) 109.0136 estimate D2E/DX2 ! ! A29 A(15,14,17) 109.0136 estimate D2E/DX2 ! ! A30 A(16,14,17) 109.0136 estimate D2E/DX2 ! ! D1 D(6,1,2,3) -60.0 estimate D2E/DX2 ! ! D2 D(6,1,2,4) 60.0 estimate D2E/DX2 ! ! D3 D(6,1,2,5) 180.0 estimate D2E/DX2 ! ! D4 D(10,1,2,3) 60.0 estimate D2E/DX2 ! ! D5 D(10,1,2,4) 180.0 estimate D2E/DX2 ! ! D6 D(10,1,2,5) -60.0 estimate D2E/DX2 ! ! D7 D(14,1,2,3) -180.0 estimate D2E/DX2 ! ! D8 D(14,1,2,4) -60.0 estimate D2E/DX2 ! ! D9 D(14,1,2,5) 60.0 estimate D2E/DX2 ! ! D10 D(2,1,6,7) 60.0 estimate D2E/DX2 ! ! D11 D(2,1,6,8) 180.0 estimate D2E/DX2 ! ! D12 D(2,1,6,9) -60.0 estimate D2E/DX2 ! ! D13 D(10,1,6,7) -60.0 estimate D2E/DX2 ! ! D14 D(10,1,6,8) 60.0 estimate D2E/DX2 ! ! D15 D(10,1,6,9) 180.0 estimate D2E/DX2 ! ! D16 D(14,1,6,7) 180.0 estimate D2E/DX2 ! ! D17 D(14,1,6,8) -60.0 estimate D2E/DX2 ! ! D18 D(14,1,6,9) 60.0 estimate D2E/DX2 ! ! D19 D(2,1,10,11) 60.0 estimate D2E/DX2 ! ! D20 D(2,1,10,12) 180.0 estimate D2E/DX2 ! ! D21 D(2,1,10,13) -60.0 estimate D2E/DX2 ! ! D22 D(6,1,10,11) 180.0 estimate D2E/DX2 ! ! D23 D(6,1,10,12) -60.0 estimate D2E/DX2 ! ! D24 D(6,1,10,13) 60.0 estimate D2E/DX2 ! ! D25 D(14,1,10,11) -60.0 estimate D2E/DX2 ! ! D26 D(14,1,10,12) 60.0 estimate D2E/DX2 ! ! D27 D(14,1,10,13) 180.0 estimate D2E/DX2 ! ! D28 D(2,1,14,15) 180.0 estimate D2E/DX2 ! ! D29 D(2,1,14,16) -60.0 estimate D2E/DX2 ! ! D30 D(2,1,14,17) 60.0 estimate D2E/DX2 ! ! D31 D(6,1,14,15) 60.0 estimate D2E/DX2 ! ! D32 D(6,1,14,16) 180.0 estimate D2E/DX2 ! ! D33 D(6,1,14,17) -60.0 estimate D2E/DX2 ! ! D34 D(10,1,14,15) -60.0 estimate D2E/DX2 ! ! D35 D(10,1,14,16) 60.0 estimate D2E/DX2 ! ! D36 D(10,1,14,17) -180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 92 maximum allowed number of steps= 102. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 15 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.816382 3 1 0 -0.890177 -0.513944 2.188982 4 1 0 0.890177 -0.513944 2.188982 5 1 0 0.000000 1.027888 2.188982 6 6 0 0.000000 -1.712502 -0.605461 7 1 0 -0.890177 -2.235106 -0.245110 8 1 0 0.000000 -1.721163 -1.698762 9 1 0 0.890177 -2.235106 -0.245110 10 6 0 -1.483070 0.856251 -0.605461 11 1 0 -1.490571 1.888469 -0.245110 12 1 0 -1.490571 0.860581 -1.698762 13 1 0 -2.380747 0.346638 -0.245110 14 6 0 1.483070 0.856251 -0.605461 15 1 0 1.490571 0.860581 -1.698762 16 1 0 1.490571 1.888469 -0.245110 17 1 0 2.380747 0.346638 -0.245110 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 P 0.000000 2 C 1.816382 0.000000 3 H 2.418304 1.093336 0.000000 4 H 2.418304 1.093336 1.780353 0.000000 5 H 2.418304 1.093336 1.780353 1.780353 0.000000 6 C 1.816382 2.966140 3.168259 3.168259 3.913904 7 H 2.418304 3.168259 2.981141 3.472299 4.167055 8 H 2.418304 3.913904 4.167055 4.167055 4.761494 9 H 2.418304 3.168259 3.472299 2.981141 4.167055 10 C 1.816382 2.966140 3.168259 3.913904 3.168259 11 H 2.418304 3.168259 3.472299 4.167055 2.981141 12 H 2.418304 3.913904 4.167055 4.761494 4.167055 13 H 2.418304 3.168259 2.981141 4.167055 3.472299 14 C 1.816382 2.966140 3.913904 3.168259 3.168259 15 H 2.418304 3.913904 4.761494 4.167055 4.167055 16 H 2.418304 3.168259 4.167055 3.472299 2.981141 17 H 2.418304 3.168259 4.167055 2.981141 3.472299 6 7 8 9 10 6 C 0.000000 7 H 1.093336 0.000000 8 H 1.093336 1.780353 0.000000 9 H 1.093336 1.780353 1.780353 0.000000 10 C 2.966140 3.168259 3.168259 3.913904 0.000000 11 H 3.913904 4.167055 4.167055 4.761494 1.093336 12 H 3.168259 3.472299 2.981141 4.167055 1.093336 13 H 3.168259 2.981141 3.472299 4.167055 1.093336 14 C 2.966140 3.913904 3.168259 3.168259 2.966140 15 H 3.168259 4.167055 2.981141 3.472299 3.168259 16 H 3.913904 4.761494 4.167055 4.167055 3.168259 17 H 3.168259 4.167055 3.472299 2.981141 3.913904 11 12 13 14 15 11 H 0.000000 12 H 1.780353 0.000000 13 H 1.780353 1.780353 0.000000 14 C 3.168259 3.168259 3.913904 0.000000 15 H 3.472299 2.981141 4.167055 1.093336 0.000000 16 H 2.981141 3.472299 4.167055 1.093336 1.780353 17 H 4.167055 4.167055 4.761494 1.093336 1.780353 16 17 16 H 0.000000 17 H 1.780353 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 15 0 0.000000 0.000000 0.000000 2 6 0 1.048689 1.048689 1.048689 3 1 0 0.424543 1.683442 1.683442 4 1 0 1.683442 0.424543 1.683442 5 1 0 1.683442 1.683442 0.424543 6 6 0 -1.048689 -1.048689 1.048689 7 1 0 -1.683442 -0.424543 1.683442 8 1 0 -1.683442 -1.683442 0.424543 9 1 0 -0.424543 -1.683442 1.683442 10 6 0 -1.048689 1.048689 -1.048689 11 1 0 -0.424543 1.683442 -1.683442 12 1 0 -1.683442 0.424543 -1.683442 13 1 0 -1.683442 1.683442 -0.424543 14 6 0 1.048689 -1.048689 -1.048689 15 1 0 0.424543 -1.683442 -1.683442 16 1 0 1.683442 -0.424543 -1.683442 17 1 0 1.683442 -1.683442 -0.424543 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3090249 3.3090249 3.3090249 Standard basis: 6-31G(d,p) (6D, 7F) There are 37 symmetry adapted cartesian basis functions of A symmetry. There are 34 symmetry adapted cartesian basis functions of B1 symmetry. There are 34 symmetry adapted cartesian basis functions of B2 symmetry. There are 34 symmetry adapted cartesian basis functions of B3 symmetry. There are 37 symmetry adapted basis functions of A symmetry. There are 34 symmetry adapted basis functions of B1 symmetry. There are 34 symmetry adapted basis functions of B2 symmetry. There are 34 symmetry adapted basis functions of B3 symmetry. 139 basis functions, 248 primitive gaussians, 139 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 262.6792049446 Hartrees. NAtoms= 17 NActive= 17 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 139 RedAO= T EigKep= 3.42D-03 NBF= 37 34 34 34 NBsUse= 139 1.00D-06 EigRej= -1.00D+00 NBFU= 37 34 34 34 ExpMin= 9.98D-02 ExpMax= 1.94D+04 ExpMxC= 2.91D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=59284359. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -500.827030358 A.U. after 10 cycles NFock= 10 Conv=0.34D-08 -V/T= 2.0060 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -77.34284 -10.37613 -10.37613 -10.37613 -10.37612 Alpha occ. eigenvalues -- -6.80826 -4.96980 -4.96980 -4.96980 -0.99275 Alpha occ. eigenvalues -- -0.89085 -0.89085 -0.89085 -0.73298 -0.63375 Alpha occ. eigenvalues -- -0.63375 -0.63375 -0.60226 -0.60226 -0.57876 Alpha occ. eigenvalues -- -0.57876 -0.57876 -0.53927 -0.53927 -0.53927 Alpha virt. eigenvalues -- -0.11004 -0.11004 -0.11004 -0.10156 -0.05098 Alpha virt. eigenvalues -- -0.04129 -0.04129 -0.03826 -0.03826 -0.03826 Alpha virt. eigenvalues -- 0.00636 0.00636 0.00636 0.02556 0.02556 Alpha virt. eigenvalues -- 0.02556 0.19723 0.19723 0.19723 0.24761 Alpha virt. eigenvalues -- 0.24761 0.29672 0.43577 0.43577 0.43577 Alpha virt. eigenvalues -- 0.46737 0.46737 0.46737 0.47401 0.56966 Alpha virt. eigenvalues -- 0.56966 0.57691 0.57691 0.57691 0.68545 Alpha virt. eigenvalues -- 0.68545 0.68545 0.69735 0.69735 0.69735 Alpha virt. eigenvalues -- 0.71101 0.71620 0.71620 0.71620 0.74108 Alpha virt. eigenvalues -- 0.74108 0.81613 0.81613 0.81613 1.09570 Alpha virt. eigenvalues -- 1.09570 1.09570 1.22826 1.22826 1.22826 Alpha virt. eigenvalues -- 1.23839 1.30726 1.30726 1.50581 1.50581 Alpha virt. eigenvalues -- 1.50581 1.75111 1.85228 1.85228 1.85228 Alpha virt. eigenvalues -- 1.85326 1.87424 1.87424 1.87998 1.87998 Alpha virt. eigenvalues -- 1.87998 1.93263 1.93263 1.93263 1.96538 Alpha virt. eigenvalues -- 1.96538 1.96538 2.14682 2.14682 2.14682 Alpha virt. eigenvalues -- 2.19110 2.19110 2.19110 2.19409 2.19409 Alpha virt. eigenvalues -- 2.41954 2.47497 2.47497 2.47497 2.61128 Alpha virt. eigenvalues -- 2.61128 2.65359 2.65359 2.65359 2.67380 Alpha virt. eigenvalues -- 2.67380 2.67380 2.95816 3.00644 3.00644 Alpha virt. eigenvalues -- 3.00644 3.22450 3.22450 3.22450 3.24325 Alpha virt. eigenvalues -- 3.24325 3.25148 3.25148 3.25148 3.34972 Alpha virt. eigenvalues -- 4.26250 4.27343 4.27343 4.27343 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 P 13.151054 0.345271 -0.021440 -0.021440 -0.021440 0.345271 2 C 0.345271 5.135725 0.377507 0.377507 0.377507 -0.032268 3 H -0.021440 0.377507 0.484061 -0.016357 -0.016357 -0.001795 4 H -0.021440 0.377507 -0.016357 0.484061 -0.016357 -0.001795 5 H -0.021440 0.377507 -0.016357 -0.016357 0.484061 0.001668 6 C 0.345271 -0.032268 -0.001795 -0.001795 0.001668 5.135725 7 H -0.021440 -0.001795 0.000785 -0.000137 0.000006 0.377507 8 H -0.021440 0.001668 0.000006 0.000006 -0.000029 0.377507 9 H -0.021440 -0.001795 -0.000137 0.000785 0.000006 0.377507 10 C 0.345271 -0.032268 -0.001795 0.001668 -0.001795 -0.032268 11 H -0.021440 -0.001795 -0.000137 0.000006 0.000785 0.001668 12 H -0.021440 0.001668 0.000006 -0.000029 0.000006 -0.001795 13 H -0.021440 -0.001795 0.000785 0.000006 -0.000137 -0.001795 14 C 0.345271 -0.032268 0.001668 -0.001795 -0.001795 -0.032268 15 H -0.021440 0.001668 -0.000029 0.000006 0.000006 -0.001795 16 H -0.021440 -0.001795 0.000006 -0.000137 0.000785 0.001668 17 H -0.021440 -0.001795 0.000006 0.000785 -0.000137 -0.001795 7 8 9 10 11 12 1 P -0.021440 -0.021440 -0.021440 0.345271 -0.021440 -0.021440 2 C -0.001795 0.001668 -0.001795 -0.032268 -0.001795 0.001668 3 H 0.000785 0.000006 -0.000137 -0.001795 -0.000137 0.000006 4 H -0.000137 0.000006 0.000785 0.001668 0.000006 -0.000029 5 H 0.000006 -0.000029 0.000006 -0.001795 0.000785 0.000006 6 C 0.377507 0.377507 0.377507 -0.032268 0.001668 -0.001795 7 H 0.484061 -0.016357 -0.016357 -0.001795 0.000006 -0.000137 8 H -0.016357 0.484061 -0.016357 -0.001795 0.000006 0.000785 9 H -0.016357 -0.016357 0.484061 0.001668 -0.000029 0.000006 10 C -0.001795 -0.001795 0.001668 5.135725 0.377507 0.377507 11 H 0.000006 0.000006 -0.000029 0.377507 0.484061 -0.016357 12 H -0.000137 0.000785 0.000006 0.377507 -0.016357 0.484061 13 H 0.000785 -0.000137 0.000006 0.377507 -0.016357 -0.016357 14 C 0.001668 -0.001795 -0.001795 -0.032268 -0.001795 -0.001795 15 H 0.000006 0.000785 -0.000137 -0.001795 -0.000137 0.000785 16 H -0.000029 0.000006 0.000006 -0.001795 0.000785 -0.000137 17 H 0.000006 -0.000137 0.000785 0.001668 0.000006 0.000006 13 14 15 16 17 1 P -0.021440 0.345271 -0.021440 -0.021440 -0.021440 2 C -0.001795 -0.032268 0.001668 -0.001795 -0.001795 3 H 0.000785 0.001668 -0.000029 0.000006 0.000006 4 H 0.000006 -0.001795 0.000006 -0.000137 0.000785 5 H -0.000137 -0.001795 0.000006 0.000785 -0.000137 6 C -0.001795 -0.032268 -0.001795 0.001668 -0.001795 7 H 0.000785 0.001668 0.000006 -0.000029 0.000006 8 H -0.000137 -0.001795 0.000785 0.000006 -0.000137 9 H 0.000006 -0.001795 -0.000137 0.000006 0.000785 10 C 0.377507 -0.032268 -0.001795 -0.001795 0.001668 11 H -0.016357 -0.001795 -0.000137 0.000785 0.000006 12 H -0.016357 -0.001795 0.000785 -0.000137 0.000006 13 H 0.484061 0.001668 0.000006 0.000006 -0.000029 14 C 0.001668 5.135725 0.377507 0.377507 0.377507 15 H 0.000006 0.377507 0.484061 -0.016357 -0.016357 16 H 0.000006 0.377507 -0.016357 0.484061 -0.016357 17 H -0.000029 0.377507 -0.016357 -0.016357 0.484061 Mulliken charges: 1 1 P 0.725143 2 C -0.510945 3 H 0.193220 4 H 0.193220 5 H 0.193220 6 C -0.510945 7 H 0.193220 8 H 0.193220 9 H 0.193220 10 C -0.510945 11 H 0.193220 12 H 0.193220 13 H 0.193220 14 C -0.510945 15 H 0.193220 16 H 0.193220 17 H 0.193220 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 P 0.725143 2 C 0.068714 6 C 0.068714 10 C 0.068714 14 C 0.068714 Electronic spatial extent (au): = 603.1080 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -31.2645 YY= -31.2645 ZZ= -31.2645 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 1.9820 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -246.8571 YYYY= -246.8571 ZZZZ= -246.8571 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -74.3999 XXZZ= -74.3999 YYZZ= -74.3999 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.626792049446D+02 E-N=-1.693575081787D+03 KE= 4.978535523428D+02 Symmetry A KE= 2.853337944357D+02 Symmetry B1 KE= 7.083991930237D+01 Symmetry B2 KE= 7.083991930237D+01 Symmetry B3 KE= 7.083991930237D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 15 0.000000000 0.000000000 0.000000000 2 6 0.000000000 0.000000000 0.000004847 3 1 0.000030980 0.000017886 -0.000000859 4 1 -0.000030980 0.000017886 -0.000000859 5 1 0.000000000 -0.000035772 -0.000000859 6 6 0.000000000 -0.000004570 -0.000001616 7 1 0.000030980 0.000006772 -0.000016577 8 1 0.000000000 -0.000011114 0.000034013 9 1 -0.000030980 0.000006772 -0.000016577 10 6 -0.000003957 0.000002285 -0.000001616 11 1 -0.000009625 -0.000030215 -0.000016577 12 1 -0.000009625 0.000005557 0.000034013 13 1 0.000021354 0.000023443 -0.000016577 14 6 0.000003957 0.000002285 -0.000001616 15 1 0.000009625 0.000005557 0.000034013 16 1 0.000009625 -0.000030215 -0.000016577 17 1 -0.000021354 0.000023443 -0.000016577 ------------------------------------------------------------------- Cartesian Forces: Max 0.000035772 RMS 0.000017410 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000033924 RMS 0.000014439 Search for a local minimum. Step number 1 out of a maximum of 92 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00948 0.00948 0.00948 0.00948 0.05321 Eigenvalues --- 0.05321 0.05321 0.06103 0.06103 0.06103 Eigenvalues --- 0.06103 0.06103 0.06103 0.06103 0.06103 Eigenvalues --- 0.14692 0.14692 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.24867 Eigenvalues --- 0.24867 0.24867 0.24867 0.34430 0.34430 Eigenvalues --- 0.34430 0.34430 0.34430 0.34430 0.34430 Eigenvalues --- 0.34430 0.34430 0.34430 0.34430 0.34430 RFO step: Lambda=-6.05939484D-08 EMin= 9.47546469D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00007061 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.42D-08 for atom 13. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.43247 0.00000 0.00000 0.00001 0.00001 3.43247 R2 3.43247 0.00000 0.00000 0.00001 0.00001 3.43247 R3 3.43247 0.00000 0.00000 0.00001 0.00001 3.43247 R4 3.43247 0.00000 0.00000 0.00001 0.00001 3.43247 R5 2.06611 -0.00003 0.00000 -0.00010 -0.00010 2.06601 R6 2.06611 -0.00003 0.00000 -0.00010 -0.00010 2.06601 R7 2.06611 -0.00003 0.00000 -0.00010 -0.00010 2.06601 R8 2.06611 -0.00003 0.00000 -0.00010 -0.00010 2.06601 R9 2.06611 -0.00003 0.00000 -0.00010 -0.00010 2.06601 R10 2.06611 -0.00003 0.00000 -0.00010 -0.00010 2.06601 R11 2.06611 -0.00003 0.00000 -0.00010 -0.00010 2.06601 R12 2.06611 -0.00003 0.00000 -0.00010 -0.00010 2.06601 R13 2.06611 -0.00003 0.00000 -0.00010 -0.00010 2.06601 R14 2.06611 -0.00003 0.00000 -0.00010 -0.00010 2.06601 R15 2.06611 -0.00003 0.00000 -0.00010 -0.00010 2.06601 R16 2.06611 -0.00003 0.00000 -0.00010 -0.00010 2.06601 A1 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A2 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A3 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A4 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A5 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A6 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A7 1.91855 0.00001 0.00000 0.00007 0.00007 1.91863 A8 1.91855 0.00001 0.00000 0.00007 0.00007 1.91863 A9 1.91855 0.00001 0.00000 0.00007 0.00007 1.91863 A10 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90257 A11 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90257 A12 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90257 A13 1.91855 0.00001 0.00000 0.00007 0.00007 1.91863 A14 1.91855 0.00001 0.00000 0.00007 0.00007 1.91863 A15 1.91855 0.00001 0.00000 0.00007 0.00007 1.91863 A16 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90257 A17 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90257 A18 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90257 A19 1.91855 0.00001 0.00000 0.00007 0.00007 1.91863 A20 1.91855 0.00001 0.00000 0.00007 0.00007 1.91863 A21 1.91855 0.00001 0.00000 0.00007 0.00007 1.91863 A22 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90257 A23 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90257 A24 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90257 A25 1.91855 0.00001 0.00000 0.00007 0.00007 1.91863 A26 1.91855 0.00001 0.00000 0.00007 0.00007 1.91863 A27 1.91855 0.00001 0.00000 0.00007 0.00007 1.91863 A28 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90257 A29 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90257 A30 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90257 D1 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D2 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D4 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D6 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D7 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D8 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D9 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D10 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D13 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D14 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D15 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D16 -3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D17 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D18 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D19 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D20 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D21 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D22 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D23 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D24 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D25 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D26 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D27 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D28 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D29 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D30 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D31 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D32 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D33 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D34 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D35 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D36 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000034 0.000450 YES RMS Force 0.000014 0.000300 YES Maximum Displacement 0.000157 0.001800 YES RMS Displacement 0.000071 0.001200 YES Predicted change in Energy=-3.029697D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.8164 -DE/DX = 0.0 ! ! R2 R(1,6) 1.8164 -DE/DX = 0.0 ! ! R3 R(1,10) 1.8164 -DE/DX = 0.0 ! ! R4 R(1,14) 1.8164 -DE/DX = 0.0 ! ! R5 R(2,3) 1.0933 -DE/DX = 0.0 ! ! R6 R(2,4) 1.0933 -DE/DX = 0.0 ! ! R7 R(2,5) 1.0933 -DE/DX = 0.0 ! ! R8 R(6,7) 1.0933 -DE/DX = 0.0 ! ! R9 R(6,8) 1.0933 -DE/DX = 0.0 ! ! R10 R(6,9) 1.0933 -DE/DX = 0.0 ! ! R11 R(10,11) 1.0933 -DE/DX = 0.0 ! ! R12 R(10,12) 1.0933 -DE/DX = 0.0 ! ! R13 R(10,13) 1.0933 -DE/DX = 0.0 ! ! R14 R(14,15) 1.0933 -DE/DX = 0.0 ! ! R15 R(14,16) 1.0933 -DE/DX = 0.0 ! ! R16 R(14,17) 1.0933 -DE/DX = 0.0 ! ! A1 A(2,1,6) 109.4712 -DE/DX = 0.0 ! ! A2 A(2,1,10) 109.4712 -DE/DX = 0.0 ! ! A3 A(2,1,14) 109.4712 -DE/DX = 0.0 ! ! A4 A(6,1,10) 109.4712 -DE/DX = 0.0 ! ! A5 A(6,1,14) 109.4712 -DE/DX = 0.0 ! ! A6 A(10,1,14) 109.4712 -DE/DX = 0.0 ! ! A7 A(1,2,3) 109.9251 -DE/DX = 0.0 ! ! A8 A(1,2,4) 109.9251 -DE/DX = 0.0 ! ! A9 A(1,2,5) 109.9251 -DE/DX = 0.0 ! ! A10 A(3,2,4) 109.0136 -DE/DX = 0.0 ! ! A11 A(3,2,5) 109.0136 -DE/DX = 0.0 ! ! A12 A(4,2,5) 109.0136 -DE/DX = 0.0 ! ! A13 A(1,6,7) 109.9251 -DE/DX = 0.0 ! ! A14 A(1,6,8) 109.9251 -DE/DX = 0.0 ! ! A15 A(1,6,9) 109.9251 -DE/DX = 0.0 ! ! A16 A(7,6,8) 109.0136 -DE/DX = 0.0 ! ! A17 A(7,6,9) 109.0136 -DE/DX = 0.0 ! ! A18 A(8,6,9) 109.0136 -DE/DX = 0.0 ! ! A19 A(1,10,11) 109.9251 -DE/DX = 0.0 ! ! A20 A(1,10,12) 109.9251 -DE/DX = 0.0 ! ! A21 A(1,10,13) 109.9251 -DE/DX = 0.0 ! ! A22 A(11,10,12) 109.0136 -DE/DX = 0.0 ! ! A23 A(11,10,13) 109.0136 -DE/DX = 0.0 ! ! A24 A(12,10,13) 109.0136 -DE/DX = 0.0 ! ! A25 A(1,14,15) 109.9251 -DE/DX = 0.0 ! ! A26 A(1,14,16) 109.9251 -DE/DX = 0.0 ! ! A27 A(1,14,17) 109.9251 -DE/DX = 0.0 ! ! A28 A(15,14,16) 109.0136 -DE/DX = 0.0 ! ! A29 A(15,14,17) 109.0136 -DE/DX = 0.0 ! ! A30 A(16,14,17) 109.0136 -DE/DX = 0.0 ! ! D1 D(6,1,2,3) -60.0 -DE/DX = 0.0 ! ! D2 D(6,1,2,4) 60.0 -DE/DX = 0.0 ! ! D3 D(6,1,2,5) 180.0 -DE/DX = 0.0 ! ! D4 D(10,1,2,3) 60.0 -DE/DX = 0.0 ! ! D5 D(10,1,2,4) 180.0 -DE/DX = 0.0 ! ! D6 D(10,1,2,5) -60.0 -DE/DX = 0.0 ! ! D7 D(14,1,2,3) 180.0 -DE/DX = 0.0 ! ! D8 D(14,1,2,4) -60.0 -DE/DX = 0.0 ! ! D9 D(14,1,2,5) 60.0 -DE/DX = 0.0 ! ! D10 D(2,1,6,7) 60.0 -DE/DX = 0.0 ! ! D11 D(2,1,6,8) 180.0 -DE/DX = 0.0 ! ! D12 D(2,1,6,9) -60.0 -DE/DX = 0.0 ! ! D13 D(10,1,6,7) -60.0 -DE/DX = 0.0 ! ! D14 D(10,1,6,8) 60.0 -DE/DX = 0.0 ! ! D15 D(10,1,6,9) 180.0 -DE/DX = 0.0 ! ! D16 D(14,1,6,7) 180.0 -DE/DX = 0.0 ! ! D17 D(14,1,6,8) -60.0 -DE/DX = 0.0 ! ! D18 D(14,1,6,9) 60.0 -DE/DX = 0.0 ! ! D19 D(2,1,10,11) 60.0 -DE/DX = 0.0 ! ! D20 D(2,1,10,12) 180.0 -DE/DX = 0.0 ! ! D21 D(2,1,10,13) -60.0 -DE/DX = 0.0 ! ! D22 D(6,1,10,11) 180.0 -DE/DX = 0.0 ! ! D23 D(6,1,10,12) -60.0 -DE/DX = 0.0 ! ! D24 D(6,1,10,13) 60.0 -DE/DX = 0.0 ! ! D25 D(14,1,10,11) -60.0 -DE/DX = 0.0 ! ! D26 D(14,1,10,12) 60.0 -DE/DX = 0.0 ! ! D27 D(14,1,10,13) 180.0 -DE/DX = 0.0 ! ! D28 D(2,1,14,15) 180.0 -DE/DX = 0.0 ! ! D29 D(2,1,14,16) -60.0 -DE/DX = 0.0 ! ! D30 D(2,1,14,17) 60.0 -DE/DX = 0.0 ! ! D31 D(6,1,14,15) 60.0 -DE/DX = 0.0 ! ! D32 D(6,1,14,16) 180.0 -DE/DX = 0.0 ! ! D33 D(6,1,14,17) -60.0 -DE/DX = 0.0 ! ! D34 D(10,1,14,15) -60.0 -DE/DX = 0.0 ! ! D35 D(10,1,14,16) 60.0 -DE/DX = 0.0 ! ! D36 D(10,1,14,17) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 15 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.816382 3 1 0 -0.890177 -0.513944 2.188982 4 1 0 0.890177 -0.513944 2.188982 5 1 0 0.000000 1.027887 2.188982 6 6 0 0.000000 -1.712502 -0.605461 7 1 0 -0.890177 -2.235106 -0.245110 8 1 0 0.000000 -1.721163 -1.698762 9 1 0 0.890177 -2.235106 -0.245110 10 6 0 -1.483070 0.856251 -0.605461 11 1 0 -1.490571 1.888469 -0.245110 12 1 0 -1.490571 0.860581 -1.698762 13 1 0 -2.380747 0.346638 -0.245110 14 6 0 1.483070 0.856251 -0.605461 15 1 0 1.490571 0.860581 -1.698762 16 1 0 1.490571 1.888469 -0.245110 17 1 0 2.380747 0.346638 -0.245110 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 P 0.000000 2 C 1.816382 0.000000 3 H 2.418304 1.093336 0.000000 4 H 2.418304 1.093336 1.780353 0.000000 5 H 2.418304 1.093336 1.780353 1.780353 0.000000 6 C 1.816382 2.966140 3.168259 3.168259 3.913904 7 H 2.418304 3.168259 2.981141 3.472299 4.167055 8 H 2.418304 3.913904 4.167055 4.167055 4.761494 9 H 2.418304 3.168259 3.472299 2.981141 4.167055 10 C 1.816382 2.966140 3.168259 3.913904 3.168259 11 H 2.418304 3.168259 3.472299 4.167055 2.981141 12 H 2.418304 3.913904 4.167055 4.761494 4.167055 13 H 2.418304 3.168259 2.981141 4.167055 3.472299 14 C 1.816382 2.966140 3.913904 3.168259 3.168259 15 H 2.418304 3.913904 4.761494 4.167055 4.167055 16 H 2.418304 3.168259 4.167055 3.472299 2.981141 17 H 2.418304 3.168259 4.167055 2.981141 3.472299 6 7 8 9 10 6 C 0.000000 7 H 1.093336 0.000000 8 H 1.093336 1.780353 0.000000 9 H 1.093336 1.780353 1.780353 0.000000 10 C 2.966140 3.168259 3.168259 3.913904 0.000000 11 H 3.913904 4.167055 4.167055 4.761494 1.093336 12 H 3.168259 3.472299 2.981141 4.167055 1.093336 13 H 3.168259 2.981141 3.472299 4.167055 1.093336 14 C 2.966140 3.913904 3.168259 3.168259 2.966140 15 H 3.168259 4.167055 2.981141 3.472299 3.168259 16 H 3.913904 4.761494 4.167055 4.167055 3.168259 17 H 3.168259 4.167055 3.472299 2.981141 3.913904 11 12 13 14 15 11 H 0.000000 12 H 1.780353 0.000000 13 H 1.780353 1.780353 0.000000 14 C 3.168259 3.168259 3.913904 0.000000 15 H 3.472299 2.981141 4.167055 1.093336 0.000000 16 H 2.981141 3.472299 4.167055 1.093336 1.780353 17 H 4.167055 4.167055 4.761494 1.093336 1.780353 16 17 16 H 0.000000 17 H 1.780353 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 15 0 0.000000 0.000000 0.000000 2 6 0 1.048689 1.048689 1.048689 3 1 0 0.424543 1.683442 1.683442 4 1 0 1.683442 0.424543 1.683442 5 1 0 1.683442 1.683442 0.424543 6 6 0 -1.048689 -1.048689 1.048689 7 1 0 -1.683442 -0.424543 1.683442 8 1 0 -1.683442 -1.683442 0.424543 9 1 0 -0.424543 -1.683442 1.683442 10 6 0 -1.048689 1.048689 -1.048689 11 1 0 -0.424543 1.683442 -1.683442 12 1 0 -1.683442 0.424543 -1.683442 13 1 0 -1.683442 1.683442 -0.424543 14 6 0 1.048689 -1.048689 -1.048689 15 1 0 0.424543 -1.683442 -1.683442 16 1 0 1.683442 -0.424543 -1.683442 17 1 0 1.683442 -1.683442 -0.424543 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3090249 3.3090249 3.3090249 1|1| IMPERIAL COLLEGE-SKCH-135-049|FOpt|RB3LYP|6-31G(d,p)|C4H12P1(1+)| SG2317|23-May-2019|0||# opt b3lyp/6-31g(d,p) geom=connectivity integra l=grid=ultrafine||[P(CH3)4]+ optimisation||1,1|P,0.,-0.0000000012,-0.0 000000006|C,0.0000000015,-0.0000000038,1.81638225|H,-0.8901766877,-0.5 13943754,2.18898171|H,0.8901766898,-0.5139437564,2.1889817086|H,0.0000 000031,1.0278874974,2.1889817115|C,-0.0000000028,-1.7125016091,-0.6054 607533|H,-0.890176692,-2.2351063319,-0.2451097581|H,-0.0000000037,-1.7 211625801,-1.6987622037|H,0.8901766855,-2.2351063343,-0.2451097595|C,- 1.4830698966,0.8562508061,-0.6054607484|H,-1.4905705172,1.8884687936,- 0.2451097517|H,-1.4905705197,0.860581294,-1.6987621987|H,-2.380747208, 0.3466375422,-0.2451097532|C,1.4830698979,0.8562508021,-0.6054607507|H ,1.4905705193,0.86058129,-1.6987622011|H,1.4905705219,1.8884687896,-0. 2451097541|H,2.3807472085,0.3466375358,-0.245109757||Version=EM64W-G09 RevD.01|State=1-A1|HF=-500.8270304|RMSD=3.380e-009|RMSF=1.741e-005|Dip ole=0.,0.,0.|Quadrupole=0.,0.,0.,0.,0.,0.|PG=TD [O(P1),4C3(C1),6SGD(H2 )]||@ This summer one third of the nation will be ill-housed ill-nourished and ill-clad. Only they call it a vacation. -- Jonas Salk Job cpu time: 0 days 0 hours 0 minutes 21.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Thu May 23 13:39:34 2019.