Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_b01/g09/l1.exe /home/scan-user-1/run/41881/Gau-17891.inp -scrdir=/home/scan-user-1/run/41881/ Entering Link 1 = /apps/gaussian/g09_b01/g09/l1.exe PID= 17892. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 20-Mar-2011 ****************************************** %nprocshared=4 Will use up to 4 processors via shared memory. %mem=7000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.5357388.cx1/rwf --------------------------- # opt am1 geom=connectivity --------------------------- 1/14=-1,18=20,19=15,26=1,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=2,16=1,25=1,41=700000,71=1/1,2,3; 4/35=1/1; 5/5=2,35=1,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=2,16=1,25=1,41=700000,71=1,135=20/1,2,3; 4/5=5,16=3,35=1/1; 5/5=2,35=1,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ---------- [No Title] ---------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 C 4 B4 3 A3 2 D2 0 C 1 B5 2 A4 3 D3 0 H 1 B6 6 A5 5 D4 0 H 2 B7 1 A6 6 D5 0 H 3 B8 2 A7 1 D6 0 H 4 B9 3 A8 2 D7 0 H 4 B10 3 A9 2 D8 0 H 5 B11 4 A10 3 D9 0 H 5 B12 4 A11 3 D10 0 H 6 B13 1 A12 2 D11 0 Variables: B1 1.44943 B2 1.34272 B3 1.48335 B4 1.52053 B5 1.34279 B6 1.09974 B7 1.09976 B8 1.10021 B9 1.12346 B10 1.12596 B11 1.12343 B12 1.12606 B13 1.10032 A1 120.52531 A2 122.52084 A3 114.62412 A4 120.51018 A5 122.00664 A6 117.4872 A7 121.66236 A8 109.36645 A9 107.66137 A10 108.85319 A11 109.35671 A12 121.66239 D1 -1.70886 D2 18.02944 D3 -7.35225 D4 178.39818 D5 172.60424 D6 -179.57594 D7 140.59569 D8 -103.85429 D9 -147.66622 D10 96.14946 D11 -179.62691 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.4494 estimate D2E/DX2 ! ! R2 R(1,6) 1.3428 estimate D2E/DX2 ! ! R3 R(1,7) 1.0997 estimate D2E/DX2 ! ! R4 R(2,3) 1.3427 estimate D2E/DX2 ! ! R5 R(2,8) 1.0998 estimate D2E/DX2 ! ! R6 R(3,4) 1.4833 estimate D2E/DX2 ! ! R7 R(3,9) 1.1002 estimate D2E/DX2 ! ! R8 R(4,5) 1.5205 estimate D2E/DX2 ! ! R9 R(4,10) 1.1235 estimate D2E/DX2 ! ! R10 R(4,11) 1.126 estimate D2E/DX2 ! ! R11 R(5,6) 1.4833 estimate D2E/DX2 ! ! R12 R(5,12) 1.1234 estimate D2E/DX2 ! ! R13 R(5,13) 1.1261 estimate D2E/DX2 ! ! R14 R(6,14) 1.1003 estimate D2E/DX2 ! ! A1 A(2,1,6) 120.5102 estimate D2E/DX2 ! ! A2 A(2,1,7) 117.4832 estimate D2E/DX2 ! ! A3 A(6,1,7) 122.0066 estimate D2E/DX2 ! ! A4 A(1,2,3) 120.5253 estimate D2E/DX2 ! ! A5 A(1,2,8) 117.4872 estimate D2E/DX2 ! ! A6 A(3,2,8) 121.9875 estimate D2E/DX2 ! ! A7 A(2,3,4) 122.5208 estimate D2E/DX2 ! ! A8 A(2,3,9) 121.6624 estimate D2E/DX2 ! ! A9 A(4,3,9) 115.7852 estimate D2E/DX2 ! ! A10 A(3,4,5) 114.6241 estimate D2E/DX2 ! ! A11 A(3,4,10) 109.3664 estimate D2E/DX2 ! ! A12 A(3,4,11) 107.6614 estimate D2E/DX2 ! ! A13 A(5,4,10) 108.8727 estimate D2E/DX2 ! ! A14 A(5,4,11) 109.3367 estimate D2E/DX2 ! ! A15 A(10,4,11) 106.685 estimate D2E/DX2 ! ! A16 A(4,5,6) 114.6194 estimate D2E/DX2 ! ! A17 A(4,5,12) 108.8532 estimate D2E/DX2 ! ! A18 A(4,5,13) 109.3567 estimate D2E/DX2 ! ! A19 A(6,5,12) 109.3497 estimate D2E/DX2 ! ! A20 A(6,5,13) 107.6962 estimate D2E/DX2 ! ! A21 A(12,5,13) 106.671 estimate D2E/DX2 ! ! A22 A(1,6,5) 122.5326 estimate D2E/DX2 ! ! A23 A(1,6,14) 121.6624 estimate D2E/DX2 ! ! A24 A(5,6,14) 115.776 estimate D2E/DX2 ! ! D1 D(6,1,2,3) -7.3523 estimate D2E/DX2 ! ! D2 D(6,1,2,8) 172.6042 estimate D2E/DX2 ! ! D3 D(7,1,2,3) 172.5837 estimate D2E/DX2 ! ! D4 D(7,1,2,8) -7.4598 estimate D2E/DX2 ! ! D5 D(2,1,6,5) -1.6688 estimate D2E/DX2 ! ! D6 D(2,1,6,14) -179.6269 estimate D2E/DX2 ! ! D7 D(7,1,6,5) 178.3982 estimate D2E/DX2 ! ! D8 D(7,1,6,14) 0.4401 estimate D2E/DX2 ! ! D9 D(1,2,3,4) -1.7089 estimate D2E/DX2 ! ! D10 D(1,2,3,9) -179.5759 estimate D2E/DX2 ! ! D11 D(8,2,3,4) 178.3367 estimate D2E/DX2 ! ! D12 D(8,2,3,9) 0.4696 estimate D2E/DX2 ! ! D13 D(2,3,4,5) 18.0294 estimate D2E/DX2 ! ! D14 D(2,3,4,10) 140.5957 estimate D2E/DX2 ! ! D15 D(2,3,4,11) -103.8543 estimate D2E/DX2 ! ! D16 D(9,3,4,5) -163.9867 estimate D2E/DX2 ! ! D17 D(9,3,4,10) -41.4205 estimate D2E/DX2 ! ! D18 D(9,3,4,11) 74.1296 estimate D2E/DX2 ! ! D19 D(3,4,5,6) -24.8736 estimate D2E/DX2 ! ! D20 D(3,4,5,12) -147.6662 estimate D2E/DX2 ! ! D21 D(3,4,5,13) 96.1495 estimate D2E/DX2 ! ! D22 D(10,4,5,6) -147.7064 estimate D2E/DX2 ! ! D23 D(10,4,5,12) 89.5009 estimate D2E/DX2 ! ! D24 D(10,4,5,13) -26.6834 estimate D2E/DX2 ! ! D25 D(11,4,5,6) 96.0927 estimate D2E/DX2 ! ! D26 D(11,4,5,12) -26.6999 estimate D2E/DX2 ! ! D27 D(11,4,5,13) -142.8843 estimate D2E/DX2 ! ! D28 D(4,5,6,1) 17.9895 estimate D2E/DX2 ! ! D29 D(4,5,6,14) -163.9405 estimate D2E/DX2 ! ! D30 D(12,5,6,1) 140.5139 estimate D2E/DX2 ! ! D31 D(12,5,6,14) -41.4161 estimate D2E/DX2 ! ! D32 D(13,5,6,1) -103.9425 estimate D2E/DX2 ! ! D33 D(13,5,6,14) 74.1276 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 81 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.449430 3 6 0 1.156626 0.000000 2.131423 4 6 0 2.478559 -0.037298 1.459540 5 6 0 2.453713 0.353324 -0.009747 6 6 0 1.147351 0.148043 -0.681721 7 1 0 -0.967472 -0.125932 -0.507518 8 1 0 -0.975609 0.000741 1.957023 9 1 0 1.178471 -0.006931 3.231390 10 1 0 3.192069 0.638969 2.003341 11 1 0 2.883695 -1.082985 1.560516 12 1 0 3.247166 -0.227325 -0.553224 13 1 0 2.723479 1.441885 -0.111154 14 1 0 1.168525 0.156924 -1.781806 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.449430 0.000000 3 C 2.425025 1.342720 0.000000 4 C 2.876614 2.478861 1.483349 0.000000 5 C 2.479041 2.876586 2.528217 1.520529 0.000000 6 C 1.342786 2.424899 2.817052 2.528135 1.483332 7 H 1.099743 2.186666 3.389935 3.968918 3.490268 8 H 2.186722 1.099756 2.139355 3.490016 3.968973 9 H 3.439582 2.136404 1.100206 2.197863 3.501570 10 H 3.822429 3.302182 2.137221 1.123456 2.163165 11 H 3.453080 3.082352 2.116970 1.125962 2.171081 12 H 3.301790 3.821830 3.410186 2.162889 1.123427 13 H 3.083622 3.454243 3.092445 2.171417 1.126065 14 H 2.136564 3.439616 3.916392 3.501462 2.197835 6 7 8 9 10 6 C 0.000000 7 H 2.139599 0.000000 8 H 3.389930 2.467808 0.000000 9 H 3.916302 4.312617 2.502824 0.000000 10 H 3.410490 4.918462 4.216517 2.445377 0.000000 11 H 3.091593 4.474841 4.028139 2.618683 1.804526 12 H 2.136969 4.216105 4.917843 4.318724 2.699912 13 H 2.117488 4.029674 4.476327 3.957110 2.309836 14 H 1.100325 2.503258 4.312834 5.015883 4.319078 11 12 13 14 11 H 0.000000 12 H 2.309147 0.000000 13 H 3.032345 1.804421 0.000000 14 H 3.956046 2.444956 2.619177 0.000000 Stoichiometry C6H8 Framework group C1[X(C6H8)] Deg. of freedom 36 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.271866 0.723329 0.057733 2 6 0 1.272787 -0.721491 -0.057769 3 6 0 0.118968 -1.407947 -0.038368 4 6 0 -1.198293 -0.748745 0.136566 5 6 0 -1.199438 0.747060 -0.136516 6 6 0 0.116958 1.408071 0.037946 7 1 0 2.245093 1.224770 0.161764 8 1 0 2.246670 -1.221817 -0.161162 9 1 0 0.098310 -2.505092 -0.117735 10 1 0 -1.953286 -1.241155 -0.534010 11 1 0 -1.535594 -0.934838 1.194578 12 1 0 -1.954438 1.238107 0.535001 13 1 0 -1.538400 0.933122 -1.194111 14 1 0 0.094561 2.505241 0.118125 --------------------------------------------------------------------- Rotational constants (GHZ): 5.1492845 5.0360779 2.6555695 Standard basis: VSTO-6G (5D, 7F) There are 32 symmetry adapted basis functions of A symmetry. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. 32 basis functions, 192 primitive gaussians, 32 cartesian basis functions 16 alpha electrons 16 beta electrons nuclear repulsion energy 131.7325470970 Hartrees. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 32 RedAO= F NBF= 32 NBsUse= 32 1.00D-04 NBFU= 32 Simple Huckel Guess. Initial guess orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state of the initial guess is 1-A. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=882881. SCF Done: E(RAM1) = 0.277114284995E-01 A.U. after 12 cycles Convg = 0.4066D-08 -V/T = 1.0014 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -1.42072 -1.15737 -1.15733 -0.87772 -0.83008 Alpha occ. eigenvalues -- -0.63835 -0.61854 -0.56625 -0.54909 -0.51334 Alpha occ. eigenvalues -- -0.49096 -0.46146 -0.43090 -0.41920 -0.41668 Alpha occ. eigenvalues -- -0.32194 Alpha virt. eigenvalues -- 0.01680 0.08255 0.14003 0.14309 0.14805 Alpha virt. eigenvalues -- 0.15747 0.16060 0.16479 0.17312 0.17698 Alpha virt. eigenvalues -- 0.18118 0.19182 0.19184 0.21390 0.21445 Alpha virt. eigenvalues -- 0.22600 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.140009 0.000000 0.000000 0.000000 0.000000 0.000000 2 C 0.000000 4.140049 0.000000 0.000000 0.000000 0.000000 3 C 0.000000 0.000000 4.154889 0.000000 0.000000 0.000000 4 C 0.000000 0.000000 0.000000 4.129159 0.000000 0.000000 5 C 0.000000 0.000000 0.000000 0.000000 4.129138 0.000000 6 C 0.000000 0.000000 0.000000 0.000000 0.000000 4.154884 7 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 8 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 9 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 11 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 12 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 13 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 14 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 7 8 9 10 11 12 1 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 7 H 0.872705 0.000000 0.000000 0.000000 0.000000 0.000000 8 H 0.000000 0.872749 0.000000 0.000000 0.000000 0.000000 9 H 0.000000 0.000000 0.877247 0.000000 0.000000 0.000000 10 H 0.000000 0.000000 0.000000 0.913735 0.000000 0.000000 11 H 0.000000 0.000000 0.000000 0.000000 0.912215 0.000000 12 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.913788 13 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 14 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 13 14 1 C 0.000000 0.000000 2 C 0.000000 0.000000 3 C 0.000000 0.000000 4 C 0.000000 0.000000 5 C 0.000000 0.000000 6 C 0.000000 0.000000 7 H 0.000000 0.000000 8 H 0.000000 0.000000 9 H 0.000000 0.000000 10 H 0.000000 0.000000 11 H 0.000000 0.000000 12 H 0.000000 0.000000 13 H 0.912172 0.000000 14 H 0.000000 0.877261 Mulliken atomic charges: 1 1 C -0.140009 2 C -0.140049 3 C -0.154889 4 C -0.129159 5 C -0.129138 6 C -0.154884 7 H 0.127295 8 H 0.127251 9 H 0.122753 10 H 0.086265 11 H 0.087785 12 H 0.086212 13 H 0.087828 14 H 0.122739 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.012715 2 C -0.012797 3 C -0.032136 4 C 0.044892 5 C 0.044903 6 C -0.032146 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.4315 Y= -0.0003 Z= 0.0015 Tot= 0.4315 N-N= 1.317325470970D+02 E-N=-2.214834834686D+02 KE=-2.018635000877D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000055242 -0.000015851 -0.000018521 2 6 -0.000080220 0.000030620 0.000022866 3 6 0.000085986 -0.000065320 -0.000012350 4 6 -0.000026646 0.000074535 0.000004580 5 6 0.000005919 -0.000008417 0.000015052 6 6 0.000000968 0.000000870 -0.000060303 7 1 0.000012661 0.000001493 -0.000012229 8 1 -0.000004250 0.000019247 -0.000007230 9 1 -0.000002349 0.000021029 0.000053816 10 1 -0.000026721 -0.000001791 -0.000011473 11 1 0.000033321 -0.000075974 0.000028742 12 1 0.000008418 -0.000010287 -0.000021226 13 1 -0.000042747 0.000007139 -0.000004696 14 1 -0.000019582 0.000022708 0.000022972 ------------------------------------------------------------------- Cartesian Forces: Max 0.000085986 RMS 0.000034579 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000085125 RMS 0.000021913 Search for a local minimum. Step number 1 out of a maximum of 81 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00744 0.01449 0.01601 0.01789 0.02109 Eigenvalues --- 0.02116 0.02419 0.03802 0.03903 0.05590 Eigenvalues --- 0.05907 0.09797 0.09814 0.09911 0.12419 Eigenvalues --- 0.15990 0.15991 0.16000 0.16000 0.21443 Eigenvalues --- 0.21513 0.22000 0.29577 0.30957 0.30967 Eigenvalues --- 0.31216 0.31219 0.32844 0.33646 0.33659 Eigenvalues --- 0.33698 0.33709 0.33711 0.37400 0.53747 Eigenvalues --- 0.55603 RFO step: Lambda=-3.11993051D-07 EMin= 7.44328020D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00037814 RMS(Int)= 0.00000015 Iteration 2 RMS(Cart)= 0.00000015 RMS(Int)= 0.00000005 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.73903 0.00004 0.00000 0.00012 0.00012 2.73914 R2 2.53750 -0.00003 0.00000 -0.00006 -0.00006 2.53743 R3 2.07821 -0.00001 0.00000 -0.00002 -0.00002 2.07820 R4 2.53737 0.00007 0.00000 0.00013 0.00013 2.53750 R5 2.07824 0.00000 0.00000 0.00000 0.00000 2.07824 R6 2.80312 -0.00001 0.00000 -0.00003 -0.00003 2.80309 R7 2.07909 0.00005 0.00000 0.00016 0.00016 2.07925 R8 2.87338 0.00004 0.00000 0.00012 0.00012 2.87350 R9 2.12302 -0.00002 0.00000 -0.00008 -0.00008 2.12295 R10 2.12776 0.00009 0.00000 0.00027 0.00027 2.12804 R11 2.80309 -0.00002 0.00000 -0.00006 -0.00006 2.80303 R12 2.12297 0.00002 0.00000 0.00007 0.00007 2.12304 R13 2.12795 0.00000 0.00000 -0.00001 -0.00001 2.12794 R14 2.07931 -0.00002 0.00000 -0.00007 -0.00007 2.07924 A1 2.10330 0.00003 0.00000 0.00013 0.00013 2.10343 A2 2.05047 0.00000 0.00000 0.00004 0.00004 2.05051 A3 2.12942 -0.00003 0.00000 -0.00018 -0.00018 2.12924 A4 2.10356 -0.00002 0.00000 -0.00008 -0.00008 2.10349 A5 2.05054 0.00000 0.00000 -0.00002 -0.00002 2.05052 A6 2.12908 0.00002 0.00000 0.00009 0.00009 2.12918 A7 2.13839 -0.00002 0.00000 -0.00004 -0.00004 2.13835 A8 2.12341 0.00000 0.00000 0.00001 0.00001 2.12342 A9 2.02083 0.00001 0.00000 0.00006 0.00006 2.02089 A10 2.00057 0.00000 0.00000 0.00001 0.00001 2.00058 A11 1.90880 -0.00001 0.00000 -0.00023 -0.00023 1.90857 A12 1.87905 0.00000 0.00000 0.00008 0.00008 1.87912 A13 1.90019 0.00000 0.00000 -0.00016 -0.00016 1.90003 A14 1.90829 0.00001 0.00000 0.00030 0.00030 1.90858 A15 1.86200 0.00000 0.00000 0.00001 0.00001 1.86202 A16 2.00049 0.00003 0.00000 0.00009 0.00009 2.00057 A17 1.89985 0.00001 0.00000 0.00023 0.00023 1.90008 A18 1.90863 0.00000 0.00000 -0.00006 -0.00006 1.90857 A19 1.90851 -0.00001 0.00000 0.00004 0.00004 1.90856 A20 1.87965 -0.00003 0.00000 -0.00046 -0.00046 1.87919 A21 1.86176 0.00001 0.00000 0.00016 0.00016 1.86192 A22 2.13860 -0.00002 0.00000 -0.00016 -0.00016 2.13844 A23 2.12341 0.00000 0.00000 -0.00003 -0.00003 2.12338 A24 2.02067 0.00003 0.00000 0.00017 0.00017 2.02085 D1 -0.12832 -0.00001 0.00000 -0.00068 -0.00068 -0.12900 D2 3.01251 -0.00002 0.00000 -0.00085 -0.00085 3.01166 D3 3.01215 0.00000 0.00000 -0.00006 -0.00006 3.01209 D4 -0.13020 -0.00001 0.00000 -0.00024 -0.00024 -0.13044 D5 -0.02913 0.00001 0.00000 0.00019 0.00019 -0.02894 D6 -3.13508 0.00002 0.00000 0.00096 0.00096 -3.13412 D7 3.11364 -0.00001 0.00000 -0.00046 -0.00046 3.11318 D8 0.00768 0.00001 0.00000 0.00032 0.00032 0.00800 D9 -0.02983 0.00001 0.00000 0.00080 0.00080 -0.02902 D10 -3.13419 -0.00002 0.00000 -0.00051 -0.00051 -3.13470 D11 3.11256 0.00002 0.00000 0.00099 0.00099 3.11355 D12 0.00820 -0.00001 0.00000 -0.00032 -0.00032 0.00787 D13 0.31467 -0.00001 0.00000 -0.00046 -0.00046 0.31421 D14 2.45386 -0.00002 0.00000 -0.00084 -0.00084 2.45302 D15 -1.81260 -0.00003 0.00000 -0.00090 -0.00090 -1.81350 D16 -2.86211 0.00001 0.00000 0.00078 0.00078 -2.86133 D17 -0.72292 0.00000 0.00000 0.00040 0.00040 -0.72253 D18 1.29381 0.00000 0.00000 0.00033 0.00033 1.29414 D19 -0.43413 0.00000 0.00000 -0.00007 -0.00007 -0.43420 D20 -2.57726 -0.00001 0.00000 -0.00037 -0.00037 -2.57763 D21 1.67812 -0.00003 0.00000 -0.00065 -0.00065 1.67747 D22 -2.57796 0.00001 0.00000 0.00035 0.00035 -2.57762 D23 1.56209 0.00001 0.00000 0.00005 0.00005 1.56214 D24 -0.46571 -0.00001 0.00000 -0.00024 -0.00024 -0.46595 D25 1.67713 0.00001 0.00000 0.00026 0.00026 1.67739 D26 -0.46600 0.00000 0.00000 -0.00004 -0.00004 -0.46604 D27 -2.49380 -0.00002 0.00000 -0.00032 -0.00032 -2.49413 D28 0.31398 0.00000 0.00000 0.00016 0.00016 0.31414 D29 -2.86130 -0.00001 0.00000 -0.00057 -0.00057 -2.86188 D30 2.45243 0.00001 0.00000 0.00056 0.00056 2.45299 D31 -0.72285 0.00000 0.00000 -0.00018 -0.00018 -0.72302 D32 -1.81414 0.00000 0.00000 0.00052 0.00052 -1.81362 D33 1.29377 -0.00001 0.00000 -0.00021 -0.00021 1.29356 Item Value Threshold Converged? Maximum Force 0.000085 0.000450 YES RMS Force 0.000022 0.000300 YES Maximum Displacement 0.001533 0.001800 YES RMS Displacement 0.000378 0.001200 YES Predicted change in Energy=-1.559995D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.4494 -DE/DX = 0.0 ! ! R2 R(1,6) 1.3428 -DE/DX = 0.0 ! ! R3 R(1,7) 1.0997 -DE/DX = 0.0 ! ! R4 R(2,3) 1.3427 -DE/DX = 0.0001 ! ! R5 R(2,8) 1.0998 -DE/DX = 0.0 ! ! R6 R(3,4) 1.4833 -DE/DX = 0.0 ! ! R7 R(3,9) 1.1002 -DE/DX = 0.0001 ! ! R8 R(4,5) 1.5205 -DE/DX = 0.0 ! ! R9 R(4,10) 1.1235 -DE/DX = 0.0 ! ! R10 R(4,11) 1.126 -DE/DX = 0.0001 ! ! R11 R(5,6) 1.4833 -DE/DX = 0.0 ! ! R12 R(5,12) 1.1234 -DE/DX = 0.0 ! ! R13 R(5,13) 1.1261 -DE/DX = 0.0 ! ! R14 R(6,14) 1.1003 -DE/DX = 0.0 ! ! A1 A(2,1,6) 120.5102 -DE/DX = 0.0 ! ! A2 A(2,1,7) 117.4832 -DE/DX = 0.0 ! ! A3 A(6,1,7) 122.0066 -DE/DX = 0.0 ! ! A4 A(1,2,3) 120.5253 -DE/DX = 0.0 ! ! A5 A(1,2,8) 117.4872 -DE/DX = 0.0 ! ! A6 A(3,2,8) 121.9875 -DE/DX = 0.0 ! ! A7 A(2,3,4) 122.5208 -DE/DX = 0.0 ! ! A8 A(2,3,9) 121.6624 -DE/DX = 0.0 ! ! A9 A(4,3,9) 115.7852 -DE/DX = 0.0 ! ! A10 A(3,4,5) 114.6241 -DE/DX = 0.0 ! ! A11 A(3,4,10) 109.3664 -DE/DX = 0.0 ! ! A12 A(3,4,11) 107.6614 -DE/DX = 0.0 ! ! A13 A(5,4,10) 108.8727 -DE/DX = 0.0 ! ! A14 A(5,4,11) 109.3367 -DE/DX = 0.0 ! ! A15 A(10,4,11) 106.685 -DE/DX = 0.0 ! ! A16 A(4,5,6) 114.6194 -DE/DX = 0.0 ! ! A17 A(4,5,12) 108.8532 -DE/DX = 0.0 ! ! A18 A(4,5,13) 109.3567 -DE/DX = 0.0 ! ! A19 A(6,5,12) 109.3497 -DE/DX = 0.0 ! ! A20 A(6,5,13) 107.6962 -DE/DX = 0.0 ! ! A21 A(12,5,13) 106.671 -DE/DX = 0.0 ! ! A22 A(1,6,5) 122.5326 -DE/DX = 0.0 ! ! A23 A(1,6,14) 121.6624 -DE/DX = 0.0 ! ! A24 A(5,6,14) 115.776 -DE/DX = 0.0 ! ! D1 D(6,1,2,3) -7.3523 -DE/DX = 0.0 ! ! D2 D(6,1,2,8) 172.6042 -DE/DX = 0.0 ! ! D3 D(7,1,2,3) 172.5837 -DE/DX = 0.0 ! ! D4 D(7,1,2,8) -7.4598 -DE/DX = 0.0 ! ! D5 D(2,1,6,5) -1.6688 -DE/DX = 0.0 ! ! D6 D(2,1,6,14) -179.6269 -DE/DX = 0.0 ! ! D7 D(7,1,6,5) 178.3982 -DE/DX = 0.0 ! ! D8 D(7,1,6,14) 0.4401 -DE/DX = 0.0 ! ! D9 D(1,2,3,4) -1.7089 -DE/DX = 0.0 ! ! D10 D(1,2,3,9) -179.5759 -DE/DX = 0.0 ! ! D11 D(8,2,3,4) 178.3367 -DE/DX = 0.0 ! ! D12 D(8,2,3,9) 0.4696 -DE/DX = 0.0 ! ! D13 D(2,3,4,5) 18.0294 -DE/DX = 0.0 ! ! D14 D(2,3,4,10) 140.5957 -DE/DX = 0.0 ! ! D15 D(2,3,4,11) -103.8543 -DE/DX = 0.0 ! ! D16 D(9,3,4,5) -163.9867 -DE/DX = 0.0 ! ! D17 D(9,3,4,10) -41.4205 -DE/DX = 0.0 ! ! D18 D(9,3,4,11) 74.1296 -DE/DX = 0.0 ! ! D19 D(3,4,5,6) -24.8736 -DE/DX = 0.0 ! ! D20 D(3,4,5,12) -147.6662 -DE/DX = 0.0 ! ! D21 D(3,4,5,13) 96.1495 -DE/DX = 0.0 ! ! D22 D(10,4,5,6) -147.7064 -DE/DX = 0.0 ! ! D23 D(10,4,5,12) 89.5009 -DE/DX = 0.0 ! ! D24 D(10,4,5,13) -26.6834 -DE/DX = 0.0 ! ! D25 D(11,4,5,6) 96.0927 -DE/DX = 0.0 ! ! D26 D(11,4,5,12) -26.6999 -DE/DX = 0.0 ! ! D27 D(11,4,5,13) -142.8843 -DE/DX = 0.0 ! ! D28 D(4,5,6,1) 17.9895 -DE/DX = 0.0 ! ! D29 D(4,5,6,14) -163.9405 -DE/DX = 0.0 ! ! D30 D(12,5,6,1) 140.5139 -DE/DX = 0.0 ! ! D31 D(12,5,6,14) -41.4161 -DE/DX = 0.0 ! ! D32 D(13,5,6,1) -103.9425 -DE/DX = 0.0 ! ! D33 D(13,5,6,14) 74.1276 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.449430 3 6 0 1.156626 0.000000 2.131423 4 6 0 2.478559 -0.037298 1.459540 5 6 0 2.453713 0.353324 -0.009747 6 6 0 1.147351 0.148043 -0.681721 7 1 0 -0.967472 -0.125932 -0.507518 8 1 0 -0.975609 0.000741 1.957023 9 1 0 1.178471 -0.006931 3.231390 10 1 0 3.192069 0.638969 2.003341 11 1 0 2.883695 -1.082985 1.560516 12 1 0 3.247166 -0.227325 -0.553224 13 1 0 2.723479 1.441885 -0.111154 14 1 0 1.168525 0.156924 -1.781806 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.449430 0.000000 3 C 2.425025 1.342720 0.000000 4 C 2.876614 2.478861 1.483349 0.000000 5 C 2.479041 2.876586 2.528217 1.520529 0.000000 6 C 1.342786 2.424899 2.817052 2.528135 1.483332 7 H 1.099743 2.186666 3.389935 3.968918 3.490268 8 H 2.186722 1.099756 2.139355 3.490016 3.968973 9 H 3.439582 2.136404 1.100206 2.197863 3.501570 10 H 3.822429 3.302182 2.137221 1.123456 2.163165 11 H 3.453080 3.082352 2.116970 1.125962 2.171081 12 H 3.301790 3.821830 3.410186 2.162889 1.123427 13 H 3.083622 3.454243 3.092445 2.171417 1.126065 14 H 2.136564 3.439616 3.916392 3.501462 2.197835 6 7 8 9 10 6 C 0.000000 7 H 2.139599 0.000000 8 H 3.389930 2.467808 0.000000 9 H 3.916302 4.312617 2.502824 0.000000 10 H 3.410490 4.918462 4.216517 2.445377 0.000000 11 H 3.091593 4.474841 4.028139 2.618683 1.804526 12 H 2.136969 4.216105 4.917843 4.318724 2.699912 13 H 2.117488 4.029674 4.476327 3.957110 2.309836 14 H 1.100325 2.503258 4.312834 5.015883 4.319078 11 12 13 14 11 H 0.000000 12 H 2.309147 0.000000 13 H 3.032345 1.804421 0.000000 14 H 3.956046 2.444956 2.619177 0.000000 Stoichiometry C6H8 Framework group C1[X(C6H8)] Deg. of freedom 36 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.271866 0.723329 0.057733 2 6 0 1.272787 -0.721491 -0.057769 3 6 0 0.118968 -1.407947 -0.038368 4 6 0 -1.198293 -0.748745 0.136566 5 6 0 -1.199438 0.747060 -0.136516 6 6 0 0.116958 1.408071 0.037946 7 1 0 2.245093 1.224770 0.161764 8 1 0 2.246670 -1.221817 -0.161162 9 1 0 0.098310 -2.505092 -0.117735 10 1 0 -1.953286 -1.241155 -0.534010 11 1 0 -1.535594 -0.934838 1.194578 12 1 0 -1.954438 1.238107 0.535001 13 1 0 -1.538400 0.933122 -1.194111 14 1 0 0.094561 2.505241 0.118125 --------------------------------------------------------------------- Rotational constants (GHZ): 5.1492845 5.0360779 2.6555695 B after Tr= 2.399429 0.153744 1.369713 Rot= -0.021490 -0.023745 0.734357 -0.678007 Ang= 182.46 deg. Final structure in terms of initial Z-matrix: C C,1,B1 C,2,B2,1,A1 C,3,B3,2,A2,1,D1,0 C,4,B4,3,A3,2,D2,0 C,1,B5,2,A4,3,D3,0 H,1,B6,6,A5,5,D4,0 H,2,B7,1,A6,6,D5,0 H,3,B8,2,A7,1,D6,0 H,4,B9,3,A8,2,D7,0 H,4,B10,3,A9,2,D8,0 H,5,B11,4,A10,3,D9,0 H,5,B12,4,A11,3,D10,0 H,6,B13,1,A12,2,D11,0 Variables: B1=1.44943001 B2=1.34272021 B3=1.48334949 B4=1.52052879 B5=1.34278611 B6=1.09974342 B7=1.0997559 B8=1.10020573 B9=1.12345573 B10=1.12596243 B11=1.12342669 B12=1.12606473 B13=1.10032452 A1=120.5253096 A2=122.52083909 A3=114.62412019 A4=120.5101784 A5=122.00663623 A6=117.48720416 A7=121.66235806 A8=109.36644703 A9=107.66137032 A10=108.85318685 A11=109.35670653 A12=121.66239018 D1=-1.70885839 D2=18.02944296 D3=-7.35225263 D4=178.398177 D5=172.60423641 D6=-179.57594133 D7=140.59568513 D8=-103.85428804 D9=-147.66621665 D10=96.14946377 D11=-179.62690653 1\1\GINC-CX1-7-36-2\FOpt\RAM1\ZDO\C6H8\SCAN-USER-1\20-Mar-2011\0\\# op t am1 geom=connectivity\\[No Title]\\0,1\C,0.,0.,0.\C,0.,0.,1.44943001 \C,1.1566257393,0.,2.1314230169\C,2.4785592587,-0.0372984738,1.4595403 607\C,2.4537134765,0.3533240548,-0.009746721\C,1.1473510305,0.14804271 42,-0.6817209875\H,-0.967471947,-0.1259323107,-0.507518152\H,-0.975608 5006,0.0007408865,1.9570229021\H,1.1784711795,-0.006930786,3.231390011 5\H,3.1920690879,0.6389685679,2.0033412334\H,2.8836952397,-1.082984966 2,1.5605155571\H,3.2471658298,-0.2273248193,-0.5532242053\H,2.72347898 2,1.4418849837,-0.1111540801\H,1.1685246075,0.1569237807,-1.7818059186 \\Version=EM64L-G09RevB.01\State=1-A\HF=0.0277114\RMSD=4.066e-09\RMSF= 3.458e-05\Dipole=0.1694589,0.0102564,-0.0000458\PG=C01 [X(C6H8)]\\@ Change starts when someone sees the next step. -- William Drayton Job cpu time: 0 days 0 hours 0 minutes 3.4 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Sun Mar 20 19:56:08 2011.