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3rd YEAR CMP COMPULSORY EXPERIMENT 
 

Introduction to the Ising model 

 
TASK:  

1. Show that the lowest possible energy for the Ising model is , where  is the 
number of dimensions and  is the total number of spins.  

2. What is the multiplicity of this state?  
3. Calculate its entropy. 

 
1. 

𝐸 = −
1

2
𝐽 ∑ ∑ 𝑠𝑖

𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 (𝑖)

𝑁

𝑖

𝑠𝑗 

In the ground state all spins face the same direction. By trail: 
 

Dimension ∑ 𝑠𝑖𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 (𝑖) 𝑠𝑗  in ground state 

1D 2 

2D 4 

3D 6 

 
Gives the relationship: 

∑ 𝑠𝑖

𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 (𝑖)

𝑠𝑗 = 2𝐷  

∑ ∑ 𝑠𝑖

𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 (𝑖)

𝑁

𝑖

𝑠𝑗 = 𝑁(2𝐷) 

Therefore: 

𝐸 = −
1

2
𝐽 ∑ ∑ 𝑠𝑖

𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 (𝑖)

𝑁

𝑖

𝑠𝑗 = −
1

2
𝐽 × 𝑁(2𝐷) 

 
And so the lowest possible energy is: 

𝐸 = −𝐷𝑁𝐽 
 
2. The multiplicity of this state is 2. 
3. Definition of entropy: 

𝑆 = 𝑘𝐵𝑙𝑛𝑊 
 
Where W is number of microstates, kB is the Boltzmann constant and S is the entropy.  
Since W = 2: 

𝑆0 = 1.38 × 10−23 × 𝑙𝑛2 
𝑆0 = 9.565 × 10−24 JK−1 

 
TASK: Imagine that the system is in the lowest energy configuration. To move to a different state, one of 
the spins must spontaneously change direction ("flip"). 

1. What is the change in energy if this happens ( )?  
2. How much entropy does the system gain by doing so? 
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1. Lowest energy configuration is all spins aligned.  
 
1 spin flipped:  

𝐸 = −
1

2
𝐽((2𝑁𝐷) + 6 + 6) 

𝐸 = −𝐽(𝑁𝐷 + 6) 
 
because loss of favourable interaction gives +6, and gain of unfavourable interaction gives +6 again since    
is unfavourable. The number 6 is due to each cell having 6 adjacent cells in a 3-D structure and so each 6 * 
-1 = -6 as the cell has opposite spin to the adjacent cells. 
 
When D = 3 and N = 1000: 

𝐸 = −𝐽 ∗ (3 ∗ 1000 + 6) 
𝐸 = −2994𝐽  

 
Change in E between ground state and spin flipped state: 

∆𝐸 = 𝐸 − 𝐸0 
∆𝐸 = −2994𝐽 − −3000𝐽 = +𝟔𝑱   

 
2. The entropy becomes: 
 
W = N = 1000 

𝑆 = 1.38𝐸 − 23 ∗ 𝑙𝑛1000 = 9.533𝐸 − 23  JK−1 
 
Therefore the change in entropy is: 

∆𝑆 = 𝑆 − 𝑆0 
∆𝑆 = 9.533𝐸 − 23 − 9.565𝐸 − 24 = 8.576𝐸 − 23 JK−1 

∆𝑺 = 𝟓𝟏. 𝟔𝟑 𝐉𝐊−𝟏𝐦𝐨𝐥−𝟏 
 
Hence the system has increased in entropy as it has become more disordered. 
 
TASK:  

1. Calculate the magnetisation of the 1D and 2D lattices in figure 1.  

2. What magnetisation would you expect to observe for an Ising lattice with  at 
absolute zero? 

 
1. Expression for magnetization is given by: 

 
1D lattice:  M = 3 - 2 = 1  
2D lattice:  M = 13 – 12 = -1  
 
2. At 0 K the system will be in its ground state. Therefore all 
the spins will be in the same directions (all +1 or all -1). 
 
D = 3, N = 1000 
M = ±1000 
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Calculating the energy and magnetisation 

 
TASK: complete the functions energy() and magnetisation(), which should return the energy of the 
lattice and the total magnetisation, respectively. In the energy() function you may assume 

that  at all times (in fact, we are working in reduced units in which , but there will be 
more information about this in later sections). Do not worry about the efficiency of the code at the 
moment — we will address the speed in a later part of the experiment. 
 
EnergyAndMagnetisation.py  
 
TASK: Run the ILcheck.py script from the IPython Qt console using the command 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction to Monte Carlo simulation 

 
TASK:  

1. How many configurations are available to a system with 100 spins?  
2. To evaluate these expressions, we have to calculate the energy and magnetisation for each of 

these configurations, then perform the sum. Let's be very, very, generous, and say that we can 

analyse  configurations per second with our computer. How long will it take to evaluate 

a single value of ? 
 
1. Since there are 2 options of what each cell could be (+1 or -1): 
 

no. of possible configs = 2100 = 𝟏. 𝟐𝟔 × 1030 
 
Time to evaluate configurations of 100 spin system, T: 

T =
1.26 × 1030

1 × 109
= 1.268 × 1021 seconds 

𝐓 = 𝟒𝟎, 𝟏𝟖𝟏, 𝟑𝟓𝟑, 𝟓𝟑𝟐, 𝟑𝟒𝟑 𝐲𝐞𝐚𝐫𝐬 
 

TASK: Implement a single cycle of the above algorithm in the montecarlocycle(T) function. This function 
should return the energy of your lattice and the magnetisation at the end of the cycle. You may assume 

that the energy returned by your energy() function is in units of ! Complete the statistics() function. 
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This should return the following quantities whenever it is called: 
, and the number of Monte Carlo steps that have elapsed. 

 

MonteCarloAndStastics.py 
 
 
 
TASK: 

1.  If , do you expect a spontaneous magnetisation (i.e. do you expect )?  
2. When the state of the simulation appears to stop changing (when you have reached an 

equilibrium state), use the controls to export the output to PNG and attach this to your report. 
3. You should also include the output from your statistics() function. 

 
1. If Temp is less than the Currie temperature then expect <M> ≠0 as all the spins will be aligned in a 
ferromagnetic material so there will be a strong dipole. 
 
2.  

3.  

 
 

Accelerating the code 

 
TASK: Use the script ILtimetrial.py to record how long your current version of IsingLattice.py takes to 
perform 2000 Monte Carlo steps. This will vary, depending on what else the computer happens to be 
doing, so perform repeats and report the error in your average! 

Time to perform 2000 steps/ seconds 
8.111257549 
8.084071129 
8.090109769 



Hayley Weir 

 

8.047899733 
8.036258632 
8.047862672 
8.083449932 
Standard Deviation: 
0.02764491 

Standard Error: 
0.010448794 

Average:  
8.071558488 ± 0.010448794 

TASK: Look at the documentation for the NumPy sum function. You should be able to modify your 
magnetisation() function so that it uses this to evaluate M. The energy is a little trickier. Familiarise 
yourself with the NumPy roll and multiply functions, and use these to replace your energy double loop 
(you will need to call roll and multiply twice!). 

AcceleratedEnergyAndMagnetisation.py: 

TASK: Use the script ILtimetrial.py to record how long your new version of IsingLattice.py takes to 
perform 2000 Monte Carlo steps. This will vary, depending on what else the computer happens to be 
doing, so perform repeats and report the error in your average! 

 

Accelerated Code 
0.182258169 
0.190376778 
0.179950703 
0.179642813 
0.180751218 
0.208782055 
0.17884857 
Standard Deviation: 
0.010859743 

Standard Error: 
0.004104597 

Average:  
0.185801472 ± 0.004104597 

 

The effect of temperature 

 
TASK: The script ILfinalframe.py runs for a given number of cycles at a given temperature, then plots a 
depiction of the final lattice state as well as graphs of the energy and magnetisation as a function of 
cycle number. This is much quicker than animating every frame! Experiment with different temperature 
and lattice sizes. How many cycles are typically needed for the system to go from its random starting 
position to the equilibrium state? Modify your statistics() and montecarlostep() functions so that the 
first N cycles of the simulation are ignored when calculating the averages. You should state in your 
report what period you chose to ignore, and include graphs from ILfinalframe.py to illustrate your 
motivation in choosing this figure. 
 

Steps to reach equilibrium 
450 
520 
800 

http://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.roll.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.multiply.html
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2800 
400 
890 
550 

 
Maximum was 2800 so 4000 was used as it is significantly bigger than 2800, however it isn’t so big so that 
it takes a lot of time to get results. 

Calculating the heat capacity 

TASK: By definition, From this, show that . 

𝐶 =  
𝜕〈𝐸〉

𝜕𝑇
 

[𝐸] =
1

𝑍
∑ 𝐸𝑖𝑒

−
𝐸𝑖

𝑘𝐵𝑇
 
        (1)

∞

𝑖

  

Z – Normalisation factor so when integrated over all space equals 1. 

𝑍 = ∑ 𝑒
−

𝐸𝑖
𝑘𝐵𝑇

 
       (2)

∞

𝑖

 

combining (1) and (2) gives: 

[𝐸] =
1

∑ 𝑒
−

𝐸𝑖
𝑘𝐵𝑇

 ∞
𝑖

∑ 𝐸𝑖𝑒
−

𝐸𝑖
𝑘𝐵𝑇

 
∞

𝑖

  

therefore: 

𝐶 =  
𝜕〈𝐸〉

𝜕𝑇
=

𝜕

𝜕𝑇
(

∑ 𝐸𝑖𝑒
−

𝐸𝑖
𝑘𝐵𝑇

 ∞
𝑖

∑ 𝑒
−

𝐸𝑖
𝑘𝐵𝑇

 ∞
𝑖

) 

Substituting  

𝐴 =  ∑ 𝐸𝑖𝑒
−

𝐸𝑖
𝑘𝐵𝑇

 
∞

𝑖

 

and 

𝑍 = ∑ 𝑒
−

𝐸𝑖
𝑘𝐵𝑇

 
∞

𝑖

 

𝜕〈𝐸〉

𝜕𝑇
=

𝜕

𝜕𝑇
(

𝐴

𝑍
) = −

𝐴

𝑍2

𝜕𝑍

𝜕𝑇
+

1

𝑍

𝜕𝐴

𝜕𝑇
 

𝜕𝑍

𝜕𝑇
= ∑

𝐸𝑖

𝑘𝐵𝑇2
𝑒

−
𝐸𝑖

𝑘𝐵𝑇
 

∞

𝑖

 

𝜕𝐴

𝜕𝑇
= ∑

𝐸𝑖
2

𝑘𝐵𝑇2
𝑒

−
𝐸𝑖

𝑘𝐵𝑇
 

∞

𝑖

 

Therefore, substituting gives: 
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𝜕〈𝐸〉

𝜕𝑇
=

𝜕

𝜕𝑇
(

𝐴

𝑍
) = −

𝐴

𝑍2
∑

𝐸𝑖

𝑘𝐵𝑇2
𝑒

−
𝐸𝑖

𝑘𝐵𝑇
 

∞

𝑖

+
1

𝑍
∑

𝐸𝑖
2

𝑘𝐵𝑇2
𝑒

−
𝐸𝑖

𝑘𝐵𝑇
 

∞

𝑖

 

=
1

𝑘𝐵𝑇2
(−

𝐴

𝑍
∑ 𝐸𝑖𝑒

−
𝐸𝑖

𝑘𝐵𝑇
 

∞

𝑖

+
1

𝑍
∑ 𝐸𝑖

2𝑒
−

𝐸𝑖
𝑘𝐵𝑇

 
∞

𝑖

) 

=
1

𝑘𝐵𝑇2
(−

𝐴2

𝑍2
+ ∑

1

𝑍
𝐸𝑖

2𝑒
−

𝐸𝑖
𝑘𝐵𝑇

 
∞

𝑖

) 

=
1

𝑘𝐵𝑇2
(−〈𝐸〉2 + 〈𝐸2〉) 

Since:  

Var[𝐸] = 〈𝐸2〉−〈𝐸〉2 

Gives the relationship: 

𝜕〈𝐸〉

𝜕𝑇
=

Var[𝐸]

𝑘𝐵𝑇
 

TASK: Write a Python script to make a plot showing the heat capacity versus temperature for each of 
your lattice sizes from the previous section. You may need to do some research to recall the connection 

between the variance of a variable, , the mean of its square , and its squared 
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mean . You may find that the data around the peak is very noisy — this is normal, and is a result of 
being in the critical region. As before, use the plot controls to save your a PNG image of your plot and 
attach this to the report. 

 

 

 

 

 

TASK: A C++ program has been used to run some much longer simulations than would be possible on the 
college computers in Python. You can view its source code here if you are interested. Each file contains 

six columns:  (the final five quantities are per spin), and you can read them with 
the NumPy loadtxt function as before. For each lattice size, plot the C++ data against your data. 
For one lattice size, save a PNG of this comparison and add it to your report — add a legend to the graph 
to label which is which. To do this, you will need to pass the label="..." keyword to the plot function, 
then call the legend() function of the axis object (documentation here). 

 
TASK: write a script to read the data from a particular file, and plot C vs T, as well as a fitted polynomial. 
Try changing the degree of the polynomial to improve the fit — in general, it might be difficult to get a 
good fit! Attach a PNG of an example fit to your report. 

https://github.com/niallj/ducking-avenger/tree/master/Ising
http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes.legend
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CPlusPlusVsMyDataPolyfit.py 

TASK: Modify your script from the previous section. You should still plot the whole temperature range, 
but fit the polynomial only to the peak of the heat capacity! You should find it easier to get a good fit 
when restricted to this region. 

CPlusPlusVsMyDataPolyfitPart2.py 
 

TASK:  

1. Find the temperature at which the maximum in C occurs for each datafile that you were given.  
2. Make a text file containing two colums: the lattice side length (2,4,8, etc.), and the temperature 

at which C is a maximum. This is your estimate of  for that side length.  

3. Make a plot that uses the scaling relation given above to determine . By doing a little 
research online, you should be able to find the theoretical exact Curie temperature for the 
infinite 2D Ising lattice.  

4. How does your value compare to this?  
5. Are you surprised by how good/bad the agreement is? 
6. Attach a PNG of this final graph to your report, and discuss briefly what you think the major 

sources of error are in your estimate. 

1.  
2.  

Lattice Size Max Temperature/K (TC) 

2x2 2.52 

4x4 2.46 

8x8 2.32 

16x16 2.31 

32x32 2.29 
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3. 

 
 
The graph reaches an asymptote at ~2.275. This is determined by observation as no trend lines match this 
graph well.  
 
 
Reference for duality argument: 1941, H.A. Kramers and G.H. Wannier, Phys. Rev. 60, 252 (1941) 
 

𝑘𝐵𝑇𝐶

𝐽
=

2

log (1 + √2)
= 2.269 … 

 
This is very similar to the Curie temperature giving an error of 2.275 ± 0.006, which is much smaller than I 
was expecting! 
 
The main sources of error in this experiment are: 

1. The choice of 4000 as the cut off limit for the number of steps before taking the average.  
2.  
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